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ABSTRACT

Sequences have become first class citizens in supervised learning thanks to the
resurgence of recurrent neural networks. Many complex tasks that require map-
ping from or to a sequence of observations can now be formulated with the
sequence-to-sequence (seq2seq) framework which employs the chain rule to ef-
ficiently represent the joint probability of sequences. In many cases, however,
variable sized inputs and/or outputs might not be naturally expressed as sequences.
For instance, it is not clear how to input a set of numbers into a model where the
task is to sort them; similarly, we do not know how to organize outputs when
they correspond to random variables and the task is to model their unknown joint
probability. In this paper, we first show using various examples that the order in
which we organize input and/or output data matters significantly when learning an
underlying model. We then discuss an extension of the seq2seq framework that
goes beyond sequences and handles input sets in a principled way. In addition,
we propose a loss which, by searching over possible orders during training, deals
with the lack of structure of output sets. We show empirical evidence of our claims
regarding ordering, and on the modifications to the seq2seq framework on bench-
mark language modeling and parsing tasks, as well as two artificial tasks — sorting
numbers and estimating the joint probability of unknown graphical models.

1 INTRODUCTION

Deep architectures have shown in the last few years that they often yield state-of-the-art perfor-
mance on several tasks, ranging from image classification (Ioffe & Szegedy, 2015) to speech recog-
nition (Hinton et al., 2012). More recently, recurrent neural networks (RNNs) and variants such as
the Long Short Term Memory network (LSTMs) proposed by Hochreiter & Schmidhuber (1997)
have shown similar impressive performance on several inherently sequential tasks. Such examples
range from machine translation (Sutskever et al., 2014; Bahdanau et al., 2015a), to image caption-
ing (Vinyals et al., 2015¢; Mao et al., 2015; Donahue et al., 2015), speech recognition (Chan et al.,
2015; Bahdanau et al., 2015b), constituency parsing (Vinyals et al., 2015b) and learning to com-
pute (Zaremba & Sutskever, 2014; Vinyals et al., 2015a). These approaches all follow a simple
architecture, dubbed sequence-to-sequence (seq2seq), where the input is read completely using an
encoder, which is either an LSTM when the input is a sequence, or a convolutional network for
images. The final state of the encoder is then fed to a decoder LSTM whose purpose is to produce
the target sequence, one token at a time.

When the data is naturally organized as a sequence, the sequence-to-sequence framework is well
suited. For example, the chain rule is used to decompose the joint probability of sequences of words,
and can be implemented by an LSTM without making any conditional independence assumption.
But how should we represent data, either inputs or outputs, for problems where an obvious order
cannot be determined? For instance, how should we encode a set of numbers when the task is to sort
them? Alternatively, how should we output a set of detected objects in an image when there is no
specific known order among them? Does the a priori choice of ordering of the data to be presented
to the model matter?

The purpose of this paper is two-fold. First, we show that even when no natural order is known
among input or output objects, there might still be one that yields better performance, hence, order
matters. Second, we propose two approaches to consider sets either as inputs and/or outputs in our
models and evaluate how they perform on various artificial and real datasets.
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2 RELATED WORK

Since sequence-to-sequence models were proposed for machine translation (Sutskever et al., 2014;
Cho et al., 2014; Kalchbrenner & Blunsom, 2013), the research community has proposed several
applications in which these models can perform mappings from and/or to sequences. For example,
image captioning maps from an image to a sentence (Vinyals et al., 2015¢c; Mao et al., 2015; Donahue
et al., 2015), parsing maps from a sentence to a (linearized) parse tree (Vinyals et al., 2015b), and
models for computation map from problem statements (e.g. a python program or a set of points
on the plane) to their solutions (the answer to the program (Zaremba & Sutskever, 2014), or the
traveling salesman problem tour for the set of points (Vinyals et al., 2015a)). It is out of the scope of
this paper to review all successful applications of seq2seq, but the list above already includes some
non-trivial examples of mapping to/from objects that are not necessarily sequences.

More recently, many related models and key contributions have been proposed, that utilize the con-
cept of external memories, including RNNSearch (Bahdanau et al., 2015a), Memory Networks (We-
ston et al., 2015) and Neural Turing Machines (Graves et al., 2014). The key element that these
models utilize is a reading (or attention) mechanism to read these external memories in a fully dif-
ferentiable way (though there has also been work with discrete reading mechanism, most notably
RL-NTM (Zaremba & Sutskever, 2015)).

