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Abstract

Modern Text-To-Speech (TTS) systems need to increasingly

deal with multilingual input. Navigation, social and news are

all domains with large proportion of foreign words. How-

ever, when typical monolingual TTS voices are used, the syn-

thesis quality on such input is markedly lower. This is be-

cause traditional TTS derives pronunciations from a lexicon or

a Grapheme-To-Phoneme (G2P) model which was built using a

pre-defined sound inventory and a phonotactic grammar for one

language only. G2P models perform poorly on foreign words,

while manual lexicon development is labour-intensive, expen-

sive and requires extra storage. Furthermore, large phoneme

inventories and phonotactic grammars contribute to data spar-

sity in unit selection systems. We present an automatic sys-

tem for deriving pronunciations for foreign words that utilises

the monolingual voice design and can rapidly scale to many

languages. The proposed system, based on a neural network

cross-lingual G2P model, doesn’t increase the size of the voice

database, doesn’t require large data annotation efforts, is de-

signed not to increase data sparsity in the voice, and can be

sized to suit embedded applications.

1. Introduction

We aim to improve the performance of a text-to-speech sys-

tem on out-of-vocabulary foreign words. High-quality speech

synthesis is expected to be robust against such words even if

they do not conform to the orthographic or pronunciation rules

of the language of the synthesiser. Typical scenarios are syn-

thesising social networks contact names, navigation directions

abroad, and many others. These scenarios are very frequent in

TTS usage and developers can no longer afford to ignore them.

TTS systems rely on a lexicon containing as many words as

possible with their associated pronunciations. The pronuncia-

tions utilise monolingual sound inventory and are composed ac-

cording to a monolingual phonotactic grammar that constrains

the distribution of phonemes in a given language. G2P models

can be trained on such a lexicon to provide pronunciations for

out-of-lexicon words. Such a design optimises for performance

on single-language input. The voice contains a rich inventory

of units representing the phoneme distribution of that language,

and G2P models work pretty well on words that follow similar

rules as the training data. However, when words not conform-

ing to such rules are encountered, TTS systems still try to apply

native rules to guess the pronunciation. Currently, existing so-

lutions rely on simply adding foreign words to the original lex-

icon. This requires manual effort and is a solution only applica-

ble to server-side systems without space limitations. In embed-

ded systems lexicons are heavily pruned and foreign words are

typically first to be excluded. In addition, extending the lexicon

is not a robust solution; it neither scales well nor is generalis-

able enough. Moreover, foreign words not explicitly marked as

such do not contribute to the G2P model as they often pollute it.

A better approach is to define phoneme mapping tables be-

tween two different languages. This has been attempted both in

the TTS domain [1] where a phonetic similarity function was

proposed, and in the ASR domain [2]. An example of phoneme

mapping was presented in [3] for German and English. A sim-

ilar system was discussed in [4, 5] where foreign speech wave-

forms were selected based on the acoustic similarity to a native

voice. Parametric synthesis is more versatile and [6] proposed

to map the states of the statistical models of two languages.

Phoneme mapping tables can be extracted manually or by

automatic means. An approach described in [1] utilises a map-

ping algorithm based on linguistic features of phonemes that

is applied during runtime. Phonemes of the foreign voice

must be replaced by the most similar sounds available in the

voice acoustic database. Authors proposed a general language-

independent algorithm intended to convert phonemes from one

language to the other. The algorithm is based on a similarity

function using phonetic-articulatory features.

One important consideration is to what extent nativised pro-

nunciations will match user expectations and consequently im-

prove intelligibility. In some cases it has been shown that for-

eign accent in strongly assimilated words or short inclusions

actually improves acceptability [7]. We hypothesise that na-

tivising pronunciations will have an overall positive effect, es-

pecially for more familiar words.

This paper proposes an extension to TTS systems to deal

with pronunciation of foreign words. We propose a method to

automatically generate nativised pronunciations for any com-

bination of native and foreign language with an application to

TTS systems and a cross-lingual G2P system based on neural

networks (NN). Firstly, cross-lingual lexicons are built using

finite state transducers (FST) representing the phoneme map-

ping. This process is semi-automatic since some fine tuning

may be necessary. The second step involves the training of a

cross-lingual G2P system. The system as a whole can be de-

fined as being embeddable, cross-lingual and easily extendable

to other languages. “Multilingual” and “cross-lingual” terms

will be used in different contexts in the rest of the paper. We

refer to “multilingual” as a system than can deal with multi-

ple languages. “Cross-lingual” is used to designate how the

TTS handles multiple languages internally, that is, using a sin-

gle phoneme inventory and nativised pronunciations.

