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ABSTRACT

Low-level aspects of music audio such as timbre, loud-
ness and pitch, can be relatively well modelled by features
extracted from short-time windows. Higher-level aspects
such as melody, harmony, phrasing and rhythm, on the
other hand, are salient only at larger timescales and re-
quire a better representation of time dynamics. For var-
ious music information retrieval tasks, one would benefit
from modelling both low and high level aspects in a uni-
fied feature extraction framework. By combining adaptive
features computed at different timescales, short-timescale
events are put in context by detecting longer timescale fea-
tures. In this paper, we describe a method to obtain such
multi-scale features and evaluate its effectiveness for auto-
matic tag annotation.

1. INTRODUCTION

Frame-level representations of music audio are omnipresent
in the music information retrieval (MIR) field. Spectro-
grams, mel-frequency cepstral coefficients (MFCC), chro-
magrams and stabilized auditory images (SAI) are just a
few examples of features that are typically computed over
short frames. It has been shown that using frame-level fea-
tures aggregated over time windows on the scale of a few
seconds yields better results on various MIR tasks [2] than
applying learning algorithms directly on frame-level fea-
tures. However, the aggregation of frame-level features,
also known as the bag-of-frames approach, does not model
the temporal structure of the audio beyond the timescale
of the frames. A simple method to get some informa-
tion about short-time dynamics is to use the derivatives of
the frame-level features. However, this method does not
yield a representation that can model much longer tempo-
ral structure. Some alternative techniques to the bag-of-
frames approach inspired by speech processing rely on the
modelization of the temporal structure with models such as
HMMs [12]. A representation that could jointly model the
short-term spectral structure and long-term temporal struc-
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ture of music audio would certainly improve MIR systems.
In this paper, we take a step to improve the bag-of-

frames approach by combining a set of features computed
over different timescales. The idea is that longer timescale
features, by modelling temporal structure, will give some
context to the shorter timescale features which model spec-
tral structure. The combination of multiple timescales could
yield a general representation of the music audio that would
be useful to solve various MIR tasks relying on audio fea-
tures. In particular, we will show that a simple classifier
trained over a multi-scale spectral representation of music
audio obtains state-of-the-art performance on the task of
automatic tag annotation. The multi-timescale representa-
tion that we introduce in this paper has the advantage of
being a general purpose scalable method that requires no
prior knowledge of the spectral or temporal structure of
music audio.

The paper is divided as follows. First, in Section 2, we
describe the current state of the research on multi-scale
representations. Then, in Section 3, we describe our exper-
imental setup. In Section 4 we discuss our results. Finally,
we conclude in Section 5.

2. MULTI-SCALE REPRESENTATIONS

Using representations at multiple scales allows much flex-
ibility to model the structure of the data. Multi-scale rep-
resentations offer a natural way to jointly model local and
global aspects, without having prior knowledge about the
local and global structures.

The idea of considering multiple scales is not new. It
has been applied widely in the machine vision field. For
example, pyramid representations [3] and convolutional net-
works [8] are just a few examples of multi-scale represen-
tations.

Recently, the MIR community as shown interest in tak-
ing advantage of multi-scale representations. Here are a
few examples of recent work that has been done on multi-
scale representation of music audio. Multi-scale spectro-
temporal features inspired by the auditory cortex have been
proposed in [11]. These features are used to discriminate
speech from non-speech audio in a small dataset. In [10],
structural change of harmonic, rhythmic and timbral fea-
tures are computed at different timescales. This repre-
sentation is used to build meaningful visualizations, al-
though it has not been applied to music audio classifica-



DFT
Mel

scaling
PCA

whitening
Temporal 
pooling

DFT
Mel

scaling
PCA

whitening
Temporal 
pooling

DFT
Mel

scaling
PCA

whitening
Temporal 
pooling

DFT
Mel

scaling
PCA

whitening
Temporal 
pooling

Figure 1: PMSCs are computed in parallel at different timescales.

tion. In [5], boosting is applied on features at different
timescales to optimize music classification. Although the
validity of this method is demonstrated, it does not obtain
state-of-the-art results on the CAL500 dataset. Learning
features jointly at different timescales obtains state-of-the-
art performance for automatic tag annotation [6]. How-
ever this model still depends on a bag of short timescale
frames to build the long timescale representation, limiting
the potential to model temporal dynamics. Deep convo-
lutional networks have been applied to genre recognition
in [9]. The authors show that classification performance
for genre recognition and artist identification can be im-
proved by using an unsupervised deep convolutional rep-
resentation instead of raw MFCC features. Unfortunately,
the results presented in this work are not comparable to
other work in the field. In [1], scattering representations of
MFCCs have been shown to improve music genre classifi-
cation. The performance reported are comparable to other
results reported on the same dataset. A bag-of-system ap-
proach have been proposed in [4] to combine models at
various time resolutions.

