
Budget Allocation using Weakly Coupled, Constrained Markov
Decision Processes∗

Craig Boutilier
Google

cboutilier@google.com

Tyler Lu
Google

tylerlu@google.com

May 6, 2016

Abstract

We consider the problem of budget (or other resource) allocation in sequential decision prob-
lems involving a large number of concurrently running sub-processes, whose only interaction is
through their gradual consumption of budget (or the resource in question). We use the case of
an advertiser interacting with a large population of target customers as a primary motivation. We
consider two complementary problems that comprise our key contributions.

Our first contribution addresses the problem of computing MDP value functions as a function
of the available budget. In contrast to standard constrained MDPs—which find optimal value
functions given a fixed expected budget constraint—our aim is to assess the tradeoff between
expected budget spent and the value attained when using that budget optimally. We show that
optimal value functions are concave in budget. More importantly, in the finite-horizon case, we
show there are a finite number of useful budget levels. This gives rise to piecewise-linear, concave
value functions (piecewise-constant if we restrict to deterministic policies) with an representation
that can be computed readily via dynamic programming. This representation also supports natural
approximations. Our model not only allows the assessment of budget/value tradeoffs (e.g., to find
the “sweet spot” in spend), but plays an important role in the allocation of budget across competing
subprocesses.

Our second contribution is a method for constructing a policy that prescribes the joint policy
to be taken across all sub-processes given the joint state of the system, subject to a global budget
constraint. We cast the problem as a weakly coupled MDP in which budget is allocated online to
the individual subprocesses based on its observed (initial) state and the subprocess-specific value
function. We show that the budget allocation process can be cast as a multi-item, multiple-choice
knapsack problem (MCKP), which admits an efficient greedy algorithm to determine optimal al-
locations. We also discuss the possibility of online, per-stage re-allocation of budget to adaptively
satisfy strict rather than expected budget constraints.

∗This paper is an extended version of a paper by the same title to appear in the Proceedings of the 32nd Conference on
Uncertainty in Artificial Intelligence (UAI-16), New York, 2016.
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1 Introduction

Markov decision processes (MDPs) have found wide application throughout AI and provide firm
foundations for decision-theoretic planning [10] and reinforcement learning [27]. In many domains,
however, actions have costs or otherwise consume limited resources—in such cases, optimal policies
must be constructed subject to resource constraints, a problem often best formulated using constrained
MDPs (CMDPs) [2]. The complexity of these problems is exacerbated in domains where multiple
independent or semi-independent MDPs must be controlled jointly, since the state and action spaces
for the joint process typically consists of the cross-product of those from the individual subprocesses
[32].

A key setting where both of these characteristics arise is online advertising. A number of models
of online user engagement have been proposed that treat user behavior as a Markov process [15, 7].
Archak et al. [6], in particular, propose a constrained MDP model for the optimal allocation of an
advertiser’s budget over an extended horizon that captures the sequential, cumulative, stochastic effect
of multiple advertising touch points on a user’s behavior. Their model assumes that a fixed budget is
predetermined for each user, and focuses on how to optimally advertise to a user, subject to that budget
constraint. However, this formulation is not well-suited to advertisers who (a) have a global budget
constraint (rather than a per-user constraint); and (b) are free to allocate that budget differentially
and adaptively across users of different types, or users in different states of the underlying MDP. We
instead model this as a joint optimization problem in which a joint policy across all users must be
constructed. In particular, we consider the optimal, global, dynamic allocation of budget across all
users in the target market, removing the need to pre-specify a per-user budget.

Using this problem as motivation, we consider a natural decomposition of this type of resource
allocation problem as a weakly coupled MDP [32]. In this model, each “local” MDP (corresponding
to a customer or customer type) is solved separately, and the solutions composed into a joint pol-
icy. Within this setting, our first contribution relates to the solution of the local MDPs themselves.
One standard approach to dealing with resource constraints, such as budget limits, is CMDPs [2], in
which actions consume one or more resources (e.g., budget, power) and optimal policies are sought
that use no more than some pre-defined level of each resource in expectation. CMDPs have been
applied in online advertising (see above), robotics, and other domains [12, 19, 18]. While CMDPs are
valuable models, one weakness is their required a priori specification of fixed “budget” or limit on
each resource—in our example, this would be, say, a daily monetary budget cap on ad spend for each
customer or across a specific ad network [7, 6, 4]. However, in many cases, determining a suitable
budget depends on the tradeoff between ad spend and expected value. In our motivating example, in
particular, the budget to be allocated to customers of a specific type, or in a specific MDP state, must
be traded off against that allocated to other types or states.