Unlike traditional structured prediction algorithms (Bakir et al., 2007), our approach relies on the
chain rule to serialize output random variables through the strong capabilities of LSTM networks
to model long-term correlation. Similarly, we do not want to assume a known structured input, as
is done for instance with recursive neural networks (Socher et al., 2010) which encode sentences
recursively as (given) trees.

3 NEURAL NETWORKS FOR SEQUENCES AND SETS

Let us consider a generic supervised task with a given training set of n pairs (X% Y¢)"_, where
(X, Y?)is the i*" pair of an input and its corresponding target. The sequence-to-sequence paradigm
corresponds to tasks where both X? and Y are represented by sequences, of possibly different
lengths: X* = {a},2%,... 2% }and Y* = {yi,v4,...,y; }. Inthis case, it is reasonable to model
each example using the conditional probability P(Y'|X) and to use the chain rule to decompose it
as follows (we drop the example index ¢ in the rest of this section for readability):

T
P(Y|X) = ]___[P(yt\yhy%-uayt—l,X)
t=1
and implement it as an encoder recurrent neural network (RNN) to read sequentially each z; € X
as follows:
hs = fenc(hs—hxs) (1)
where hg is the state of the encoder at time s, followed by a decoder RNN to produce each y; € Y
one at a time, given the current state g; and the previous y;_; symbol:

g1 = hs
gt = fdec(gt—h yt—l)
P(ytly1, y2, - -, ys—1, X ) = softmax(affine(g;)) . 2)

The use of the chain rule makes this approach assumption free, so when the input X corresponds
to a sequence (like a sentence), it is reasonable to read it sequentially into an RNN, as in eq. (1).
However, how should we encode X if it does not correspond naturally to a sequence? For instance,
what if it corresponds to an unordered set of elements?

Similarly, when the target Y corresponds to a sequence, it is reasonable to produce it sequentially
with an RNN, as in eq. (2), but how should we produce Y if it does not correspond naturally to a
sequence?

Note that sequences can be encoded as sets. Indeed, if we associate to each element of a sequence the
index it occupies in it, forming a tuple, we effectively convert this sequence to a set. For example, the
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sequence “T like cats” becomes the set {(I,1), (like,2), (cats,3)} (note that we can permute elements
in the set but still recover the original sequence). Although this may be unnecessary in some cases,
we argue that, even for sequences, inputting and/or outputting them in a different order could be
beneficial. For example, in sorting we may want to employ a divide-and-conquer strategy which
finds the median element first (i.e., we may output the solution in neither increasing nor decreasing
sequential order).

In the following two sections we discuss how to extend seq2seq to handle input sets (Section 4)
and output sets (Section 5). We also show the importance of ordering in a variety of tasks in which
seq2seq has successfully been applied, and include experimental results to support our claims and
extensions to the existing models.

4 INPUT SETS

We first study extensions to encoding (reading) sets. As we discussed in the previous section, se-
quences can be read with a recurrent neural network which can compress its contents into a vector.
An important invariance property that must be satisfied when the input is a set (i.e., the order does
not matter) is that swapping two elements x; and x; in the set X should not alter its encoding.

A simple approach which satisfies this, and which in fact has been commonly used for encoding
sentences, is the bag-of-words approach. In this case, the representation is simply a reduction (e.g.,
addition) of counts, word embeddings, or similar embedding functions, and is naturally permutation
invariant. For language and other domains which are naturally sequential, this is replaced with more
complex encoders such as recurrent neural networks that take order into account and model higher
order statistics of the data.

An unsatisfying property of using a reduction operation (such as addition) is that it makes the rep-
resentation quite inefficient: the model operates over a fixed dimensional embedding regardless of
the length of the set. It is unlikely that such representation will succeed, as the amount of memory
required to encode a length T set (or sequence, for that matter) should increase as a function of 7.
Thus, we argue that even deep convolutional architectures will suffer from this limitation — though
some modifications exist (Maas et al., 2012).

In our work, we largely rely on attention mechanisms to integrate information from a variable length
structure, which we describe in Section 4.2.