3. EXPERIMENTAL SETUP

We used the TagATune dataset [7] in our experiments.
TagATune is the largest dataset for music annotation avail-
able for research that provides audio files. It contains over
20,000 30-second audio clips sampled at 22050 Hz, and
160 tag categories. Our train, valid and test datasets con-
tained 14660, 1629 and 6499 clips respectively.

We used the area under the ROC curve (AUC) averaged
over tags (AUC-tag) as our main performance measure.
We also use the AUC averaged over clips (AUC-clip) and
precision at k for comparison with other models. For more
details on these performance measures, see [6].

3.1 Multi-scale Principal Mel-Spectrum Components

In our experiments, we used Principal Mel-Spectrum Com-
ponents (PMSCs) [6] as base features. PMSCs are general
purpose spectral features for audio. They are obtained by
computing the principal components of the mel-spectrum.
PMSCs have shown great potential for the task of music
tag annotation.

Moreover, it is quite simple to compute PMSCs at dif-
ferent timescales. The time length of the frame used to

compute the discrete Fourier transform (DFT) determines
the timescale of the features. To obtain multi-timescale
features, we simply need to compute a set of PMSCs over
frames of different lengths (Figure 1). The smallest DFT
window we used was 1024 samples (46.4 ms). The size
of the timescales grew exponentially in powers of 2 (1024,
2048, 4096, etc.).

We keep the same number of mel coefficients for all
timescales. Thus, longer frames are more compressed by
the mel-scaling, since the dimensionality of the output from
the DFT is proportional to the frame’s length. However,
mel-scaling is more important for high frequency bins, while
low-frequency bins are barely compressed by the mel-scaling.
Fortunately, these high frequencies are already represented
in shorter timescales where they are less compressed. In
our experiments, we used 200 mel energy bands.

In our experiments, we found that using the log ampli-
tude of the mel-spectrum yields better performance than
using the amplitude.

PCA whitening is computed and applied independently
on each timescale. In order to circumvent memory prob-
lems when computing the PCA, we limit the number of
frame examples by randomly sub-sampling frames in the
training set. We typically used around 75 000 frames to
compute the PCA. It is also worth noting that we preserve
all the principal components since we don’t use PCA for
dimensionality reduction, but rather to obtain a feature space
with an approximate diagonal covariance matrix. The PCA
whitening step decorrelates the features, which allows a
more efficient temporal aggregation.

The principal components obtained for different
timescales are shown in Figure 2. For each timescale, the
first few principal components (those that account for the
most variance in the data) tend to model global spectral
shape. Subsequent components then model harmonic struc-
ture in the lower part of the mel-spectrum, and as we go up
in the coefficients (and lower in the accounted variance),
the components model structure in higher frequencies. It
is interesting to notice the periodic structure in the com-
ponents which shows how the harmonics are captured by
the components. Also, if we compare components between
timescales, we can observe that components tend to model
a larger part of the mel-spectrum and exhibit more struc-
ture in the lower frequencies as we go higher in the frame
size.
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Figure 2: PCA Whitening matrices for different timescales. The first few principal components tend to model global
spectral shape. Subsequent components then model harmonic structure in the lower part of the mel-spectrum, and as we go
up in the coefficients, the components model structure in higher frequencies.

The next step consists of summarizing the features over
a given time window by computing meaningful statistics.
We refer to this step as temporal pooling. Following re-
sults from [6], we combined four pooling functions: mean,
variance, maximum and minimum. These statistics are ap-
plied independently to each principal component through
time and concatenated into a single feature vector for a
given time window. In consequence, for each timescale
we obtain a feature vector having four times the dimension
of a single frame. Again, following results from [6], we
fixed the pooling window at approximately 3 seconds for
all experiments. Although, depending on how the frames
were overlapped, this window length might vary for differ-
ent timescales (see Section 4). The choice of the window
length can be justified by the fact that 3 seconds would be
enough for a human listener to label audio examples, but
longer windows would give us less meaningful statistics
for shorter timescales.

By concatenating the pooled features from each timescale,
we obtain multi-timescale PMSCs (Figure 1).

3.2 Multi-Layer Perceptron

The classifier we used is similar as the pooled feature clas-
sifier (PFC) model presented in [6]. However, in our case,
the input pooled feature vector will tend to be larger, since
it is obtained by concatenating many timescales.

We used a one-hidden layer artificial neural network,
also known as multi-layer perceptron (MLP), as the classi-
fier for all experiments. We kept the size of the network
constant at 1000 hidden units for all experiments. The

number of parameters (weights) in the system varies de-
pending on the dimensionality of the input.

The input to the MLP is a multi-timescale PMSC repre-
sentation a window of approximately 3 seconds of audio.
In order to obtain tags for a full song in the test and valida-
tion phases, we simply average the MLP outputs over all
windows from that song.

