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Abstract
We describe an LSTM-based model which
we call Byte-to-Span (BTS) that reads text
as bytes and outputs span annotations of the
form [start, length, label] where start posi-
tions, lengths, and labels are separate entries
in our vocabulary. Because we operate di-
rectly on unicode bytes rather than language-
specific words or characters, we can analyze
text in many languages with a single model.
Due to the small vocabulary size, these multi-
lingual models are very compact, but produce
results similar to or better than the state-of-
the-art in Part-of-Speech tagging and Named
Entity Recognition that use only the provided
training datasets (no external data sources).
Our models are learning “from scratch” in that
they do not rely on any elements of the stan-
dard pipeline in Natural Language Processing
(including tokenization), and thus can run in
standalone fashion on raw text.

1 Introduction

The long-term trajectory of research in Natural
Language Processing has seen the replacement of
rules and specific linguistic knowledge with ma-
chine learned components. Perhaps the most stan-
dardized way that knowledge is still injected into
largely statistical systems is through the processing
pipeline: Some set of basic language-specific tokens
are identified in a first step. Sequences of tokens
are segmented into sentences in a second step. The
resulting sentences are fed one at a time for syntac-
tic analysis: Part-of-Speech (POS) tagging and pars-
ing. Next, the predicted syntactic structure is typi-
cally used as features in semantic analysis, Named

Entity Recognition (NER), Semantic Role Labeling,
etc. While each step of the pipeline now relies more
on data and models than on hand-curated rules, the
pipeline structure itself encodes one particular un-
derstanding of how meaning attaches to raw strings.

One motivation for our work is to try removing
this structural dependence. Rather than rely on the
intermediate representations invented for specific
subtasks (for example, Penn Treebank tokenization),
we are allowing the model to learn whatever internal
structure is most conducive to producing the annota-
tions of interest. To this end, we describe a Recur-
rent Neural Network (RNN) model that reads raw in-
put string segments, one byte at a time, and produces
output span annotations corresponding to specific
byte regions in the input1. This is truly language
annotation from scratch (see Collobert et al. (2011)
and Zhang and LeCun (2015)).

Two key innovations facilitate this approach.
First, Long Short Term Memory (LSTM) models
(Hochreiter and Schmidhuber, 1997) allow us to re-
place the traditional independence assumptions in
text processing with structural constraints on mem-
ory. While we have long known that long-term de-
pendencies are important in language, we had no
mechanism other than conditional independence to
keep sparsity in check. The memory in an LSTM,
however, is not constrained by any explicit assump-
tions of independence. Rather, its ability to learn
patterns is limited only by the structure of the net-
work and the size of the memory (and of course the

1Our span annotation model can be applied to any sequence
labeling task; it is not immediately applicable to predicting
more complex structures like trees.
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Figure 1: A diagram showing the way the Byte-to-Span (BTS) model converts an input text segment to a sequence of span

annotations. The model reads the input segment one byte at a time (this can involve multibyte unicode characters), then a special

Generate Output (GO) symbol, then produces the argmax output of a softmax over all possible start positions, lengths, and labels

(as well as STOP, signifying no additional outputs). The prediction from the previous time step is fed as an input to the next time

step.

amount of training data).
Second, sequence-to-sequence models (Sutskever

et al., 2014), allow for flexible input/output dynam-
ics. Traditional models, including feedforward neu-
ral networks, read fixed-length inputs and generate
fixed-length outputs by following a fixed set of com-
putational steps. Instead, we can now read an entire
segment of text before producing an arbitrary num-
ber of outputs, allowing the model to learn a function
best suited to the task.

We leverage these two ideas with a basic strategy:
Decompose inputs and outputs into their component
pieces, then read and predict them as sequences.
Rather than read words, we are reading a sequence
of unicode bytes2; rather than producing a label for
each word, we are producing triples [start, length,
label], that correspond to the spans of interest, as a
sequence of three separate predictions (see Figure
1). This forces the model to learn how the compo-
nents of words and labels interact so all the structure
typically imposed by the NLP pipeline (as well as
the rules of unicode) are left to the LSTM to model.