4.1 INPUT ORDER MATTERS

In this section, we highlight prior work where we observed that the order of inputs impacted the per-
formance of seq2seq models taking sequences as input. In principle, order should not matter when
using a complex encoder such as a recurrent neural network, as these are universal approximators
that can encode complex features from the input sequence (e.g., n-grams of any order). We believe
that the reason order seems to matter is due to the underlying non-convex optimization and more
suitable prior.

The first example which we experimented with was altering the order of sequences in the context of
machine translation. In machine translation, the mapping function encodes a sentence in a source
language (e.g., English), and decodes it to its translation in a target language (e.g., French). By
reversing the order of the input English sentence, Sutskever et al. (2014) got a 5.0 BLEU score
improvement which allowed them to close the gap between their model — a fully end-to-end model
for machine translation — and state-of-the-art models which were highly engineered. Similarly, for
constituency parsing, in which the mapping is from an English sentence to a flattened version of
its constituency parse tree, a 0.5% absolute increase in F1 score was observed when reversing the
English sentence (Vinyals et al., 2015b).

Furthermore, if we preprocess the data for, e.g., convex hull computation that was presented in
Vinyals et al. (2015a) by sorting the points by angle, the task becomes simpler (from O(nlogn) to
O(n)), and as a result the models obtained are much faster to train and better (increasing accuracy
by up to 10% absolute in the most challenging cases).
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All these empirical findings point to the same story: often for optimization purposes, the order in
which input data is shown to the model has an impact on the learning performance.

Note that we can define an ordering which is independent of the input sequence or set X (e.g., always
reversing the words in a translation task), but also an ordering which is input dependent (e.g., sorting
the input points in the convex hull case). This distinction also applies in the discussion about output
sequences and sets in Section 5.1.

Recent approaches which pushed the seq2seq paradigm further by adding memory and computation
to these models allowed us to define a model which makes no assumptions about input ordering,
whilst preserving the right properties which we just discussed: a memory that increases with the
size of the set, and which is order invariant. In the next sections, we explain such a modification,
which could also be seen as a special case of a Memory Network (Weston et al., 2015) or Neural
Turing Machine (Graves et al., 2014) — with a computation flow as depicted in Figure 1.

4.2 ATTENTION MECHANISMS

Neural models with memories coupled to differentiable addressing mechanism have been success-
fully applied to handwriting generation and recognition (Graves, 2012), machine translation (Bah-
danau et al., 2015a), and more general computation machines (Graves et al., 2014; Weston et al.,
2015). Since we are interested in associative memories we employed a “content” based attention.
This has the property that the vector retrieved from our memory would not change if we randomly
shuffled the memory. This is crucial for proper treatment of the input set X as such. In particular,
our process block based on an attention mechanism uses the following:

)’1a)’2,---’yt,<1
@ = LSTM(g_,) @) hhhhhit
eir = flmiq) 4) Process rite
ay = Pl ) -~ KARLAA
i 25 explej) Read D V1> Y25 e Vi
nom Tem© FT T
¢ X1,X25 .ur s Xs

a = lar (7
Figure 1: The Read-Process-and-Write model.

where ¢ indexes through each memory vector m; (typically equal to the cardinality of X), ¢; is
a query vector which allows us to read r; from the memories, f is a function that computes a
single scalar from m; and ¢; (e.g., a dot product), and LSTM is an LSTM which computes a
recurrent state but which takes no inputs. ¢; is the state which this LSTM evolves, and is formed
by concatenating the query g; with the resulting attention readout 7. ¢ is the index which indicates
how many “processing steps” are being carried to compute the state to be fed to the decoder. Note
that permuting m,; and m,;/ has no effect on the read vector r;.

4.3 READ, PROCESS, WRITE

Our model, which naturally handles input sets, has three components (the exact equations and im-
plementation will be released in an appendix prior to publication):

* A reading block, which simply embeds each element x; € X using a small neural network
onto a memory vector m; (the same neural network is used for all 7).

