
Document Embedding with Paragraph Vectors

Andrew M. Dai
Google

adai@google.com

Christopher Olah
Google

colah@google.com

Quoc V. Le
Google

qvl@google.com

Abstract

Paragraph Vectors has been recently proposed as an unsupervised method for
learning distributed representations for pieces of texts. In their work, the authors
showed that the method can learn an embedding of movie review texts which can
be leveraged for sentiment analysis. That proof of concept, while encouraging, was
rather narrow. Here we consider tasks other than sentiment analysis, provide a more
thorough comparison of Paragraph Vectors to other document modelling algorithms
such as Latent Dirichlet Allocation, and evaluate performance of the method as
we vary the dimensionality of the learned representation. We benchmarked the
models on two document similarity data sets, one from Wikipedia, one from arXiv.
We observe that the Paragraph Vector method performs significantly better than
other methods, and propose a simple improvement to enhance embedding quality.
Somewhat surprisingly, we also show that much like word embeddings, vector
operations on Paragraph Vectors can perform useful semantic results.

1 Introduction

Central to many language understanding problems is the question of knowledge representation: How
to capture the essential meaning of a document in a machine-understandable format (or “represen-
tation”). Despite much work going on in this area, the most established format is perhaps the bag
of words (or bag of n-gram) representations [2]. Latent Dirichlet Allocation (LDA) [1] is another
widely adopted representation.

A recent paradigm in machine intelligence is to use a distributed representation for words [4]
and documents [3]. The interesting part is that even though these representations are less human-
interpretable than previous representations, they seem to work well in practice. In particular, Le and
Mikolov [3] show that their method, Paragraph Vectors, capture many document semantics in dense
vectors and that they can be used in classifying movie reviews or retrieving web pages.

Despite their success, little is known about how well the model works compared to Bag-of-Words
or LDA for other unsupervised applications and how sensitive the model is when we change the
hyperparameters.

In this paper, we make an attempt to compare Paragraph Vectors with other baselines in two tasks
that have significant practical implications. First, we benchmark Paragraph Vectors on the task of
Wikipedia browsing: given a Wikipedia article, what are the nearest articles that the audience should
browse next. We also test Paragraph Vectors on the task of finding related articles on arXiv. In both
of these tasks, we find that Paragraph Vectors allow for finding documents of interest via simple and
intuitive vector operations. For example, we can find the Japanese equivalence of “Lady Gaga.”.

The goal of the paper is beyond benchmarking: The positive results on Wikipedia and arXiv datasets
confirm that having good representations for texts can be powerful when it comes to language
understanding. The success in these tasks shows that it is possible to use Paragraph Vectors for local
and non-local browsing of large corpora.

1

ar
X

iv
:1

50
7.

07
99

8v
1 

 [
cs

.C
L

] 
 2

9 
Ju

l 2
01

5



We also show a simple yet effective trick to improve Paragraph Vector. In particular, we observe that
by jointly training word embeddings, as in the skip gram model, the quality of the paragraph vectors
is improved.

2 Model

The Paragraph Vector model is first proposed in [3]. The model inserts a memory vector to the
standard language model which aims at capturing the topics of the document. The authors named this
model “Distributed Memory”:

Figure 1: The distributed memory model of Paragraph Vector for an input sentence.

As suggested by the figure above, the paragraph vector is concatenated or averaged with local context
word vectors to predict the next word. The prediction task changes the word vectors and the paragraph
vector.

The paragraph vector can be further simplified when we use no local context in the prediction task.
We can arrive at the following “Distributed Bag of Words” model:

Figure 2: The distributed bag of words model of Paragraph Vector.

At inference time, the parameters of the classifier and the word vectors are not needed and backpropa-
gation is used to tune the paragraph vectors.

As the distributed bag of words model is more efficient, the experiments in this paper focuses on
this implementation of the Paragraph Vector. In the following sections, we will explore the use of
Paragraph Vectors in different applications in document understanding.

3 Experiments

We conducted experiments with two different publicly available corpora: a corpus from the repository
of electronic preprints (arXiv), and a corpus from the online encyclopaedia (Wikipedia).

In each case, all words were lower-cased before the datasets were used. We also jointly trained word
embeddings with the paragraph vectors since preliminary experiments showed that this can improve

2



the quality of the paragraph vectors. Preliminary results also showed that training with both unigrams
and bigrams does not improve the quality of the final vectors. We present a range of qualitative
and quantitative results. We give some examples of nearest neighbours to some Wikipedia articles
and arXiv papers as well as a visualisation of the space of Wikipedia articles. We also show some
examples of nearest neighbours after performing vector operations.