We propose a model called budgeted MDPs (BMDPs) in which, like CMDPs, actions consume
resources and can only be taken when the required resources are available. Unlike CMDPs, we do
not place an a priori limit on resources, but instead solve the for all possible resource levels, allowing
one to explore the tradeoff between (optimal) expected value and allocated resources. Note that we
could formulate this problem by embedding the available resource levels in the state space, creating a
“hybrid state” with one continuous dimension per resource. However, typically one chooses a budget
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(or appropriate resource level) when initiating a policy—in our approach, after solving the budgeted
MDP to assess value/budget tradeoffs. As a consequence, we instead treat the budget as a separate
parameter of the value function (VF) and policy, and analyze the structure of optimal VFs w.r.t. budget.
Specifically, for finite state and action BMDPs, we show that for any fixed state s: (a) the optimal VF
V (s, b) is concave in available budget b; and (b) the optimal VF for any finite horizon is piecewise-
linear and concave (PWLC) in budget, and is defined by a finite set of useful resource levels (the
VF is piecewise constant if policies are deterministic). We present a dynamic programming (DP)
algorithm to compute this PWLC VF representation, one that readily supports approximation. This
approach is well-suited not only to multi-task problems, like our ad domain, but more generally to any
constrained MDP where the appropriate level of resource to allocate depends on the value obtainable
(e.g., the “sweet spot” in spend) and may not be easily determined a priori. Using the VF to inform the
selection of an appropriate budget, one automatically determines the optimal policy for that (expected)
spend level—as if one had solved the corresponding CMDP for that budget.

Our second contribution is a method for piecing together the solutions of the individual BMDPs
to determine a joint policy, subject to a global resource/budget constraint. Since the MDP is weakly
coupled [32]—specifically, the individual customer MDPs evolve independently, linked only through
the consumption of shared budget—our primary aim is to determine an appropriate allocation of
budget to each customer, which is turn dictates the optimal policy for that customer. We show that,
given the form of BMDP optimal value functions, the budget allocation problem can be formulated as
a multiple-choice knapsack problem (MCKP) [40], for which a straightforward greedy optimization
can be used to construct the optimal online allocation of budget. We also discuss circumstances
in which the dynamic, per-stage reallocation of budget may be valuable—in such cases, the offline
solution of the underlying BMDPs and the greedy nature of the online allocation algorithm admit fast,
real-time response.

The paper is organized as follows. We discuss related work on ad budget optimization and con-
strained and weakly coupled MDPs in Sec. 2. We outline our basic constrained weakly coupled MDP
model in Sec. 3. In Sec. 4, we introduce budgeted MDPs (BMDPs) as a model for the local (e.g.,
single-customer) MDPs that make up the weakly coupled model. Unlike CMDPs, the aim is to de-
termine VFs and policies as a function of available budget. In this section we describe the PWLC
structure of optimal VFs for BMDPs; introduce a DP algorithm for computing VFs and policies; de-
scribe methods for approximation and provide an analysis of approximation error; describe how to
compute the variance in expected spend induced by the optimal policy; and provide empirical results
on both synthetic MDPs and MDPs derived from the data of a large advertiser. In Sec. 5, we describe
how to exploit BMDP solutions to allocate a global budget to multiple independent local MDPs, linked
only by their budget consumption. We formulate the problem as a multiple-choice knapsack problem
(MCKP) and describe a simple greedy algorithm for optimal budget allocation. We show that this
way of exploiting BMDP solutions provides much better results than adopting a static or fixed per-
user budget. We also propose a dynamic budget reallocation method that reallocates budget as each
CMDP process evolves. This reduces variance in the global spend, ensures guaranteed budget con-
straint satisfaction rather than expected satisfaction and, in settings with tightly constrained budgets,
can offer better expected value through budget redistribution.
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2 Background and Related Work

We begin by outlining necessary background and briefly discussing related work.

2.1 Budget Optimization in Online Advertising

Optimal allocation of advertising budgets is addressed at length in the marketing literature. Tradi-
tional concerns include how to allocate budget to different segments of the target market [41], and
exploiting the different stochastic responses predicted from such segments [26]. Budget allocation is
often modeled as the control of a continuous dynamical system [21], where audience response (e.g.,
purchases) to control actions (e.g., ad spending) are used to justify policies such as pulsing. User
behavior is also sometimes modeled as a discrete Markov process (reflecting consumer demand, ad
response, ad carryover effects, etc.) [12, 34].

A variety of mechanisms to support online advertising have been studied (and successfully de-
ployed), including auctions for sponsored search [44, 20]. In this context, advertiser budget optimiza-
tion is critical to maximizing impact and ROI in keyword auctions, leading to a variety of propos-
als for optimal bidding strategies under various models and constraints, including budget constraints
[8, 23, 33, 24, 17, 28]. Even more expressive methods (e.g., for entire ad campaigns) have been
proposed for both search and display advertising in online settings [11, 29].