* A process block, which is an LSTM without inputs or outputs performing 7" steps of com-
putation over the memories m;. This LSTM keeps updating its state by reading m,; repeat-
edly using the attention mechanism described in the previous section. At the end of this
block, its hidden state g7 is an embedding which is permutation invariant to the inputs. See
eqs. (3)-(7) for more details.
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A write block, which is an LSTM pointer network (Vinyals et al., 2015a) that takes in ¢7. (as
the context it needs from which to produce the output from the input set), and points at ele-
ments of m,; (implicitly, x;), one step at a time. The original work in Vinyals et al. (2015a)
used a pointer mechanism which, instead of issuing a readout of memory by a weighted
sum with a soft pointer (see eq. 6), it uses the pointer as part of the loss. We extended this
by adding an extra attention step before the pointer (we called this glimpse). This is related
to the process block described above, but with the difference that the attention reads happen
interleaved between each pointer output. As described later in the results, we found these
two mechanisms to complement each other.

The architecture is depicted in Figure 1 and can be seen as a special case of a Neural Turing Machine
or Memory Network. It satisfies the key property of being invariant to the order of the elements in X,
thus effectively processing the inputs as a set. Also note that the wrife component could simply be an
LSTM if the outputs were from a fixed dictionary. For this model, though, we study combinatorial
problems where the outputs are pointers to the inputs, so we use a pointer network.

4.4  SORTING EXPERIMENT

In order to verify if our model handles sets more efficiently than the vanilla seq2seq approach, we
ran the following experiment on artificial data for the task of sorting numbers: given /N unordered
random floating point numbers between O and 1, we return them in a sorted order. Note that this
problem is an instance of set2seq. We used the architecture defined in Figure 1, where the Read
module is a small multilayer perceptron for each number, the Process module is an attention mech-
anism over the read numbers, implemented as T steps over an LSTM with no input nor output, but
attending the input embeddings, followed by an LSTM to produce indices in the input numbers with
a pointer network (Vinyals et al., 2015a), in the proper sorted order. We also compared this archi-
tecture with a vanilla seq2seq architecture made of an input LSTM connected to an output LSTM
which produces indices in the input numbers with a pointer network (Ptr-Net). Note that the only
difference between these two models is the encoding of the set using either an LSTM (as in previ-
ous work), or with the architecture proposed in the previous section. We ran multiple experiments,
varying the number N of numbers to sort, as well as the number 7" of processing steps of the Read,
Process, Write model.

The out-of-sample accuracies (whether we succeeded in sorting all numbers or not) of these experi-
ments are summarized in Table 1. We can see that the baseline pointer network LSTM input model is
better than the Read-Process-and-Write model when no processing steps (P = 0 step) are used, but
as soon as at least one processing step is allowed, the performance of the Read-Process-and-Write
model gets better, increasing with the number of processing steps. We can also see that, as the size
of the task (expressed in the number of elements to sort N) grows, the performance gets worse, as
expected. Also note that with 0 processing steps and 0 glimpses, the writing module is effectively
unconditioned on X and has to “blindly” point at the elements of X. Thus, it is unsurprising to see it
performing worse than any other model considered in Table 1. Lastly, equipping the writing module
with glimpses (i.e., adding an attention mechanism prior to “pointing””) improves both the baseline
model (Ptr-Net), and our proposed modification quite significantly (in the most challenging cases, it
more than doubles accuracy).

Table 1: The sorting experiment: out-of-sample sorting accuracy for various problem sizes and
processing steps, with or without glimpses. All the reported accuracies are shown after reaching
10000 training iterations, at which point all models had converged but none overfitted. Higher is
better.

Length N Ptr-Net P=0step | P=1step | P=>5steps | P = 10 steps
glimpses 0 1 0 1 0 1 0 1 0 1
N=5 81% 90% || 65% 84% | 84% 92% | 88% 94% | 0% 94%
N =10 8%  28% || 1% 30% | 14% 44% | 17% 57% | 19% 50%
N =15 0% 4% 1% 2% | 0% 5% |2% 4% | 0% 10%
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5 OUTPUT SETS

So far, we have considered the problem of encoding input sets; let us now turn our attention to out-
put representations. The chain rule which describes joint probabilities over sets of random variables
Y is, perhaps, the simplest decomposition of the joint probability which does not incur arbitrary
restrictions (such as conditional independence). Thus, as long as a powerful model that is trainable
exists (which can cope with long range correlations), any order should work without any prior order
information of the underlying problem that generated Y. Despite this, and even when a very pow-
erful model (in terms of modeling power, and resilience to vanishing long term gradients) like the
LSTM is employed, output ordering still plays a key role in successfully training models.