This paper is organised as follows. Section 2 describes the

system and the phoneme mapping strategy. Section 3 defines

the process to create cross-lingual lexicons. Section 4 describes

the G2P system. Section 5 presents two types of experiments,

objective and subjective. Finally, Section 6 concludes the paper.



2. System overview

The idea is to develop a multilingual TTS system using a single

G2P model trained with M languages and a single phoneme

inventory. Proposed solution consists of two steps described

below (see Figure 1).

First a mapping table is built in the linguistic space. This

table usually contains mappings which are possibly ambigu-

ous (ie., linguistic features cannot differentiate two phonemes).

Disambiguation is then performed in the acoustic space. The

acoustic cross-lingual mapping is used to reduce the number of

mapping cases obtained in the phonetic space. This employs the

acoustic distance between states of the Hidden Markov Models

(HMMs) of the two different languages.

Second, the set of foreign languages (L
(f)
i , i ∈ [1,M ])

and their corresponding phoneme mapping form of a new cross-

lingual lexicon (L(c) = [L
(mf)
1 . . . L

(mf)
M ]). This lexicon is

built using the phoneme inventory of the native language L(n)

and the mapped pronunciations from each foreign language

(L
(mf)
i , i ∈ [1,M ]).

Finally, a single NN is trained with the cross-lingual lexi-

con containing M languages. At runtime, the user specifies the

native language (ie. the main language of the TTS). Foreign

words can then be pronounced in a different language using the

cross-lingual G2P.
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Figure 1: System Workflow. There are two parts, training and

runtime. During training, a cross-lingual lexicon is built using

M mappings. Second, this cross-lingual lexicon is used to train

the NN G2P. During runtime the user can specify the language

identification to select how each word should be pronounced.

3. Cross-lingual lexicons

Nativisation of lexicons is performed using phoneme mapping

tables. These tables are constructed offline and can include

some context. This gives the system some flexibility when there

are non-existent sounds in a language (eg. sound /sh/ in Span-

ish). Stress is mapped as well and it is transplanted at the syl-

lable level. The phoneme mapping table is automatically con-

verted into a Thrax grammar [8] and that into an FST so that

the decoding process involves a composition step with the in-

put pronunciation. A reduced version of the phoneme mapping

transducer for Spanish speaking English is shown in Figure 2.

Similar mapping table in the feature space was firstly pro-

posed by [5]. In this work, context-independent phone map-

pings derived from articulatory-feature-space distance measures
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Figure 2: Spanish speaking English phoneme mapping repre-

sented as an FST. Some trivial mappings have been deleted to

simplify transducer.

are used. Another interesting example can be found in [7] and

also used in [9]. The idea is to represent each phoneme as

a vector of articulatory features, according to the concepts of

classical phonetics. Here we are using a combination of three

techniques to build the tables: phonetic similarities, acoustic

mapping and human intervention if necessary.

Our initial phoneme mapping is based on the assumption

that two phonemes are perceived as similar when they have sim-

ilar phonetic-articulatory features [1]. The result is a phonetic

similarity function that gives a quite general classification of

phonemes as defined by articulatory phonetics.

The distance between two phonemes, xn and xm is:

D(xn, xm) =
F
∑

i=1

di(xn, xm) (1)

where di(x, y) is the distance function for feature i between

phonemes x and y defined as:

di(x, y) =

{

1, if g(x, i) = g(y, i)

0, if g(x, i) 6= g(y, i)
(2)

being F the number of features, g(x, i) ∈ [0, 1] the value of

feature i for phoneme x.

Note that Equation 1 could include a weight for each feature

as in [1] where the importance of each feature is set iteratively

to find the optimal weights in order to find the best mapping

among all phonemes. In our case this is not necessary because

the disambiguation takes place in the acoustic domain. We use

a total of 35 features: (1) flags: vowel, voiced, rounded; (2)

length (ie. short, long, diphthong), height (eg. close), position

(eg. front), place of articulation (eg., dental) and manner (eg.,

nasal).

The final disambiguation between phoneme mappings is

done taking into account the phonetic and acoustic distance.

We define the latter as the distance between the states of two

sets of HMMs, one for each language (ie. native and foreign).

Euclidean distance between the means of the mixture of Gaus-

sians of the central state is used to measure the cost of matching

two HMM states.

HMMs (3 states left-to-right no skip) with 10 Gaussian

mixtures are trained for each phoneme. By finding the corre-

spondence of each Gaussian mixture model of each state be-

tween the HMMs of both languages we can get an estimate of



how well two phonemes map with each other. An unsupervised

clustering algorithm [10] is used to map Gaussians of the two

language models of the central state only. As each language is

speaker dependent, the unsupervised clustering is performed by

iteratively mapping Gaussians and updating a linear transfor-

mation between models [11].