By contrast, relatively little work has considered budget optimization in an online setting that is
sensitive to user behavior as it extends over time. Charikar et al. [15] assume the web surfing behav-
ior of different user types can be modeled as a Markov process and construct policies to optimally
allocate ad spend at different states (e.g., web sites) to maximize return (e.g., conversions), possibly
as a function of user history. Archak et al. [6] tackle a related problem, offering a somewhat different
model, but still assuming Markovian user behavior (here in a sponsored search setting). They propose
a constrained MDP model that can be used to determine the optimal ad spend for a given user, assum-
ing an a priori fixed budget for that user. It is this model we adopt for our approach below, though
we do not fix a per-user budget. Interestingly, the same authors [7] analyze user behavior empiri-
cally, demonstrating that users in a search context exhibit what might be called a “general to specific”
search behavior that is approximately Markovian, and suggest that myopic click-through optimiza-
tion will fail to optimize spend (hence motivating their MDP approach [6]). Amin et al. [4] develop
an MDP model of the budget optimization process itself, formulating the problem facing the online
advertiser—who is uncertain about the winning bid distribution—as one of learning under censored
observations. Unlike the models above (and unlike our work), this work does not model Markovian
user behavior.

Li et al. [30] also consider Markov models in behavioral and contextual advertising. More recent
work has considered the application of reinforcement learning methods to determine appropriate ad-
vertising and offer strategies to large populations of customers, learning optimal policies from data
generated by online interactions with users [38, 43]. These methods are similar in their underlying
user modeling assumptions, but attempt to learn policies from data and do not account for budget
constraints or tradeoffs, whereas we assume an underlying transition model is available and optimize
policies relative to these budget tradeoffs.
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2.2 Constrained MDPs

An important extension of the standard MDP model is offered by constrained MDPs (CMDPs) [2],
in which actions consume one or more resources (e.g., monetary budget, power) and optimal policies
are sought that use no more than some pre-defined level of each resource in expectation. CMDPs have
been applied in online advertising, mobile robotics, and other domains within AI and OR [12, 19, 18],
and techniques that exploit the structure of CMDPs for effective solution have received some attention
[2, 19, 18]. We briefly define MDPs and the basic (one-dimensional) constrained extension.

2.2.1 Markov Decision Processes

A finite state and action Markov decision process (MDP) [36] is given by: a finite state space S
and action space A; a stochastic transition model P , with P (i, a, j) = paij denoting the probability
of a transition from state i to j when action a is taken; and a bounded, real-valued reward function
R(i, a) = rai denoting the immediate (expected) reward of taking action a at state i. We decompose
reward as rai = U(i, a) − C(i, a) = uai − cai , where cost function C reflects action costs and utility
function U reflects the desirability of the state-action pair.1

We define the reachable set for state-action pair i, a to be Sai = {j ∈ S|paij > 0} and the maximum
out-degree of an MDP to be d = maxi∈S,a∈A |Sai |. A stationary, deterministic policy π specifies an
action π(i) ∈ A to be taken in any state i. A randomized policy π specifies a distribution π(i) ∈ ∆(A)
over which action to be taken at state i.

We focus on discounted infinite-horizon problems with discount factor 0 ≤ γ < 1, where the aim
is to find an optimal (stationary, deterministic) policy that maximizes the expected sum of discounted
rewards. The (unique) optimal value function V ∗ : S → R satisfies the Bellman equation for all
i ∈ S:

V ∗(i) = max
a∈A

rai + γ
∑
j∈S

paijV
∗(j),

while the optimal policy π∗ satisfies:

π∗(i) = argmax
a∈A

rai + γ
∑
j∈S

paijV
∗(j).

It is sometimes convenient to use Q-functions:

Q∗(i, a) = rai + γ
∑
j∈S

paijV
∗(j),

and to write V ∗(i) = maxa∈AQ
∗(i, a). The optimal value function and policy can be computed using

dynamic programming algorithms like value or policy iteration, or using natural linear programming
formulations [36, 10].

It is also useful to specify the value associated with an arbitrary policy π:

V π(i) = r
π(i)
i + γ

∑
j∈S

p
π(i)
ij V π(j).

1U is often independent of a.
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If π is randomized, rπ(i)i and pπ(i)ij denote expected reward and transition probability with respect to
a ∼ π(i).

2.2.2 Constrained MDPs

Constrained MDPs (CMDPs) extend the classic MDP model by introducing constraints on the re-
sources that can be used to implement the target policy [2]. For ease of exposition, we outline CMDPs
using a one-dimensional cost model, but note that the general CMDP model is typically specified
using multiple resource types with constraints. A (finite state and action) CMDP consists of an MDP
specified as above, along with a budget constraint B that limits the total expected discounted cost of
allowable policies. For example, if the cost component cai of our reward function reflects the monetary
cost of taking action a in state i, the budget constraint B requires that any policy have an expected
discounted monetary cost of no more than B. The model, of course, applies to the use of other limited
resources (e.g., power, CPU, even time).