In the next subsection, we describe how the order in which we apply the chain rule affects the
performance on various tasks.

5.1 OUTPUT ORDER MATTERS

Let Y be a set (or a sequence). In this section, we will study the effect that ordering has on the per-
formance of seq2seq models on several tasks. Namely, we will consider arbitrary (and non-arbitrary)
orders over the variables in Y, and model the conditional probability distribution P(Y'| X') following
that order for all training examples. As we will see, order matters (even when considering that the
formulation through the chain rule works regardless of the ordering of Y, at least in principle).

5.1.1 LANGUAGE MODELING

For this experiment, we use the PennTree Bank, which is a standard language modeling bench-
mark. This dataset is quite small for language modeling standards, so most models are data
starved. We trained medium sized LSTMs with large amounts of regularization (see medium model
from Zaremba et al. (2014)) to estimate probabilities over sequences of words. We consider three
version of the dataset with three orderings: natural, reverse, and a fixed, 3-word reversal:

Natural: “This is a sentence .”
Reverse: “. sentence a is This”
3-word: “ais This <pad> . sentence”

Note that the 3-word reversal destroys the underlying structure of the sentence, and makes modeling
the joint probability much more difficult since many higher order n-grams are scrambled. For each
ordering we trained a different model. The results for both natural and reverse matched each other
at 86 perplexity on the development set (using the same setup as Zaremba et al. (2014)). Surpris-
ingly, the 3-word reversal degraded only 10 perplexity points, still achieving an impressive result in
this corpus at 96 perplexity. We note, however, that training perplexities were also 10 points higher,
which indicates that the model had trouble handling the awkward ordering. Thus, even when consid-
ering that the chain rule still properly models the joint probability, some degradation was observed
when a confounding ordering was chosen.

5.1.2 PARSING

The task of constituency parsing consists in producing a parse tree given a sentence. The model
proposed by Vinyals et al. (2015b) is a sentence encoder LSTM followed by a decoder LSTM
trained to generate a depth first traversal encoding of the parse tree, using an attention mechanism.
This approach matched state-of-the-art results on this task.

Even though it seemed more sensible, depth first traversal is only one of the many ways one can
uniquely encode a tree onto a sequence. We thus tried to train a small model using depth first
traversal (which matches the baseline of Vinyals et al. (2015b)) and another one using breadth first
traversal (note that these orderings are input dependent). See Figure 2 for an example on how the tree
linearizes under both traversal schemes. The model trained to produce depth first traversal linearized
trees obtained 89.5% F1 score (as reported by Vinyals et al. (2015b)), whereas the one producing
breadth first traversal trees had a much lower F1 score at 81.5%,' showing again the importance of
picking the right output ordering.

'In fact, in many cases the decoder failed to produce a valid tree, so the real F1 score is likely lower.
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Figure 2: Depth first and breadth first linearizations of a parse tree which shows our different setups
for output ordering in the parsing task.

5.1.3 COMBINATORIAL PROBLEMS

Unlike in the previous two examples, a problem that more commonly comes up as we try to represent
non-sequential data (like tours, triangulations, etc., discussed by (Vinyals et al., 2015a)), is the fact
that there may exist a large equivalence class of solutions.

Take, as an example, outputting the indices for the sorted inputs of a set of random numbers, X.
Indeed, this is a deterministic function. We can choose to output these indices in some order (e.g.,
increasing, decreasing, or using any arbitrary fixed permutation), or treat them as a set (a tuple of
argsort indices with corresponding ranking). As a result, there are n! possible outputs for a given X,
all of which are perfectly valid. If our training set is generated with any of these permutations picked
uniformly at random, our mapping (when perfectly trained) will have to place equal probability on
n! output configurations for the same input X. Thus, this formulation is much less statistically
efficient.

In previous work (Vinyals et al., 2015a), it was found that restricting as much as possible the equiv-
alence class for the outputs was always better. For instance, to output a tour (i.e. a sequence of cities
one has to visit for the traveling salesman problem), we started from the lower indexed city (i.e.,
the first city that we input), and followed a counter-clockwise ordering. Similarly, to output a set
of triangles (which triangulate the set of input points), we sorted them in lexicographical order and
moved left to right. In all cases, improvements of 5% absolute accuracy or more were observed.