Decomposed inputs and outputs have a few im-
portant benefits. First, they reduce the size of the

2We use the variable length UTF-8 encodings to keep the
vocabulary as small as possible.

vocabulary relative to word-level inputs, so the re-
sulting models are extremely compact (on the or-
der of a million parameters). Second, because uni-
code is essentially a universal language, we can train
models to analyze many languages at once. In fact,
by stacking LSTMs, we are able to learn represen-
tations that appear to generalize across languages,
improving performance significantly (without using
any additional parameters) over models trained on
a single language. This is the first account, to our
knowledge, of a multilingual model that achieves
good results across many languages, thus bypass-
ing all the language-specific engineering usually re-
quired to build models in different languages3. We
describe results similar to or better than the state-
of-the-art in Part-of-Speech tagging and Named En-
tity Recognition that use only the provided training
datasets (no external data sources).

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work; Section 3 describes
our model; Section 4 gives training details includ-
ing a new variety of dropout (Hinton et al., 2012);

3These multilingual models are able to handle code-mixed
text, an important practical problem that’s received relatively
little attention. However, we do not have any annotated data
that contains code switching, so we cannot report any results.



Section 5 gives inference details; Section 6 presents
results on POS tagging and NER across many lan-
guages; Finally, we summarize our contributions in
section 7.

2 Related Work

One important feature of our work is the use of
byte inputs. Character-level inputs have been used
with some success for tasks like NER (Klein et al.,
2003), parallel text alignment (Church, 1993), and
authorship attribution (Peng et al., 2003) as an ef-
fective way to deal with n-gram sparsity while still
capturing some aspects of word choice and mor-
phology. Such approaches often combine char-
acter and word features and have been especially
useful for handling languages with large character
sets (Nakagawa, 2004). However, there is almost
no work that explicitly uses bytes – one exception
uses byte n-grams to identify source code author-
ship (Frantzeskou et al., 2006) – but there is noth-
ing, to the best of our knowledge, that exploits bytes
as a cross-lingual representation of language. Work
on multilingual parsing using Neural Networks that
share some subset of the parameters across lan-
guages (Duong et al., 2015) seems to benefit the
low-resource languages; however, we are sharing all
the parameters among all languages.

Recent work has shown that modeling the se-
quence of characters in each token with an LSTM
can more effectively handle rare and unknown words
than independent word embeddings (Ling et al.,
2015; Ballesteros et al., 2015). Similarly, language
modeling, especially for morphologically complex
languages, benefits from a Convolutional Neural
Network (CNN) over characters to generate word
embeddings (Kim et al., 2015). Rather than de-
compose words into characters, Rohan and Denero
(2015) encode rare words with Huffman codes, al-
lowing a neural translation model to learn something
about word subcomponents. In contrast to this line
of research, our work has no explicit notion of to-
kens and operates on bytes rather than characters.

Our work is philosophically similar to Col-
lobert et al.’s (2011) experiments with “almost from
scratch” language processing. They avoid task-
specific feature engineering, instead relying on a
multilayer feedforward (or convolutional) Neural

Network to combine word embeddings to produce
features useful for each task. In the Results sec-
tion, below, we compare NER performance on the
same dataset they used. The “almost” in the ti-
tle actually refers to the use of preprocessed (low-
ercased) tokens as input instead of raw sequences
of letters. Our byte-level models can be seen as a
realization of their comment: “A completely from
scratch approach would presumably not know any-
thing about words at all and would work from letters
only.” Recent work with convolutional neural net-
works that read character-level inputs (Zhang et al.,
2015) shows some interesting results on a variety of
classification tasks, but because their models need
very large training sets, they do not present compar-
isons to established baselines on standard tasks.

Finally, recent work on Automatic Speech Recog-
nition (ASR) uses a similar sequence-to-sequence
LSTM framework to produce letter sequences di-
rectly from acoustic frame sequences (Chan et al.,
2015; Bahdanau et al., 2015). Just as we are dis-
carding the usual intermediate representations used
for text processing, their models make no use of pho-
netic alignments, clustered triphones, or pronunci-
ation dictionaries. This line of work – discarding
intermediate representations in speech – was pio-
neered by Graves and Jaitly (2014) and earlier, by
Eyben et al. (2009).