Satisfying the budget constraint in expectation is quite standard in the CMDP literature. This
approach is suitable in domains where the policy may be executed many times in a variety of circum-
stances (and the budget is fungible over these instances). It is also appropriate when some flexibility
exists to exceed the budget. Our motivating ad scenario is such a domain. In other settings, where the
budget constraint is strict, expected budget satisfaction may be unsuitable—our model below easily
accommodates strict budgets as well. However, we focus on expected constraint satisfaction in this
work. In some domains, it may be useful not to discount costs in the budget constraint. This can be
problematic in some CMDP formulations, though it is easily handled in our approach, as we discuss
below.

Some CMDP models use costs as a constraint on behavior only, and do not factor costs into
the reward function. In settings where actions have monetary costs (such as the ad domain), one
typically assumes commensurability of C and U and deducts action costs from the expected return
(e.g., revenue from conversions). In other cases, costs (e.g., power available) are not commensurable
with return and simply serve as a constraint. Everything that follows applies whether the reward R
incorporates cost C or only depends on utility U .

Since assessing expected cost requires some initial distribution α over states—where αi denotes
the probability that the decision process begins at state i—we take this as input as well. The expected
discounted cost of policy π at state i is given by:

Cπ(i) = c
π(i)
i + γ

∑
j∈S

p
π(i)
ij Cπ(j).

This cost can be discounted at a different rate than the reward function if desired, and can even be
undiscounted in finite horizon problems (or in settings with absorbing states, where total cost can be
bounded). We consider both discounted and undiscounted budgets in below.

The optimal stationary policy for a CMDP is given by:

argmax
π

αiV
π(i) s.t. αiCπ(i) ≤ B.
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The optimal solution (both the policy and VF) can be computed in polynomial time using a linear
programming formulation—see Altman [2] for an overview of key results regarding CMDPs. We
note that there always exists an optimal stationary policy for a CMDP, but unlike in the case of un-
constrained MDPs, there may be no deterministic optimal policy (i.e., any optimal policy must be
stochastic). We also note that the policy is not generally uniformly optimal; in other words, the opti-
mal policy varies with the initial distribution α. This stands in contrast to unconstrained MDPs, for
which there is always a uniformly optimal stationary, deterministic policy.

2.2.3 Drawbacks of CMDPs

While CMDPs are valuable models, one weakness is their required a priori specification of fixed
“budget” or limit on each resource. For example, in an MDP model of sequential online advertising,
an advertiser might wish to specify a daily monetary budget cap on ad spend for each customer or
across a specific ad network [7, 5, 4]. However, the determination of a suitable budget depends on the
tradeoff between ad spend and expected value. More generally, determining the level of resources to
allocate to a specific problem depends on the solution quality that can be achieved with that allocation.
For instance, before solving the relevant CMDPs, an ad campaign manager cannot generally know
that (say) an expected spend of $10 per user yields an expected return of $20, while a spend of $15
has a return of $28. The latter offers greater absolute return while the former has a better return on
investment (ROI). Assessing the tradeoff so a suitable budget can be set is not typically viable a priori.

Moreover, in many certain circumstances, limited resources must be shared across multiple tasks,
each represented by a distinct MDP [32, 39, 9]. In such a case, determining the value attainable in
each MDP for any specific level of resource allocation is crucial to assessing the tradeoffs across the
task-specific MDPs. In our ad domain, for instance, we may have two classes of users, some early in
the sales/search funnel, and others at states later in the funnel: determining how to interact with each
class given an overall budget constraint requires assessing the tradeoff between expected value derived
from each class given different class-specific engagement policies and their budget requirements. The
methods we introduce, by constructing optimal policies for any budget made available, readily support
the assessment of such tradeoffs.

A second property of CMDPs that is sometimes problematic is their reliance on randomized poli-
cies. The following simple example illustrates why CMDPs generally require randomized (stationary)
policies, and why such policies may be undesirable. Consider a trivial one-state, two-action determin-
istic CMDP with actions a and b, where C(a) = 1, C(b) = 0, U(a) = 10, U(b) = 1, and γ = 0.9.
Suppose our discounted resource/budget limit is 1.9. If action a is to be taken in a stationary policy,
the policy must be randomized, otherwise the policy will consume more than the allowable expected
budget. Indeed, the optimal stationary policy takes action a with probability 0.19 (b with 0.81) and
has an expected value of 27.1 = 0.19(10)+0.81(1)

1−γ . The only feasible deterministic stationary policy
takes action b, with a suboptimal expected value of 10 = 1

1−γ . However, the same value 27.1 can be
achieved with a deterministic policy as long as we allow nonstationarity—by taking action a twice,
then repeating action b thereafter. However, if we allow the policy to depend on the budget, then we
need not rely on nonstationarity. Instead we can simply allow that a be taken if enough discounted
budget is available. In this case, a will be taken twice before the budget is exhausted. This shows
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that—while imposing determinism on a policy that is stationary relative to the original state space
can lead to lower expected value than a randomized policy2—allowing policy choice to depend on
the budget remaining gives rise to much more natural stationary deterministic policies. In our model,
stochastic policies are needed only to deal with budget feasibility, not to handle artificial stationarity
requirements.