Failing to restrict the output equivalence class generally implies much slower convergence (and,
thus, requires much more training data). For instance, for sorting, if considering the outputs as sets
which we output in any of the possible n! orderings, convergence for n as small as 5 never reached
the same performance.

5.1.4 GRAPHICAL MODELS

Let us consider the joint probability of a set of 7" random variables P(y1,yo, - . .,yr). Having no
prior on how these random variables interact with each other, one way to model their joint probability
is to use the chain rule as follows:

T

P(ylayQa"'7yT) = Hp(yt|y1ay2,"' aytfl) (8)
t=1

and model this using an RNN, similar to RNN language models.

While for sentences the natural order of words gives a good clue of how to order the random variables
in the model, for other kind of data it might be harder to decide on it. Furthermore, in theory, the
order should not matter, because of Bayes rule which lets us reorder all the conditional probabilities
as needed. In practice however, it might be that one order is easier to model than another, as we have
shown in this paper.

The purpose of this experiment is to demonstrate this using a controlled toy experiment. We gen-
erated star-like graphical models over random variables where one variable (the head) follows an
unconditional distribution, while the others follow a conditional distribution based on the value of
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the head variable. We expect that it should be easier to model the joint distribution by choosing any
ordering which starts with the head variable. We created several artificial datasets by varying the
number of random variables to model (between 10 and 50, each of which was a multinomial over 10
symbols), the training set size (between 200 and 20000 training samples), and the randomness of the
marginal distributions, or how deterministic, or peaky, they were. For each problem, we trained two
LSTMs for 10,000 mini-batch iterations to model the joint probability, one where the head random
variable was shown first, and one where it was shown last.

The results were as follows:

* when the training set size is large enough (20000), the LSTM is able to learn the joint
probability in whichever order;

* when the marginal distributions are very peaky (and thus almost deterministic), the LSTM
is also able to learn the joint probability independently of the order;

* in all other cases (small training set size, small or large number of random variables, and
some amount of randomness in the marginal distributions), it was always easier to learn an
LSTM with the optimal order of random variables than any other order.

5.2 FINDING OPTIMAL ORDERINGS WHILE TRAINING

Recall the model we proposed for dealing with input sets: given an embedding for each of the inputs,
we have a generic module that is able to process its inputs in any order. This yields an embedding
satisfying the key property of being invariant to reorderings, whilst being generic in the kinds of
computations to do over the input set.

Unfortunately, placing a joint probability over a set of random variables v, . . . y,, when the structure
of the joint probability function is unknown is a hard problem. Fortunately, and thanks to recurrent
neural networks, we can apply the chain rule which decomposes this joint probability sequentially
(see eq. 8) without independence assumptions. In this work, we focus on using the chain rule,
discarding more naive decompositions that have strong and unrealistic assumptions (e.g., conditional
independence).

An obvious drawback of the chain rule which violates the argument of treating y1, . .. y,, as a set is
that we condition these random variables in a particular order. Even though, in principle, the order
should not matter, in the previous section we have shown that this is indeed not the case, and that
certain orderings are better than others in a variety of tasks — most likely due to the parameterization
of the joint probability (using an LSTM), and the non-convex nature of the optimization problem.

Our proposed solution to deal with the aforementioned drawback is extremely simple: as we train,
we let the model decide which is the best ordering in which it will apply the chain rule. More
formally, assume there exists an ordering which maximally simplifies the task, 7(X) (where X is
the input sequence or set, which can be empty). We would like to train the model as p(Y7(x)|X).
The number of possible orderings is large — n! where n is the length of the output, and the best order
is unknown a priori.

Since n! can be very large, we could attempt to do (inexact) search as we train the model. Instead of
maximizing the log probability of p(Y'|X) for each training example pair, we also maximize over
orderings as follows:

6 = arg max Z max log p(Yr(x,)| Xi3 0) )

not strictly improve the regular maximum likelihood framework due to non-convexity, but we found
this to not be an issue in practice.

where max x,) is computed either naively, or with an inexact search. Note that Equation (9) may

Besides not being scalable, we found that, if done naively and picking the max over ordering as we
train, the model would pick a random ordering (as a function of the initial parameters), and would
get stuck on it permanently (since it would reinforce it through learning). We added two ways to
explore the space of all orderings as follows:
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* We pretrain the model with a uniform prior over 7(X) for 1000 steps, which amounts to
replacing the max,(x,) in eq. (9) by a Zw(xi)-

* We then pick an ordering by sampling 7 (X) according to a distribution proportional to
P(Yr(x)|X). This costs O(1) model evaluations (vs. naive search which would be O(n!)).