4. Grapheme-to-phoneme conversion

There are multiple approaches to G2P. Initial approaches used

graphs and more advanced techniques used joint-sequence

models [12]. Other approaches presented WFST and EM train-

ing [13]. All these techniques have been demonstrated to per-

form very well. NNs have also been widely applied in the field

since [14]. A common solution is to use lots of neurons with

one single layer. Other studies even discuss the idea of not us-

ing a prior-alignment [15]. [16] proposes a method to automate

the data preparation for the training of a neural network per-

forming multilingual G2P conversion. A recent approach using

long-short term memory (LSTM) was presented in [17]. The

main reasons to use NNs are: (1) Footprint (size of weight ma-

trices can use a floating point implementation); (2) Embeddable

(memory consumption at runtime is very small); (3) Fast de-

coding; (4) Multilingual. Multiple languages are trained in the

same model.

cl1 r1 r2l2
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X XLanguage code
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Figure 3: NN used for cross-lingual G2P. Language code is a

binary representation of the input language. Input grapheme is

encoded as a one-of K graphemes. Output is encoded as a set

of phonetic features.

What we propose is to use a NN where multiple languages

are trained simultaneously using a single phoneme inventory.

The neural network is shown if Figure 3 where the input is a

grapheme with left and right context and a language identifier.

The output is a set of phonetic features that we decode using a

L1 distance to obtain the closest estimate.

NNs with multiple hidden layers can represent some func-

tions more efficiently than those with one hidden layer. The

challenge, though is the amount of data and the performance of

the training process. Nevertheless, deep NNs have gained a lot

of attention during last years, especially for Automatic Speech

Recognition [18] and TTS [19] applications. This is due to

the recent progress in hardware and software. As it has been

shown for ASR, neural networks are adequate for multilingual

system [20].

The process to use the proposed model consists of three

steps: dictionary alignment, the neural network training and the

decoding.

4.1. Dictionary Alignment

This step aims to align grapheme and phoneme tokens in a

pronunciation dictionary applying many-to-many mapping us-

ing the WFST paradigm [13] and forward-backward training.

The forward part uses a Expectation-Maximisation approach.

The expectation step collects partial counts for each grapheme-

phoneme-sequence pair and then a maximisation-step function

simply normalises the partial counts to create a probability dis-

tribution. The backward part generates the sequence pair. Once

the probabilities are learnt, the Viterbi algorithm can be used to

produce the most likely alignment.

4.2. Model building

In this step a model is trained using the aligned dictionary

to map graphemes to phonemes. The model is represented

as a fully connected feed-forward NN architecture similar to

the original NETtalk model [14] with one block for K input

graphemes (each representing one letter of the alphabet as a bi-

nary code), one block of 1+2F output features, where F is the

number of phonetic features representing one phoneme, and one

flag indicating if the output involves two phonemes. Graphemes

corresponding to shorted string of phonemes are accommodated

by allowing a null phoneme. Each input word starts off with

its first grapheme aligned with the middle input block, and then

moves to the left, one grapheme at a time, until its last grapheme

is aligned in the centre. The network is trained so that the out-

put phonemes correspond to the grapheme represented by the

central input block.

With the pre-aligned training data we can use a standard

learning algorithm such as the back-propagation algorithm.

There are a number of possibilities for cross-lingual mapping.

One possibility would be to train multiple models [21], one for

each language. We have opted for a single model by design as-

suming that the word accuracy of the final G2P model will not

be affected.

4.3. Decoding

In the decoding step we aim to generate pronunciations for

novel and known words. The output includes articulatory fea-

tures, stress encoding and a flag to indicate whether the current

grapheme maps to one or two phonemes.

As the output feature vector may not yield a perfect match

with the desired vectors of any of the phonemes, a best match

procedure is used to choose the phoneme from the features.

This procedure chooses the best phoneme x̂ whose feature vec-

tor is closest to the network’s output vector, that is,

x̂ = argmin
xj∈[1,S]

F
∑

i=1

|oi − g(xj , i)| (3)

where xj is one of the S phonemes, F is the total number of

features in the output of the network, oi ∈ [0, 1] is the output

of the network for feature i and g(xj , i) ∈ [0, 1] is the value of

feature i for phoneme xj which is used in Equation 2.

5. Experiments

We have conducted a series of objective and subjective eval-

uation tests. On the one hand, the objective experiments show

the word and phoneme accuracy for different configurations and

helps us choose the best one. On the other hand, the subjective

test aims to evaluate the quality of the synthesiser when the pro-

posed cross-lingual module is used to pronounce foreign words.