3 Model

Our model is based on the sequence-to-sequence
model used for machine translation (Sutskever et al.,
2014), an adaptation of an LSTM that encodes a
variable length input as a fixed-length vector, then
decodes it into a variable number of outputs4.

Generally, the sequence-to-sequence LSTM is
trained to estimate the conditional probability
P (y1, ..., yT ′ |x1, ..., xT ) where (x1, ..., xT ) is an
input sequence and (y1, ..., yT ′) is the correspond-
ing output sequence whose length T ′ may dif-
fer from T . The encoding step computes a
fixed-dimensional representation v of the input
(x1, ..., xT ) given by the hidden state of the LSTM

4Related translation work adds an attention mechanism
(Bahdanau et al., 2014), allowing the decoder to attend directly
to particularly relevant inputs. We tried adding the same mech-
anism to our model but saw no improvement in performance on
the NER task, though training converged in fewer steps.



after reading the last input xT . The decoding step
computes the output probability P (y1, ..., yT ′) with
the standard LSTM formulation for language mod-
eling, except that the initial hidden state is set to v:

P (y1, ..., yT ′ |x1, ..., xT ) =
T ′∏
t=1

P (yt|v, y1, ..., yt−1)

(1)
Sutskever et al. used a separate LSTM for the en-

coding and decoding tasks. While this separation
permits training the encoder and decoder LSTMs
separately, say for multitask learning or pre-training,
we found our results were no worse if we used a sin-
gle set of LSTM parameters for both encoder and
decoder.

3.1 Vocabulary

The primary difference between our model and the
translation model is our novel choice of vocabulary.
The set of inputs include all 256 possible bytes, a
special Generate Output (GO) symbol, and a spe-
cial DROP symbol used for regularization, which
we will discuss below. The set of outputs include
all possible span start positions (byte 0..k), all pos-
sible span lengths (0..k), all span labels (PER, LOC,
ORG, MISC for the NER task), as well as a special
STOP symbol. A complete span annotation includes
a start, a length, and a label, but as shown in Fig-
ure 1, the model is trained to produce this triple as
three separate outputs. This keeps the vocabulary
size small and in practice, gives better performance
(and faster convergence) than if we use the cross-
product space of the triples.

More precisely, the prediction at time t is condi-
tioned on the full input and all previous predictions
(via the chain rule). By splitting each span anno-
tation into a sequence [start, length, label], we are
making no independence assumption; instead we are
relying on the model to maintain a memory state that
captures the important dependencies.

Each output distribution P (yt|v, y1, ..., yt−1) is
given by a softmax over all possible items in the out-
put vocabulary, so at a given time step, the model is
free to predict any start, any length, or any label (in-
cluding STOP). In practice, because the training data
always has these complete triples in a fixed order,
we seldom see malformed or incomplete spans (the

decoder simply ignores such spans). During train-
ing, the true label yt−1 is fed as input to the model
at step t (see Figure 1), and during inference, the
argmax prediction is used instead. Note also that
the training procedure tries to maximize the proba-
bility in Equation 1 (summed over all the training
examples). While this does not quite match our task
objectives (F1 over labels, for example), it is a rea-
sonable proxy.

3.2 Independent segments

Ideally, we would like our input segments to cover
full documents so that our predictions are condi-
tioned on as much relevant information as possible.
However, this is impractical for a few reasons. From
a training perspective, a Recurrent Neural Network
is unrolled to resemble a deep feedforward network,
with each layer corresponding to a time step. It
is well-known that running backpropagation over a
very deep network is hard because it becomes in-
creasingly difficult to estimate the contribution of
each layer to the gradient, and further, RNNs have
trouble generalizing to different length inputs (Er-
han et al., 2009).