Crucially, sampling p(Y7(x)|X) can be done very efficiently as we can use ancestral sampling (left-
to-right) which requires to evaluate p(.) only once instead of n!.

5.2.1 5-GRAM MODELING

In our initial attempt to solve (9), we considered a simplified version of the language modeling
task described in Section 5.1.1. The simplified task consists of modeling the joint probability of 5-
grams without any further context (i.e., there is no input X). This choice allowed us to have a small
enough n as initially we were trying to exactly find the best ordering out of the n! possible ones.
Thus, we disregarded possible effects of inexact search, and focused on the essential of the training
dynamics where the model being optimized picks the best ordering 7 which maximizes p(Y;; ) under
its current parameters, and reinforces that ordering by applying updates on the gradient of log p(Y)
w.r.t. the parameters. Eventually, as noted in Section 5.2, we found sampling to be superior in terms
of convergence, whilst simplifying the complexity from O(n!) down to O(1), and is the preferred
solution which we used in the rest of this section.

To test this framework, we converted 5-grams (i.e., sequences of words) to a set in the following
way:

5-gram (sequence): y;=This, yo=is, ys=a, y4=five, ys=gram
5-gram (set): y1=(This, 1), y2=(is,2), y3=(a,3), y4=(five.4), ys=(gram,5)

Note that adding the original position alongside the words makes Y a set. Thus, we can shuffle
Y in arbitrarily without losing the original structure of the sequence. The first experiment, which
reinforces our result in Section 5.1.1, tests the hypothesis once again that order matters. Training
a model which follows the natural order (i.e., produces (This,1), followed by (is,2) conditioned on
(This, 1), etc.), achieves a validation perplexity of 225.% If, instead of picking (1,2,3,4,5), we use
(5,1, 3,4, 2), perplexity drops to 280.

We then test optimization of eq. (9) in two setups:

Easy: The training set contains examples from (1, 2, 3,4, 5) and (5, 1, 3, 4, 2), uniformly sampled.
Hard: The training set contains examples from the 5! possible orderings, uniformly sampled.

Our results are shown in Table 2. Note that, in the easy case, we restrict the search space over
orderings to only 2, where one order is clearly better than the other. We note that, after the pretraining
phase, we decide which of the two orderings is better to represent the data under the model being
trained. Very quickly, the model settles on the natural (1,2, 3, 4,5) ordering, yielding a perplexity
of 225. In the most difficult case, where any order is possible, the model settles to orders such as
(1,2,3,4,5), (5,4,3,2,1), and small variations of them. In all cases, the final perplexity is 225.
Thus, the framework we propose is able to find good orderings without any prior knowledge. We
plan to not only recover optimal orderings, but find ones that were unknown to us when applying
the seq2seq framework naively.

Table 2: Experiments in which the model finds the optimal ordering of a set for the 5-gram language
modeling task. Perplexities are reported on the validation set (lower is better).

Task Orders considered | Perplexity
(1,2,3,4,5) | 1 225
(5,1,3,4,2) | 1 280
Easy 2 225
Hard 5! 225

2This is much worse than the results reported in Section 5.1.1 since modeling 5-grams without context is
much harder than standard language modeling.
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6 CONCLUSION

LSTMs have shown to be powerful models to represent variable length sequential data thanks to
their ability to handle reasonably long term dependencies and the use of the chain rule to efficiently
decompose joint distributions. On the other hand, some problems are expressed in terms of an
unordered set of elements, either as input or as outputs; in some other cases, the data is represented
by some structure that needs to be linearized to be fed to the LSTM, and there might be more
than one way to do so. The first goal of this paper was to shed some light on these problems:
indeed, we show that order matters to obtain the best performance. We then considered the case
of unordered input data, for which we proposed the Read-Process-and-Write architecture, and the
case of unordered output data, for which we proposed an efficient training algorithm that includes a
search over possible orders during training and inference. We illustrated our proposed approaches
for input and output sets through various experiments such as sorting, graphical models, language
modeling, and parsing.
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