For the quantitative evaluation, we attempt to measure how well paragraph vectors represent semantic
similarity of related articles. We do this by constructing (both automatically and by hand) triplets,
where each triplet consists of a pair of items that are close to each other and one item that is unrelated.

For the publicly available corpora we trained paragraph vectors over at least 10 epochs of the data and
use a hierarchical softmax constructed as a Huffman tree as the classifier. We use cosine similarity
as the metric. We also applied LDA with Gibbs sampling and 500 iterations with varying numbers
of topics. For LDA, we set α to 0.1 and used values of β between 0.01 and 0.000001. We used the
posterior topic proportions for each paper with Hellinger distance to compute the similarity between
pairs of documents. For completeness, we also include the results of averaging the word embeddings
for each word in a paper and using that as the paragraph vector. Finally, we consider the classical
bag of words model where each word is represented as a one-hot vector weighted by TF-IDF and the
document is represented by that vector, with comparisons done using cosine similarity.

3.1 Performance of Paragraph Vectors on Wikipedia entries

We extracted the main body text of 4,490,000 Wikipedia articles from the English site. We removed
all links and applied a frequency cutoff to obtain a vocabulary of 915,715 words. We trained paragraph
vectors on these Wikipedia articles and visualized them in Figure 3 using t-SNE [5]. The visualization
confirms that articles having the same category are grouped together. There is a wide range of sport
descriptions on wikipedia, which explains why the sports are less concentrated.

Figure 3: Visualization of Wikipedia paragraph vectors using t-SNE.

We also qualitatively look at the nearest neighbours of Wikipedia articles and compare Paragraph
Vectors and LDA. For example, the nearest neighbours for the Wikipedia article “Machine learning”
are shown in Table 1. We find that overall Paragraph Vectors have better nearest neighbours than
LDA.

3



Table 1: Nearest neighbours to “Machine learning.” Bold face texts are articles we found unrelated to
“Machine learning.” We use Hellinger distance for LDA and cosine distance for Paragraph Vectors as
they work the best for each model.

LDA Paragraph Vectors
Artificial neural network Artificial neural network
Predictive analytics Types of artificial neural networks
Structured prediction Unsupervised learning
Mathematical geophysics Feature learning
Supervised learning Predictive analytics
Constrained conditional model Pattern recognition
Sensitivity analysis Statistical classification
SXML Structured prediction
Feature scaling Training set
Boosting (machine learning) Meta learning (computer science)
Prior probability Kernel method
Curse of dimensionality Supervised learning
Scientific evidence Generalization error
Online machine learning Overfitting
N-gram Multi-task learning
Cluster analysis Generative model
Dimensionality reduction Computational learning theory
Functional decomposition Inductive bias
Bayesian network Semi-supervised learning

We can perform vector operations on paragraph vectors for local and non-local browsing of Wikipedia.
In Table 2a and Table 2b, we show results of two experiments. The first experiment is to find related
articles to “Lady Gaga.” The second experiment is to find the Japanese equivalence of “Lady Gaga.”
This can be achieved by vector operations: pv(“Lady Gaga”) - wv(“American”) + wv(“Japanese”)
where pv is paragraph vectors and wv is word vectors. Both sets of results show that Paragraph
Vectors can achieve the same kind of analogies like Word Vectors [4].

Table 2: Wikipedia nearest neighbours

(a) Wikipedia nearest neighbours to “Lady
Gaga” using Paragraph Vectors. All articles
are relevant.

Article Cosine
Similarity

Christina Aguilera 0.674
Beyonce 0.645
Madonna (entertainer) 0.643
Artpop 0.640
Britney Spears 0.640
Cyndi Lauper 0.632
Rihanna 0.631
Pink (singer) 0.628
Born This Way 0.627
The Monster Ball Tour 0.620

(b) Wikipedia nearest neighbours to “Lady
Gaga” - “American” + “Japanese” using Para-
graph Vectors. Note that Ayumi Hamasaki is
one of the most famous singers, and one of the
best selling artists in Japan. She also has an
album called “Poker Face” in 1998.