So instead of document-sized input segments,
we make a segment-independence assumption: We
choose some fixed length k and train the model on
segments of length k (any span annotation not com-
pletely contained in a segment is ignored). This has
the added benefit of limiting the range of the start
and length label components. It can also allow for
more efficient batched inference since each segment
is decoded independently. Finally, we can generate a
large number of training segments by sliding a win-
dow of size k one byte at a time through a document.
Note that the resulting training segments can begin
and end mid-word, and indeed, mid-character. For
both tasks described below, we set the segment size
k = 60.

3.3 Sequence ordering

Our model differs from the translation model in one
more important way. Sutskever et al. found that
feeding the input words in reverse order and gen-
erating the output words in forward order gave sig-
nificantly better translations, especially for long sen-
tences. In theory, the predictions are conditioned on
the entire input, but as a practical matter, the learn-



ing problem is easier when relevant information is
ordered appropriately since long dependencies are
harder to learn than short ones.

Because the byte order is more meaningful in the
forward direction (the first byte of a multibyte char-
acter specifies the length, for example), we found
somewhat better performance with forward order
than reverse order (less than 1% absolute). But un-
like translation, where the outputs have a complex
order determined by the syntax of the language, our
span annotations are more like an unordered set. We
tried sorting them by end position in both forward
and backward order, and found a small improvement
(again, less than 1% absolute) using the backward
ordering (assuming the input is given in the forward
order). This result validates the translation ordering
experiments: the modeling problem is easier when
the sequence-to-sequence LSTM is used more like a
stack than a queue.

3.4 Model shape
We experimented with a few different architectures
and found no significant improvements in using
more than 320 units for the embedding dimension
and LSTM memory and 4 stacked LSTMs (see Table
4). This observation holds for both models trained
on a single language and models trained on many
languages. Because the vocabulary is so small, the
total number of parameters is dominated by the size
of the recurrent matrices. All the results reported
below use the same architecture (unless otherwise
noted) and thus have roughly 900k parameters.

4 Training

We trained our models with Stochastic Gradient De-
scent (SGD) on mini-batches of size 128, using an
initial learning rate of 0.3. For all other hyper-
parameter choices, including random initialization,
learning rate decay, and gradient clipping, we fol-
low Sutskever et al. (2014). Each model is trained
on a single CPU over a period of a few days, at
which point, development set results have stabilized.
Distributed training on GPUs would likely speed up
training to just a few hours.

4.1 Dropout and byte-dropout
Neural Network models are often trained using
dropout (Hinton et al., 2012), which tends to im-

prove generalization by limiting correlations among
hidden units. During training, dropout randomly ze-
roes some fraction of the elements in the embedding
layer and the model state just before the softmax
layer (Zaremba et al., 2014).

We were able to further improve generalization
with a technique we are calling byte-dropout: We
randomly replace some fraction of the input bytes in
each segment with a special DROP symbol (without
changing the corresponding span annotations). Intu-
itively, this results in a more robust model, perhaps
by forcing it to use longer-range dependencies rather
than memorizing particular local sequences.

It is worth noting that noise is often added at
training time to images in image classification and
speech in speech recognition where the added noise
does not fundamentally alter the input, but rather
blurs it. By using a byte representation of language,
we are now capable of achieving something like
blurring with text. Indeed, if we removed 20% of
the characters in a sentence, humans would be able
to infer words and meaning reasonably well.

5 Inference

We perform inference on a segment by (greedily)
computing the most likely output at each time step
and feeding it to the next time step. Experiments
with beam search show no meaningful improve-
ments (less than 0.2% absolute). Because we as-
sume that each segment is independent, we need to
choose how to break up the input into segments and
how to stitch together the results.

The simplest approach is to divide up the input
into segments with no overlapping bytes. Because
the model is trained to ignore incomplete spans, this
approach misses all spans that cross segment bound-
aries, which, depending on the choice of k, can be a
significant number. We avoid the missed-span prob-
lem by choosing segments that overlap such that
each span is likely to be fully contained by at least
one segment.

For our experiments, we create segments with a
fixed overlap (k/2 = 30). This means that with
the exception of the first segment in a document, the
model reads 60 bytes of input, but we only keep pre-
dictions about the last 30 bytes.



