
The Rise of
Cloud Computing Systems

Jeff Dean
Google, Inc.

(Describing the work of thousands of people!)
1

2

Utility computing: Corbató & Vyssotsky, “Introduction and Overview of the Multics
system”, AFIPS Conference, 1965.

Picture credit: http://www.multicians.org/

http://www.multicians.org/fjcc1.html

3

4

5

How Did We Get to Where We Are?

Prior to mid 1990s: Distributed systems emphasized:

● modest-scale systems in a single site (Grapevine, many
others), as well as

● widely distributed, decentralized systems (DNS)

6

Adjacent fields

High Performance Computing:

Heavy focus on performance, but not on fault-tolerance

Transactional processing systems/database systems:

Strong emphasis on structured data, consistency

Limited focus on very large scale, especially at low cost

7

Caveats

Very broad set of areas:

Can’t possible cover all relevant work

Focus on few important areas, systems, and trends

Will describe context behind systems with which I am most
familiar

8

What caused the need for such large systems?

Very resource-intensive interactive services like search
were key drivers

9

Growth of web
… from millions to hundreds of billions of pages
… and need to index it all,
… and search it millions and then billions of times per day
… with sub-second latencies

A Case for Networks of Workstations: NOW, Anderson, Culler, & Patterson. IEEE Micro,
1995

Cluster-Based Scalable Network Services, Fox, Gribble, Chawathe, Brewer, & Gauthier,
SOSP 1997.

➜

Picture credit: http://now.cs.berkeley.edu/ and http://wikieducator.org/images/2/23/Inktomi.jpg
10

http://now.cs.berkeley.edu/

My Vantage Point

Joined DEC WRL in 1996 around launch of

Picture credit: http://research.microsoft.com/en-us/um/people/gbell/digital/timeline/1995-2.htm
11

My vantage point, continued:
Google, circa 1999

Early Google tenet:
Commodity PCs give high perf/$

Picture credit: http://americanhistory.si.edu/exhibitions/preview-case-american-enterprise

Commodity components even better!

12

Aside: use of cork can land your
computing platform in the Smithsonian

At Modest Scale: Treat as Separate Machines

for m in a7 a8 a9 a10 a12 a13 a14 a16 a17 a18
a19 a20 a21 a22 a23 a24; do ssh -n $m "cd
/root/google; for j in "`seq $i $[$i+3]`'; do
j2=`printf %02d $j`; f=`echo '$files' | sed
s/bucket00/bucket$j2/g`; fgrun bin/buildindex
$f; done' & i=$[$i+4]; done

What happened to poor old a11 and a15?

13

At Larger Scale: Becomes Untenable

14

Reliability Must Come From Software

Typical first year for a new Google cluster (circa 2006)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)
~8 network maintenances (4 might cause ~30-min random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for DNS
~1000 individual machine failures
~thousands of hard drive failures
slow disks, bad memory, misconfigured machines, flaky machines, etc.
Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

15

A Series of Steps,
All With Common Theme:

 Provide Higher-Level View Than
“Large Collection of Individual Machines”

Self-manage and self-repair as much as possible

OS OS OS OS OSOSOS OS

...
16

First Step:
Abstract Away Individual Disks

OS OS OS OS OSOSOS OS

...

Distributed file system

17

Xerox Alto (1973), NFS (1984), many others:
File servers, distributed clients

AFS (Howard et al. ‘88):
1000s of clients, whole file caching, weakly consistent

xFS (Anderson et al. ‘95):
completely decentralized

Petal (Lee & Thekkath, ‘95), Frangipani (Thekkath et al., ‘96):
distributed virtual disks, plus file system on top of Petal

Long History of Distributed File Systems

18

OS OS OS OS OSOSOS OS

...

Distributed file system

● Centralized master manages metadata

Master

Huge I/O bandwidth

GFS file system clients

Metadata
ops

Google File System (Ghemawat, Gobioff, & Leung, SOSP‘03)

● Files chunks of 64 MB, each replicated on 3 different servers
● High fault tolerance + automatic recovery, high availability

● 1000s of clients read/write directly to/from 1000s of disk serving processes

19

20

Disks in datacenter basically self-managing

21

Successful design pattern:

Centralized master for metadata/control, with
thousands of workers and thousands of clients

Once you can store data, then you want to be able to
process it efficiently

Large datasets implies need for highly parallel
computation

One important building block:
Scheduling jobs with 100s or 1000s of tasks

22

Multiple Approaches

● Virtual machines
● “Containers”: akin to a VM, but at the process level, not

whole OS

23

Virtual Machines

● Early work done by MIT and IBM in 1960s
○ Give separate users their own executing copy of OS

● Reinvigorated by Bugnion, Rosenblum et al. in late 1990s
○ simplify effective utilization of multiprocessor machines
○ allows consolidation of servers