The MLP is well suited for multi-label classification
like the music annotation task. The hidden layer acts as
a latent representation that can model correlation between
inputs as well as shared statistical structure between the
conditional distributions associated with different targets
(tags). This gives the MLP an advantage over other models
such as the multi-class SVM, for which one would have to
train a separate model for each tag. Also, the MLP scales
sub-linearly in the number of examples, so it scales well to
large datasets.

4. RESULTS

In our experiments, we evaluated the performance of dif-
ferent timescales individually, and their combination for
the task of automatic tag annotation.

In our first experiment, for a given timescale, we did not
overlap frames. In consequence, longer timescales have
fewer frame examples. In the extreme case, the longest
timescale is the size of the pooling window, meaning that
the max, mean and min are all equal, and variance is zero.
Obviously, this is not ideal. As we can see in Figure 3a,
longer timescale perform worse than short timescales. How-
ever, we still see a significant advantage to using a com-
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Figure 3: AUC-tag for single timescale features without overlap (a) and with overlap (b). Shorter timescales tend to
perform better than longer timescales, and performance generally improve when using overlapped frames.

(a) no overlap

(b) overlap

Figure 4: Illustration of frames without overlap (a) and
with overlap (b).

bination of timescales. In Figure 5a, we show the perfor-
mance of multi-timescale features. We combined timescales
incrementally, starting from the shortest one to the longest
one. For example, the representation with two timescales
combines 46.4ms and 92.9ms frames, the one with three
timescales combines 46.4ms, 92.9ms and 185.8ms frames,
etc.

In order to obtain more examples for higher timescales,
and yield more meaningful statistics for the temporal pool-
ing, we considered using more overlapping between win-
dows. In our second experiment, we used the same frame
step for all timescales, corresponding to the smallest frame
length, in this case, 46ms (Figure 4). We include all frames
that start within the pooling window in the temporal pool-
ing. This means that the longest timescale frames will
overflow beyond the pooling window length up to almost
twice the window length. Even though this method will
give us the same number of frames to aggregate for each
timescale, the longer timescales will still have much more
redundancy than shorter timescales. Longer timescales per-
form significantly better with more overlap than without
overlap, as we can see by comparing Figure 3a and 3b. The

Multi PMSCs PMSCs PMSCs + MTSL MUSLSE
AUC-Tag 0.870 0.858 0.868 -
AUC-Clip 0.949 0.944 0.947 -

Precision at 3 0.481 0.467 0.470 0.476
Precision at 6 0.339 0.330 0.333 0.334
Precision at 9 0.263 0.257 0.260 0.259
Precision at 12 0.216 0.210 0.214 0.212
Precision at 15 0.184 0.179 0.182 0.181

Table 1: Performance of different automatic annotation
models on the TagATune dataset

overlap also gives a boost of performance when combining
timescales (Figure 5b).

In Table 1, we show the test performance of the model
that obtained the best AUC-tag on the validation set. We
compare with two other state-of-the-art models: Multi-time-
scale learning model (MTSL) [6] and Music Understand-
ing by Semantic Large Scale Embedding MUSLSE [13].
The multi-timescale PMSCs trained with the MLP obtains
the best performance on all measures. Moreover, this model
is a lot faster to train than the MTSL. For the TagATune
dataset, the training time would typically be a few hours
for the MLP compared to a few days for the MTSL.

5. CONCLUSION

Multi-timescale PMSCs are general purpose features that
aim at jointly modelling aspects salient at multiple timescales.
We showed that, for the task of automatic tag annotation,
using multi-timescale features gives an important boost in
performance compared to using features computed over a
single timescale. Moreover, with a simple classifier, we
obtain state-of-the-art performance on the TagATune dataset.

Multi-timescale PMSCs could potentially improve the
performance of more complex learning models such as MTSL
or MUSLSE. They could most likely be useful for other
music information retrieval tasks such as genre recogni-
tion, instrument recognition or music similarity as well.
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Figure 5: AUC-tag in function of number of timescales used without overlap (a) and with overlap (b). The combination of
timescales always include the shorter timescales. For example, the representation with 2 timescales combines 46.4ms and
92.9ms frames, the one with 3 timescales combines 46.4ms, 92.9ms and 185.8ms frames, etc.

Although the timescales used in these experiments are
not long enough to model many aspects of the temporal
structure of music, the combination of multiple timescales
of analysis allows to model some mid-level temporal dy-
namics that are useful for music classification. It is also a
improvement on the typical bag-of-frames approach. Even
though we are still using frame level features, the concate-
nation of longer timescale representations puts short-time
features in context.

In future work, it would be interesting to optimize the
pooling window lengths independently for each timescale.
This would allow longer timescale features to be aggre-
gated over less redundant information and provide more
relevant and stable statistics. It would also allow us to com-
pute PMSCs over even larger timescales.
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