Finally, the reliance of CMDP solutions on the initial distribution is also a drawback in certain
circumstances. For instance, suppose an advertiser wishes to deploy a policy for engaging customers
online, but the initial state distribution (i.e., expected starting point of the engagement) depends on the
source of customer traffic. Having a value function and policy that is easily adaptable to different ini-
tial distributions is often more desirable than computing a separate policy for each initial distribution.
The techniques we outline below can be used for this purpose as well.

2.3 Weakly Coupled MDPs

The decomposition of MDPs into independent or semi-independent processes can often be used to
mitigate the curse of dimensionality by reducing the size of the MDP state and action space. Chal-
lenges lie in discovering a suitable decomposition structure and in determining how best to use the
sub-process solutions to construct a (generally approximate) global solution.

There have been a number of approaches developed that have this flavor, in both standard MDPs
and decentralized (DEC) MDPs and POMDPs [39, 39, 1, 42, 31, 19, 45, 3, 35, 14]. The approach
most related to ours is the decomposition method for weakly-coupled MDPs of Meuleau et al. [32]. In
their model, a joint fully observable MDP is comprised of a number of almost completely independent
subprocesses, each itself a fully observable MDP (a local MDP). Each MDP reflects the task or ob-
jectives of a specific agent, but the local policies themselves require resources, both consumable (e.g.,
fuel or money, that, once used in one local policy, are unavailable for future use in that or any other
local MDP), and non-consumable (e.g., equipment, that can be reused multiple times and swapped
across local MDPs, but can only be used in one local MDP at a time). The method of Meuleau et
al. [32] solves the local MDPs independently to produce local value functions and policies that are
parameterized by the resources available. these local value functions then inform a simple greedy
algorithm that assigns resources to each local MDP. Finally, unconsumed resources at each stage of
the process are reassigned depending on the updated observed state of the local MDPs.

Our approach to budget decomposition is similar, but has some key differences. We use the
more standard expected budget constraint, rather than a guaranteed budget constraint to determine
the optimal policy—this requires the development of new DP techniques (as opposed to the use of
standard value or policy iteration [32]). We also show that our resource (budget) allocation algorithm
is optimal. Our dynamic budget reallocation scheme is derived from the reallocation mechanism of
Meuleau et al. [32].

2Indeed, computing the optimal deterministic policy is computationally more difficult than the polytime problem of
computing an optimal randomized policy—it is NP-complete [22] and can be formulated as a MIP [18].
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3 MDPs for Large-scale Budget Allocation

We begin by outlining a simple MDP model for engagement with users from a large, heterogeneous
population, using a sequence of potentially costly actions. We use direct-response advertising as our
main motivating example, though our techniques apply to control of any large, distributed collection
of fully observable MDPs where actions consume limited resources. We note that our model abstracts
away a number of factors that arise in realistic ad domains (e.g., partial or intermittent observability
of user responses, hidden user state, coarse-grained control and lagging effects, incentives and game-
theoretic interactions) in order to focus on the essence of budget allocation.

We assume an advertiser has a fixed budget with which to influence a target population of users
though the use of various advertising actions. Each action taken by the advertiser has a specific cost
and is targeted to a specific user (e.g., a textual or graphical ad in response to a search query, an in-app
or web page graphical/video ad, direct mail to a household).3

Users respond to advertising actions stochastically, and in a way that may depend not only on
user features (e.g., demographics), but also on past actions to which they have been subjected (e.g.,
previous ad exposures or solicitations) and past responses (e.g., click through or purchase behavior).
Following Archak et al. [6], we model this situation as an MDP in the following fashion. We assume
a finite set of users i ≤ M . Generally speaking, users may be segmented into types that reflect
static, observable characteristics that influence their response to advertising. For ease of exposition,
we assume all users have the same type; but the extension to multiple types is straightforward, and
aspects of the model requiring modification for multiple types will be indicated as they arise.

We assume a finite set S of user states j ≤ N . At any time, user i is some state s[i] ∈ S. Let
S = SM be the joint state space, with the joint state of all users denoted s = 〈s[1], . . . , s[M ]〉 ∈ S.
Intuitively, the user state captures all relevant user characteristics and history that could alter her re-
sponse to an advertising action. S could be relatively small or may be quite large in certain contexts
(e.g., the most recent keyword search on which the advertiser bid, or some sufficient statistics summa-
rizing historical interactions and user responses). A finite set A of advertising actions is available: for
ease of presentation, we assume that any a ∈ A can be applied to a user in any state (subject to cost
constraints, discussed below). Accommodating state-dependent constraints on the feasible action set
is straightforward (as in any MDP model). At each stage, the advertiser selects an action a[i] to apply
to user i. Letting A = AM , a joint action is a = 〈a[1], . . . , a[M ]〉 ∈ A.4

The stochastic response of a user to an action is captured by the transition model P : S × A →
∆(S), with P (s, a, t) denoting the probability that a user in state s moves to state t when subjected to
action a.5 The reward modelR(s, a) reflects the costs and payoffs when an advertiser applies action a
to a user in state s. We decompose reward as R(s, a) = U(s)−C(s, a): cost model C reflects action
costs (e.g., cost of placing an ad, or potential annoyance factor and associated lost revenue); and utility
function U reflects benefits/payoffs (e.g., revenue from sales, value of brand exposure, etc.).