5.1. Objective evaluation

In this experiment we have tested our cross-lingual G2P map-

ping system with different configurations. First we did an ex-

periment with en-US only where we compared the results with

a state-of-the-art WFST system versus a NN. The size of the

total lexicon is 340k words and we have used 70% for training

and 30% for testing.

The weights of the NN were initialised randomly with

±0.3, then optimised to minimise the mean squared error be-

tween the output features of the training data and predicted

values using a GPU implementation of a mini-batch stochas-

tic gradient descent (SGD)-based back-propagation algorithm.

NN was trained using a step size of 0.1, momentum of 0.9 and

a Sigmoid activation function was used for both hidden and out-

put layers. Results for US English can be seen in Table 1. The

network has two hidden layers and 200 neurons which is the

optimum configuration that guarantees good performance and

footprint. The input and output layers’ dimensions are 365 and

71, respectively.

Table 1: Accuracies (in percentage) of NN-based G2P system

with en-US lexicon. Size of the model is in kbytes. Context for

WFST system is described in terms of regular n-grams. For the

NN system, the context is left and right so it includes the number

of graphemes apart from the central one.

System Context Size Word Phoneme Stress

WFST 3-gram 350 45.76 84.25 -

WFST 5-gram 2200 56.21 86.88 -

NN 4 340 47.54 80.68 87.08

NN 6 430 55.26 82.83 89.75

As shown above, WFST using fivegrams is the best system.

It is also the most expensive in terms of size. The most balanced

configuration is NN using 6 contexts where word accuracy is

about 10% better than WFST using trigrams while the footprint

of the model is still very small.

In the second set of experiments we have trained a cross-

lingual NN with British English speaking 4 languages (ie. Span-

ish, French, Italian and German). We have opted for the British

lexicon as the word accuracy is higher. The total size of the lex-

icons is about 1.2M words where 70% is used for training and

30% for testing, maintaining the percentage for each languages.

Results using multiple configurations can be seen in Figure 4.
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Figure 4: Word accuracy in percentage for different hidden

layer configurations.

In this case, a single layer with 200 neurons is the best

configuration. Results comparing the system trained with one

language or using the cross-lingual lexicon can be seen in Ta-

ble 2. This table also shows the relative contribution of each

language to the overall model. This is important since the ac-

curacy for each language is directly related to the size of the

original monolingual lexicon and its complexity as a language

(eg. number of vowels). These results demonstrate that training

one single NN with multiple cross-lingual languages affects the

quality only by a percentage that is about less than 5% in most

cases.

Table 2: Word accuracy (in percentage) of NN-based G2P sys-

tem with en-GB lexicon speaking 4 foreign languages.

Language Cross-lingual Monolingual Size (%)

Spanish 71.27 77.01 17.84

French 67.81 69.0 35.19

Italian 82.1 84.2 30.85

German 56.55 64.47 16.11

5.2. Subjective evaluation

Subjective evaluation was conducted in the form of AB tests.

A test set containing 147 foreign test items was constructed.

Test words were various location names (e.g., cities), famous

landmarks (e.g., Buckingham), personal names (eg., Michael),

popular proper names (e.g., Hangouts). Each AB test pair was

evaluated 10 times using naive native-speaking raters. Results

are in Table 3 where you can see a set of native languages (ie.

Spanish, German, Italian and French) synthesising British En-

glish input.

As you can see, our system performed significantly better

than the baseline, having 52% preference rate for the cross-

lingual system when averaged over all languages. The TTS

system is an HMM-based speech synthesis trained with 24-th

order LSP and a simple mixed excitation vocoder [22].

Table 3: AB comparison test for a native language speaking

British English.

Language Cross-lingual Monolingual No preference

Spanish 44.1% 20.2% 35.7%

German 44.5% 25.5% 30%

Italian 56% 18.3% 25.7%

French 56.0% 15.6% 28.4%

6. Conclusions

We have presented a multilingual system that generates na-

tivised pronunciations for foreign words while respecting the

monolingual voice design. We have shown how cross-lingual

lexicons can be built and a NN-based G2P system trained for

all languages in a single model. We have shown that this ap-

proach works well for improving the quality of a TTS on out-

of-vocabulary foreign words. Lastly, we have shown that the

G2P system based on NN is a good model to train multiple lan-

guages simultaneously maintaining high word and phoneme ac-

curacy while reducing the total footprint of the model compared

to a state-of-the-art WFST.

Our approach has been proven to work well with Indo-

European languages such as English speaking French. We are

now working to adapt it to Asian languages like Cantonese and

Japanese. Here, with the importance of tones or pitch accents,

mapping in prosodic space might be necessary, similar to what

has been reported in [5].
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