6 Results

Here we describe experiments on two datasets that
include annotations across a variety of languages.
The multilingual datasets allow us to highlight the
advantages of using byte-level inputs: First, we can
train a single compact model that can handle many
languages at once. Second, we demonstrate some
cross-lingual abstraction that improves performance
of a single multilingual model over each single-
language model. In the experiments, we refer to
the LSTM setup described above as Byte-to-Span or
BTS.

Most state-of-the-art results in POS tagging and
NER leverage unlabeled data to improve a super-
vised baseline. For example, word clusters or word
embeddings estimated from a large corpus are of-
ten used to help deal with sparsity. Because our
LSTM models are reading bytes, it is not obvious
how to insert information like a word cluster iden-
tity. Recent results with sequence-to-sequence auto-
encoding (Dai and Le, 2015) seem promising in this
regard, but here we limit our experiments to use just
annotated data.

Each task specifies separate data for training, de-
velopment, and testing. We used the development
data for tuning the dropout and byte-dropout pa-
rameters (since these likely depend on the amount
of available training data), but did not tune the re-
maining hyperparameters. In total, our training set
for POS Tagging across 13 languages included 2.87
million tokens and our training set for NER across
4 languages included 0.88 million tokens. Recall,
though, that our training examples are 60-byte seg-
ments obtained by sliding a window through the
training data, shifting by 1 byte each time. This re-
sults in 25.3 million and 6.0 million training seg-
ments for the two tasks.

6.1 Part-of-Speech Tagging
Our part-of-speech tagging experiments use Version
1.1 of the Universal Dependency data5, a collection
of treebanks across many languages annotated with
a universal tagset (Petrov et al., 2011). The most
relevant recent work (Ling et al., 2015) uses differ-
ent datasets, with different finer-grained tagsets in
each language. Because we are primary interested

5http://universaldependencies.github.io/docs/

in multilingual models that can share language-
independent parameters, the universal tagset is im-
portant, and thus our results are not immediately
comparable. However, we provide baseline results
(for each language separately) using a Conditional
Random Field (Lafferty et al., 2001) with an exten-
sive collection of features with performance compa-
rable to the Stanford POS tagger (Manning, 2011).
For our experiments, we chose the 13 languages that
had at least 50k tokens of training data. We did not
subsample the training data, though the amount of
data varies widely across languages, but rather shuf-
fled all training examples together. These languages
represent a broad range of linguistic phenomena and
character sets so it was not obvious at the outset that
a single multilingual model would work.

Table 1 compares the baselines with (CRF+) and
without (CRF) externally trained cluster features
with our model trained on all languages (BTS) as
well as each language separately (BTS*). The single
BTS model improves on average over the CRF mod-
els trained using the same data, though clearly there
is some benefit in using external resources. Note
that BTS is particularly strong in Finnish, surpass-
ing even CRF+ by nearly 1.5% (absolute), probably
because the byte representation generalizes better to
agglutinative languages than word-based models, a
finding validated by Ling et al. (2015). In addi-
tion, the baseline CRF models, including the (com-
pressed) cluster tables, require about 50 MB per lan-
guage, while BTS is under 10 MB. BTS improves
on average over BTS*, suggesting that it is learning
some language-independent representation.

6.2 Named Entity Recognition

Our main motivation for showing POS tagging re-
sults was to demonstrate how effective a single BTS
model can be across a wide range of languages. The
NER task is a more interesting test case because,
as discussed in the introduction, it usually relies
on a pipeline of processing. We use the 2002 and
2003 ConLL shared task datasets6 for multilingual
NER because they contain data in 4 languages (En-
glish, German, Spanish, and Dutch) with consistent
annotations of named entities (PER, LOC, ORG,
and MISC). In addition, the shared task competition