3We can also apply the “same” action to multiple users simultaneously in broadcast fashion by assuming the set of users
so targeted can be identified. If the costs of such simultaneous actions are not linear, our decomposition below is only
approximate.

4If we have multiple user types with distinct MDPs, the joint state and action spaces are defined analogously.
5If the response depends on user type, we define separate transition models for each type. Embedding the user type in

the state is not needed, since the state sets for different types are non-communicating.
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The advertiser has a maximum (global) budget B that can be spent over the planning horizon
on all (potential or existing) users. We assume that the population of users is either known, or new
users enter the system according to a known distribution over initial states. Because user transitions
are stochastic, and because they may enter the system at different times, different users will occupy a
variety of states at any point in time. The question we address: how should we engage with users at
different states? Hence, how should we “allocate” our budget to such users?

The optimal policy is defined w.r.t. the joint constrained MDP, with state space S = SM , action
set A = AM , a (budget-independent) transition model, and cost, utility and reward functions defined
as follows:

P (s,a, t) =
∏
i≤M

P (s[i], a[i], t[i]); U(s) =
∑
i≤M

U(s[i]);

C(s,a) =
∑
i≤M

C(s[i], a[i]); R(s,a) = U(s)− C(s,a).

The joint transition model reflects the natural independence of user transitions (i.e., states/actions
taken for one user don’t influences the transitions of another). Costs and utilities are additive across
users.

Our aim is to find a policy, i.e., mapping from joint states to actions, that maximizes expected
discounted reward subject to the budget constraint: in expectation, the policy should spend no more
than B. The optimal solution to this joint CMDP can, in principle, be found by linear programming
or dynamic programming as discussed above. However, the state and action spaces of the joint MDP
is extremely large, exponential in the number of active users (i.e., O(NM ) states). There are some
simplifications that can be made that exploit symmetries. For example, the optimal action at state s
does not depend on the “identities” of users in a specific state s ∈ S; since all users in s are identical,
the state can be simplified by considering only the number of users in each state, reducing state space
size to

(
M+N−1
N−1

)
, which can be much more manageable if M is small. Still an MDP of this size will

generally be intractable.
Since the MDP is weakly coupled in the sense described above [32], we would like to take ad-

vantage of this fact and solve the individual component MDPs in such a way that their solutions can
be effectively “pieced together” to form an approximately optimal solution to the joint problem. We
tackle this problem in two stages: we first show how to solve the “customer-level” subprocess MDPs
to derive optimal value functions and policies as a function of expected budget. This allows us to con-
sider the precise tradeoff between expected budget consumption and expected value. This is critical
to the second stage of the process, in which we use these value functions to optimally allocate budget
online to users in different states of their corresponding MDPs.

4 Solving Budgeted MDPs

We first formulate budgeted MDPs, a variant of CMDPs in which budgets (or other resources) are
modeled so that decisions can be made readily about the level of budget to provide. The budget
is implicitly treated as a component of the state, and value functions and policies are constructed
that vary with both the state and available budget. We first outline the model, and then develop
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key intuitions regarding VF structure by considering deterministic policies. We move on to discuss
stochastic policies—where randomization is much more natural than in the CMDP model—and show
that these give rise to value functions that have computationally useful structural properties. This
structure can be exploited in a simple dynamic programming (DP) algorithm, and gives rise to natural
approximations. We conclude the section with some computational experiments to show the efficacy
of our DP method.

4.1 The Budgeted MDP Model

A (finite, one-dimensional) budgeted Markov decision process (BMDP)M = 〈S,A, P, U,C,Bmax, γ〉
has the same components (states, actions, transitions, utility, cost, discount factor) as a CMDP, but
without a budget constraint. We allow an optional constant Bmax that reflects some plausible upper
bound on the useful or available budget that can be exploited at any point in the decision process.6

We abuse notation and write U(i) = ui for the terminal utility at state i if no action is taken (e.g., end
of the planning horizon). Finally, we assume that, for each state i, there is some action a s.t. cai = 0.
This ensures we can define a proper policy when no budget is available.7

As in CMDPs, an optimal policy is sought which maximizes expected cumulative discounted
reward over some horizon of interest, but which consumes no more than some allocated budget b ≤
Bmax in expectation. Unlike CMDPs, however, we want an optimal policy that is a function of b,
rather than a single optimal policy for a fixed budget B.

4.2 Deterministic Policies

We begin with an analysis of deterministic policies for finite-horizon problems, which provide useful
intuitions upon which we build below.