Raw VMs: key abstraction now offered by cloud service
providers

24

Cluster Scheduling Systems

● Goal: Place containers or VMs on physical machines
○ handle resource requirements, constraints
○ run multiple tasks per machine for efficiency
○ handle machine failures

Similar problem to earlier HPC scheduling and distributed
workstation cluster scheduling systems

e.g. Condor [Litzkow, Livny & Mutkow, ‘88]

25

Many Such Systems
● Proprietary:

○ Borg [Google: Verma et al., published 2015, in use since 2004]
(unpublished predecessor by Liang, Dean, Sercinoglu, et al. in use since 2002)

○ Autopilot [Microsoft: Isaard et al., 2007]
○ Tupperware [Facebook, Narayanan slide deck, 2014]
○ Fuxi [Alibaba: Zhang et al., 2014]

● Open source:
○ Hadoop Yarn
○ Apache Mesos [Hindman et al., 2011]
○ Apache Aurora [2014]
○ Kubernetes [2014]

26

Tension: Multiplexing resources & performance isolation

● Sharing machines across completely different jobs and
tenants necessary for effective utilization
○ But leads to unpredictable performance blips

● Isolating while still sharing
○ Memory “ballooning” [Waldspurger, OSDI 2002]
○ Linux containers
○ ...

● Controlling tail latency very important [Dean & Barroso, 2013]
○ Especially in large fan-out systems 27

Higher-Level Computation Frameworks

Give programmer a high-level abstraction for computation

Map computation automatically
onto a large cluster of machines

28

MapReduce

[Dean & Ghemawat, OSDI 2004]
● simple Map and Reduce abstraction
● hides messy details of locality, scheduling, fault

tolerance, dealing with slow machines, etc. in its
implementation

● makes it very easy to do very wide variety of large-scale
computations

29

Hadoop - open source version of MapReduce

Succession of Higher-Level Computation Systems

● Dryad [Isard et al., 2007] - general dataflow graphs

● Sawzall [Pike et al. 2005], PIG [Olston et al. 2008],
DryadLinq [Yu et al. 2008], Flume [Chambers et al. 2010]
○ higher-level languages/systems using MapReduce/Hadoop/Dryad as

underlying execution engine

● Pregel [Malewicz et al., 2010] - graph computations

● Spark [Zaharia et al., 2010] - in-memory working sets

● ...
30

Many Applications Need To Update Structured State
With Low-Latency and Large Scale

31

Desires:
● Spread across many machines, grow and shrink automatically
● Handle machine failures quickly and transparently
● Often prefer low latency and high performance over consistency

keys
TBs to 100s of PBs of data

106, 108, or more reqs/sec

Distributed Semi-Structured Storage Systems
● BigTable [Google: Chang et al. OSDI 2006]

○ higher-level storage system built on top of distributed file system (GFS)
○ data model: rows, columns, timestamps
○ no cross-row consistency guarantees
○ state managed in small pieces (tablets)
○ recovery fast (10s or 100s of machines each recover state of one tablet)

● Dynamo [Amazon: DeCandia et al., 2007]
○ versioning + app-assisted conflict resolution

● Spanner [Google: Corbett et al., 2012]
○ wide-area distribution, supports both strong and weak consistency

32

33

Successful design pattern:

Give each machine hundreds or thousands of units
of work or state

Helps with:
dynamic capacity sizing

load balancing
faster failure recovery

34

The Public Cloud

Making these systems available to developers
everywhere

Cloud Service Providers
● Make computing resources available on demand

○ through a growing set of simple APIs
○ leverages economies of scale of large datacenters
○ … for anyone with a credit card
○ … at a large scale, if desired

35

Cloud Service Providers
Amazon: Queue API in 2004, EC2 launched in 2006
Google: AppEngine in 2005, other services starting in 2008
Microsoft: Azure launched in 2008.

Millions of customers using these services

Shift towards these services is accelerating

Comprehensiveness of APIs increasing over time

36

37

So where are we?

OS OS OS OS OSOSOS OS

...

Distributed file system

Cluster Scheduling System

38

MapReduce,
Dryad, Pregel, ...

BigTable,
Dynamo,
Spanner

Powerful
web services

Amazon Web Services,
Google Cloud Platform,

Microsoft Azure

What’s next?

● Abstractions for interactive services with 100s of
subsystems
○ less configuration, much more automated operation,

self-tuning, …

● Systems to handle greater heterogeneity
○ e.g. automatically split computation between mobile

device and datacenters

39

Thanks for listening!
Thanks to

Ken Birman, Eric Brewer, Peter Denning,
Sanjay Ghemawat, and Andrew Herbert for

comments on this presentation

40