6http://www.cnts.ua.ac.be/conll200{2,3}/ner



Language CRF+ CRF BTS BTS*
Bulgarian 97.97 97.00 97.84 97.02
Czech 98.38 98.00 98.50 98.44
Danish 95.93 95.06 95.52 92.45
German 93.08 91.99 92.87 92.34
Greek 97.72 97.21 97.39 96.64
English 95.11 94.51 93.87 94.00
Spanish 96.08 95.03 95.80 95.26
Farsi 96.59 96.25 96.82 96.76
Finnish 94.34 92.82 95.48 96.05
French 96.00 95.93 95.75 95.17
Indonesian 92.84 92.71 92.85 91.03
Italian 97.70 97.61 97.56 97.40
Swedish 96.81 96.15 95.57 93.17
AVERAGE 96.04 95.41 95.85 95.06

Table 1: Part-of-speech tagging accuracy for two CRF base-

lines and 2 versions of BTS. CRF+ uses resources external to

the training data (word clusters) and CRF uses only the training

data. BTS (unlike CRF+ and CRF) is a single model trained

on all the languages together, while BTS* is a separate Byte-to-

Span model for each language.

produced strong baseline numbers for comparison.
However, most published results use extra informa-
tion beyond the provided training data which makes
fair comparison with our model more difficult.

The best competition results for English and Ger-
man (Florian et al., 2003) used a large gazetteer
and the output of two additional NER classifiers
trained on richer datasets. Since 2003, better results
have been reported using additional semi-supervised
techniques (Ando and Zhang, 2005) and more re-
cently, Passos et al. (2014) claimed the best En-
glish results (90.90% F1) using features derived
from word-embeddings. The 1st place submission
in 2002 (Carreras et al., 2002) comment that with-
out extra resources for Spanish, their results drop by
about 2% (absolute).

Perhaps the most relevant comparison is the over-
all 2nd place submission in 2003 (Klein et al., 2003).
They use only the provided data and report results
with character-based models which provide a useful
comparison point to our byte-based LSTM. The per-
formance of a character HMM alone is much worse
than their best result (83.2% vs 92.3% on the En-
glish development data), which includes a variety of
word and POS-tag features that describe the context

(as well as some post-processing rules). For English
(assuming just ASCII strings), the character HMM
uses the same inputs as BTS, but is hindered by
some combination of the independence assumption
and smaller capacity.

Collobert et al.’s (2011) convolutional model (dis-
cussed above) gives 81.47% F1 on the English test
set when trained on only the gold data. However, by
using carefully selected word-embeddings trained
on external data, they are able to increase F1 to
88.67%. Huang et al. (2015) improve on Collobert’s
results by using a bidirectional LSTM with a CRF
layer where the inputs are features describing the
words in each sentence. Either by virtue of the more
powerful model, or because of more expressive fea-
tures, they report 84.26% F1 on the same test set
and 90.10% when they add pretrained word embed-
ding features. Dos Santos et al. (2015) represent
each word by concatenating a pretrained word em-
bedding with a character-level embedding produced
by a convolutional neural network.

There is relatively little work on multilingual
NER, and most research is focused on building sys-
tems that are unsupervised in the sense that they use
resources like Wikipedia and Freebase rather than
manually annotated data. Nothman et al. (2013) use
Wikipedia anchor links and disambiguation pages
joined with Freebase types to create a huge amount
of somewhat noisy training data and are able to
achieve good results on many languages (with some
extra heuristics). These results are also included in
Table 2.

While BTS does not improve on the state-of-
the-art in English, its performance is better than
the best previous results that use only the provided
training data. BTS improves significantly on the
best known results in German, Spanish, and Dutch
even though these leverage external data. In addi-
tion, the BTS* models, trained separately on each
language, are worse than the single BTS model
(with the same number of parameters as each single-
language model) trained on all languages combined,
again suggesting that the model is learning some
language-independent representation of the task.