We first define the optimal deterministic t-stage-to-go value function. For all i ∈ S, b ≤ Bmax,
define V 0

D(i, b) = ui, and:

V t
D(i, b) = max

a∈A
b∈Rn

+

rai + γ
∑
j≤n

paijV
t−1
D (j, bj) (1)

subj. to cai + γ
∑
j≤n

paijbj ≤ b. (2)

The optimal policy πtD(i, b) is given by substituting argmaxa∈A for maxa∈A in Eq. 1. The value
function reflects the fact that taking action a at state i consumes cai of the available budget b, while the
optimal budget consumption at each reachable next state must be such that the expected budget used
subsequently is no more than the budget b− cai remaining after taking a.8 Notice that we discount the

6For finite-horizon problems, or MDPs with zero-cost absorbing states, we can forego Bmax in our algorithms. In
infinite-horizon problems, Bmax can also be ignored if costs are discounted. However, since we wish to also consider the
undiscounted cost case, we allow specification of such a cap.

7If the process ends when budget is exhausted, this can be modeled by a zero-cost “terminating” action that moves the
process to a zero-cost absorbing state.

8While a constraint on expected budget is typical in CMDPs, the variant in which the budget cap must be respected in
every realization of the MDP dynamics can also be defined easily, and may be more suitable when budgets are strict, or for
resources other than monetary budget. Strict budgets can easily be handled by DP [32].

11



0 2 4 6 8 10 12
0

2

4

6

8

10

12

b1, v1

b2, v2

b3, v3

b0, v0

)

)

b4, v4

b5, v5
b6, v6

)

)

)

Fig. 1: An example value function VD(i, b) for a fixed state i. The deterministically useful budget levels are shown (the
points (b, v) along with: (a) the induced piecewise constant VF VD(i, b) (the dashed line) for a deterministic policy; and
(b) the PWLC VF (the solid line) for a randomized policy. Notice that randomizing between b0, b1 offers greater expected
value for any expected spend b ∈ (b0, b1) than deterministically using b0; and that randomizing between b1 and b3 with
expected spend b2 dominates the deterministic policy value at b2 (see dashed-dotted lines).

expected spend as is standard in CMDPs; but removing the discount factor γ from the constraint Eq. 2
is sensible in settings where budgets are strict and are allocated a priori once values are determined.9

It is easy to see that V t
D(i, b) is monotone non-decreasing in b. While the optimal VF in the

BMDP formulation involves a continuous dimension b, it has a concise finite representation. For
a fixed stage-to-go t and state i, define budget 0 ≤ b ≤ Bmax to be (deterministically) useful iff
V t
D(i, b) > V t

D(i, b− ε) for all ε > 0, and useless otherwise. We observe that:

Proposition 1. For any finite t and state i, V t
D(i, ·) has a finite number of deterministically useful

budget levels.

Prop. 1 implies that V t
D(i, ·) is piecewise constant and monotone, with V t

D(i, b) = V t
D(i, bi,tk ) for

all b ∈ [bi,tk , b
i,t
k+1), for each k ≤M . We write

[〈bi,t0 , v
i,t
0 〉, 〈b

i,t
1 , v

i,t
1 〉, . . . 〈b

i,t
M , v

i,t
M 〉]

to denote this piecewise constant function. Fig. 1 illustrates the piecewise constant form of the VF.
We describe an algorithm to compute these useful budgets, which will be instructive before con-

sidering a proof of Prop. 1. Let bi,t0 = 0 < bi,t1 < . . . < bi,tM be the useful budget levels for (i, t).
We can compute the useful budgets for each state-stage pair—hence the optimal VF and policy—
using a simple DP algorithm. Suppose we have a piecewise constant representation of V t−1

D . For

9Without discounted costs, the definition of useful budgets in infinite horizon problems requires some care, but is
straightforward. Our experiments below use undiscounted budgeted constraints.
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V 0
D the representation is trivial. For ease of exposition, assume each state j has M + 1 useful levels
bj,t−10 , . . . , bj,t−1M . We compute the useful budgets and values V t

D(i, b) for each state i as follows:

• Let σ : Sai → [M ] be an assignment of each reachable state j ∈ Sai to a useful budget level
bj,t−1σ (j) with t − 1 stages-to-go. Let Σ be the set of such mappings. σ(j) is the (index of)
budget that will be consumed if we reach j after taking action a; we sometimes informally
refer to the selected budget itself as σ(j). Implicitly, σ dictates the t − 1 stage-to-go policy by
selecting a budget level at each next state.10

• Let the potentially useful budget levels for (i, t, a) be:

B̃i,t
a = {cai +

∑
j∈Sa

i

paijb
j,t−1
σ(j) | σ ∈ Σ} ∩ {b ≤ Bmax}.

Note that each entry bi,tk ∈ B̃i,t
a is determined by some mapping σ. Let the corresponding

expected value associated with bi,tk be vi,tk = rai + γ
∑

j p
a
ijv

j,t−1
σ(j) .