Article Cosine
Similarity

Ayumi Hamasaki 0.539
Shoko Nakagawa 0.531
Izumi Sakai 0.512
Urbangarde 0.505
Ringo Sheena 0.503
Toshiaki Kasuga 0.492
Chihiro Onitsuka 0.487
Namie Amuro 0.485
Yakuza (video game) 0.485
Nozomi Sasaki (model) 0.485

4



To quantitatively compare these methods, we constructed two datasets for triplet evaluation. The first
consists of 172 triplets of articles we knew were related because of our domain knowledge. Some
examples are: “Deep learning” is closer to “Machine learning” than “Computer network” or “Google”
is closer to “Facebook” than “Walmart” etc. Some examples are hard and probably require some
deep understanding of the content such as “San Diego” is closer to “Los Angeles” than “San Jose.”

The second dataset consists of 19,876 triplets in which two articles are closer because they are listed
in the same category by Wikipedia, and the last article is not in the same category, but may be in a
sibling category. For example, the articles for “Barack Obama” are closer to “Britney Spears” than
“China.” These triplets are generated randomly.1

We will benchmark document embedding methods, such as LDA, bag of words, Paragraph Vector, to
see how well these models capture the semantic of the documents. The results are reported in Table 3
and Table 4. For each of the methods, we also vary the number of embedding dimensions.

● ●

●
●

65

70

75

80

85

90

100 1000 10000
Dimensionality

A
cc

ur
ac

y

Model ● Avg. word embeddings LDA PV PV w/o word training

Figure 4: Results of experiments on the hand-built Wikipedia triplet dataset.

Table 3: Performances of different methods on hand-built triplets of Wikipedia articles on the best
performing dimensionality.

Model Embedding Accuracy
dimensions/topics

Paragraph vectors 10000 93.0%
LDA 5000 82%
Averaged word embeddings 3000 84.9%
Bag of words 86.0%

From the results in Table 3 and 4, it can be seen that paragraph vectors perform better than LDA. We
also see a peak in paragraph vector performance at 10,000 dimensions. Both paragraph vectors and
averaging word embeddings perform better than the LDA model. For LDA, we found that TF-IDF
weighting of words and their inferred topic allocations did not affect the performance. From these
results, we can also see that joint training of word vectors improves the final quality of the paragraph
vectors.

1The datasets are available at http://cs.stanford.edu/˜quocle/triplets-data.tar.gz

5

http://cs.stanford.edu/~quocle/triplets-data.tar.gz


●

●

65

70

75

100 1000 10000
Dimensionality

A
cc

ur
ac

y

Model ● Avg. word embeddings LDA PV PV w/o word training

Figure 5: Results of experiments on the generated Wikipedia triplet dataset.

Table 4: Performances of different methods on dataset with generated Wikipedia triplets on the best
performing dimensionality.

Model Embedding Accuracy
dimensions/topics

Paragraph vectors 10000 78.8%
LDA 5000 67.7%
Averaged word embeddings 3000 74%
Bag of words 78.3%

3.2 Performance of Paragraph Vectors on arXiv articles

We extracted text from the PDF versions of 886,000 full arXiv papers. In each case we only used the
latest revision available. We applied a minimum frequency cutoff to the vocabulary so that our final
vocabulary was 969,894 words.

We performed experiments to find related articles using Paragraph Vectors. In Table 5 and Table 6,
we show the nearest neighbours of the original Paragraph Vector paper “Distributed Representations
of Sentences and Documents” and the current paper. In Table 7, we want to find the Bayesian
equivalence of the Paragraph Vector paper. This can be achieved by vector operations: pv(“Distributed
Representations of Sentences and Documents”) - wv(“neural”) + wv(“Bayesian”) where pv are
paragraph vectors and wv are word vectors learned during the training of paragraph vectors. The
results suggest that Paragraph Vector works well in these two tasks.

To measure the performance of different models on this task, we picked pairs of papers that had
at least one shared subject, the unrelated paper was chosen at random from papers with no shared
subjects with the first paper. We produced a dataset of 20,000 triplets by this method.

From the results in Table 8, it can be seen that paragraph vectors perform on par than the best
performing number of topics for LDA. Paragraph Vectors are also less sensitive to differences in
embedding size than LDA is to the number of topics. We also see a peak in paragraph vector
performance at 100 dimensions. Both models perform better than the vector space model. For
LDA, we found that TF-IDF weighting of words and their inferred topic allocations did not affect
performance.