One interesting shortcoming of the BTS model is
that it is not obvious how to tune it to increase re-
call. In a standard classifier framework, we could
simply increase the prediction threshold to increase



Model en de es nl
Passos 90.90 – – –
Ando 89.31 75.27 – –
Florian 88.76 72.41 – –
Carreras – – 81.39 77.05
dos Santos – – 82.21 –
Nothman 85.2 66.5 79.6 78.6
Klein 86.07 71.90 – –
Huang 84.26 – – –
Collobert 81.47 – – –
BTS 86.50 76.22 82.95 82.84
BTS* 84.57 72.08 81.83 78.08

Table 2: A comparison of NER systems. The results are F1

scores, where a correct span annotation exactly matches a gold

span annotation (start, length, and entity type must all be cor-

rect). Results of the systems described in the text are shown for

English, German, Spanish, and Dutch. BTS* shows the results

of the BTS model trained separately on each language while

BTS is a single model trained on all 4 languages together. The

top set of results leverage resources beyond the training data;

the middle set do not, and thus are most comparable to our re-

sults (bottom set).

precision and decrease the prediction threshold to in-
crease recall. However, because we only produce
annotations for spans (non-spans are not annotated),
we can adjust a threshold on total span probability
(the product of the start, length, and label probabili-
ties) to increase precision, but there is no clear way
to increase recall. The untuned model tends to pre-
fer precision over recall already, so some heuristic
for increasing recall might improve our overall F1
results.

6.3 Dropout and Stacked LSTMs

There are many modeling options and hyperparam-
eters that significantly impact the performance of
Neural Networks. Here we show the results of a
few experiments that were particularly relevant to
the performance obtained above.

First, Table 3 shows how dropout and byte-
dropout improve performance for both tasks. With-
out any kind of dropout, the training process starts to
overfit (development data perplexity starts increas-
ing) relatively quickly. For POS tagging, we set
dropout and byte-dropout to 0.2, while for NER, we
set both to 0.3. This significantly reduces the over-

fitting problem.

BTS Training POS Accuracy NER F1
Vanilla 94.78 74.75
+ Dropout 95.35 78.76
+ Byte-dropout 95.85 82.13

Table 3: BTS Part-of-speech tagging average accuracy across

all 13 evaluated languages and Named Entity Recognition aver-

age F1 across all 4 evaluated languages with various modifica-

tions to the vanilla training setup. Dropout is standard in Neural

Network model training because it often improves generaliza-

tion; Byte-dropout randomly replaces input bytes with a special

DROP marker.

Depth Width=320 Width=640
1 76.15 77.59
2 79.40 79.73
3 81.44 81.93
4 82.13 82.18

Table 4: Macro-averaged (across 4 languages) F1 for the NER

task using different model architectures.

Second, Table 4 shows how performance im-
proves as we increase the size of the model in two
ways: the number of units in the model’s state
(width) and the number of stacked LSTMs (depth).
Increasing the width of the model improves perfor-
mance less than increasing the depth, and once we
use 4 stacked LSTMs, the added benefit of a much
wider model has disappeared. This result suggests
that rather than learning to partition the space of in-
puts according to the source language, the model is
learning some lanugage-independent representation
at the deeper levels.

To validate our claim about language-independent
representation, Figure 2 shows the results of a tSNE
plot of the LSTM’s memory state when the output
is one of PER, LOC, ORG, MISC across the four
languages. While the label clusters are neatly sepa-
rated, the examples of each individual label do not
appear to be clustered by language. Thus rather than
partitioning each (label, language) combination, the
model is learning unified label representations that
are independent of the language.

7 Conclusions

We have described a model that uses a sequence-to-
sequence LSTM framework that reads a segment of
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Figure 2: A tSNE plot of the BTS model’s memory state just before the softmax layer produces one of the NER labels.

text one byte at a time and then produces span anno-
tations over the inputs. This work makes a number
of novel contributions:

First, we use the bytes in variable length unicode
encodings as inputs. This makes the model vocab-
ulary very small and also allows us to train a mul-
tilingual model that improves over single-language
models without using additional parameters. We in-
troduce byte-dropout, an analog to added noise in
speech or blurring in images, which significantly im-
proves generalization.

Second, the model produces span annotations,
where each is a sequence of three outputs: a start
position, a length, and a label. This decomposi-
tion keeps the output vocabulary small and marks a
significant departure from the typical Begin-Inside-
Outside (BIO) scheme used for labeling sequences.

Finally, the models are much more compact than
traditional word-based systems and they are stan-
dalone – no processing pipeline is needed. In par-
ticular, we do not need a tokenizer to segment text
in each of the input languages.
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