6



Table 5: arXiv nearest neighbours to “Distributed Representations of Sentences and Documents”
using Paragraph Vectors.

Title Cosine
Similarity

Evaluating Neural Word Representations in Tensor-Based Compositional Settings 0.771
Polyglot: Distributed Word Representations for Multilingual NLP 0.764
Lexicon Infused Phrase Embeddings for Named Entity Resolution 0.757
A Convolutional Neural Network for Modelling Sentences 0.747
Distributed Representations of Words and Phrases and their Compositionality 0.740
Convolutional Neural Networks for Sentence Classification 0.735
SimLex-999: Evaluating Semantic Models With (Genuine) Similarity Estimation 0.735
Exploiting Similarities among Languages for Machine Translation 0.731
Efficient Estimation of Word Representations in Vector Space 0.727
Multilingual Distributed Representations without Word Alignment 0.721

Table 6: arXiv nearest neighbours to the current paper using Paragraph Vectors.

Title Cosine
Similarity

Distributed Representations of Sentences and Documents 0.681
Efficient Estimation of Word Representations in Vector Space 0.680
Thumbs up? Sentiment Classification using Machine Learning Techniques 0.642
Distributed Representations of Words and Phrases and their Compositionality 0.624
KNET: A General Framework for Learning Word Embedding using 0.622

Morphological Knowledge
Japanese-Spanish Thesaurus Construction Using English as a Pivot 0.614
Multilingual Distributed Representations without Word Alignment 0.614
Catching the Drift: Probabilistic Content Models, with Applications 0.613

to Generation and Summarization
Exploiting Similarities among Languages for Machine Translation 0.612
A Survey on Information Retrieval, Text Categorization, and Web Crawling 0.610

Table 7: arXiv nearest neighbours to “Distributed Representations of Sentences and Documents” -
“neural” + “Bayesian”. I.e., the Bayesian equivalence of the Paragraph Vector paper.

Title Cosine
Similarity

Content Modeling Using Latent Permutations 0.629
SimLex-999: Evaluating Semantic Models With (Genuine) Similarity Estimation 0.611
Probabilistic Topic and Syntax Modeling with Part-of-Speech LDA 0.579
Evaluating Neural Word Representations in Tensor-Based Compositional Settings 0.572
Syntactic Topic Models 0.548
Training Restricted Boltzmann Machines on Word Observations 0.548
Discrete Component Analysis 0.547
Resolving Lexical Ambiguity in Tensor Regression Models of Meaning 0.546
Measuring political sentiment on Twitter: factor-optimal design for 0.544

multinomial inverse regression
Scalable Probabilistic Entity-Topic Modeling 0.541

7



●

77

79

81

83

85

100 1000 10000
Dimensionality

A
cc

ur
ac

y

Model ● Avg. word embeddings LDA PV

Figure 6: Results of experiments on the arXiv triplet dataset.

Table 8: Performances of different methods at the best dimensionality on the arXiv article triplets.

Model Embedding dimensions/topics Accuracy
Paragraph vectors 100 85.0%
LDA 100 85.0%
Averaged word embeddings 300 81.1%
Bag of words 80.4%

4 Discussion

We described a new set of results on Paragraph Vectors showing they can effectively be used for
measuring semantic similarity between long pieces of texts. Our experiments show that Paragraph
Vectors are superior to LDA for measuring semantic similarity on Wikipedia articles across all sizes
of Paragraph Vectors. Paragraph Vectors also perform on par with LDA’s best performing number of
topics on arXiv papers and perform consistently relative to the embedding size. Also surprisingly,
vector operations can be performed on them similarly to word vectors. This can provide interesting
new techniques for a wide range of applications: local and nonlocal corpus navigation, dataset
exploration, book recommendation and reviewer allocation.

References

[1] D. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning
Research, 2003.

[2] Z. Harris. Distributional structure. Word, 1954.
[3] Q. V. Le and T. Mikolov. Distributed representations of sentences and documents. In International

Conference on Machine Learning, 2014.
[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781, 2013.
[5] L. J. P. van der Maaten and G. E. Hinton. Visualizing high-dimensional data using t-SNE. Journal

of Machine Learning Research, 2008.

8


	1 Introduction
	2 Model
	3 Experiments
	3.1 Performance of Paragraph Vectors on Wikipedia entries
	3.2 Performance of Paragraph Vectors on arXiv articles

	4 Discussion