• Assume a reindexing of the entries in B̃i,t
a so that the budget levels are ascending (ties broken

arbitrarily). The useful budget levels for (i, t, a) are:

Bi,t
a = {bi,tk ∈ B̃

i,t
a :6 ∃k′ < k s.t. vi,tk′ ≥ v

i,t
k }.

In other words, any potentially useful budget level that is weakly dominated w.r.t. value by some
smaller (lower-indexed) level is discarded. The useful budget levels and corresponding values
represent the Q-function Qt(i, a, b).

• Let the potentially useful budget levels for (i, t) be

B̃i,t = ∪a∈ABi,t
a ,

and let Bi,t be the useful budget levels, obtained by pruning B̃i,t in the same fashion as above.
The useful budget levels and corresponding values represent the VF V t(i, b).

We provide a formal proof of Prop. 1 in the appendix, based on the algorithm above. Informally,
it is easy to see that Bi,t contains all and only useful budget levels for (i, t) if this fact holds for all
Bj,t−1 at the previous stage. First, note that B̃i,t

a contains all useful budget levels if action a is taken
at stage t. If not, then there would be some b 6∈ B̃i,t

a that admitted a different expected value after a
was executed; however, a simple inductive argument, and the fact that Σ includes all useful ways of
exploiting future budgets, show this cannot hold. The pruning phase (i.e., transformation of B̃i,t

a to
Bi,t
a ) prunes all and only useless levels. Similar reasoning applies to B̃i,t and Bi,t.

While finite, the number of useful budget levels can grow exponentially in the horizon:

Proposition 2. For any finite t and state i, V t
D(i, ·) has at mostO((|A|d)t) useful budget levels, where

d is the maximum out-degree of the underlying MDP.
10For example, if i has two reachable states j1 and j2 under action a, then σ(j1) = b1 and σ(j2) = b2 means that after

action a is taken at i, budget b1 will be made available if we transition to j1 (and the policy subsequently executed will be
optimal for that expected budget), and b2 will be made available if we reach j2.
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This is easy to see as a consequence of the proof above (a proof sketch is provided in the ap-
pendix).11 Such a bound is only reached when no potentially useful budgets are dominated. Still this
motivates the desire to approximate this set of useful budgets, as we discuss in Sec. 4.4.

4.3 Stochastic Policies

Stochastic policies can offer greater value than deterministic policies due to their inherent flexibility,
and thus have a rather different structure. To illustrate, suppose budget b is available at state-stage
pair (i, t), where b lies strictly between two adjacent deterministically useful levels, bi,tk < b < bi,tk+1.
If forced to choose an action and spend level deterministically, the excess budget greater than bi,tk
provides no additional value. A stochastic policy, by contrast, allows one to randomly spend bi,tk+1

with probability p =
b−bi,tk

bi,tk+1−b
i,t
k

and bi,tk with probability 1 − p, providing greater expected value from

(expected) spend b than the piecewise constant value offered by the optimal deterministic policy,
which only allows the “use” of bi,tk (see Fig. 1). Apart from randomizing the spend at state i, this
stochastic choice also randomizes the choice of action when the optimal actions associated with bi,tk
and bi,tk+1 differ.

It is not hard to see that the optimal value function under such “single-stage randomized” policies
at (i, t) is given by the convex hull of the deterministically useful budget levels for (i, t) (see Fig. 1).
Given useful budget levels Bi,t = {bi,t0 = 0 < bi,t1 < . . . < bi,tM}, we say bi,tk is dominated if there are
two bracketing budget levels bi,t

k− , b
i,t
k+

(k− < k < k+) such that some convex combination of their
values dominates that of bi,tk , i.e., (1− p)vi,t

k− + pvi,t
k+

> vi,tk . The convex hull is piecewise linear and
concave (PWLC) and monotone, comprising the PWL function formed by the set of non-dominated
points.

We now show that this PWLC structure is preserved by Bellman backups, and can be computed
effectively in two stages: first, a simple greedy algorithm is used to assign budget incrementally to
reachable next states, thus computing a PWLC representation of the Q-functions for each action a;
and second, we compute the backed up VF by taking the convex hull of the union of these Q-functions.
Thus we will show that any finite-horizon (stochastically) optimal VF for a BMDP has a finite PWLC
representation.

Computing Q-functions Assume that V t−1(j, ·) is PWLC for all j ∈ S, and has the form:

[〈bj,t−10 , vj,t−10 〉, . . . , 〈bj,t−1M , vj,t−1M 〉],

where each bj,t−1k is non-dominated (for ease of exposition, we assume each j has M + 1 such non-
dominated levels). Let B(Sia) = ∪j∈Si

a
Bj,t−1, and re-index the elements of B(Sia) in decreasing

order of their bang-per-buck ratio (BpB):

BpB(bj,t−1k ) =
vj,t−1k − vj,t−1k−1

bj,t−1k − bj,t−1k−1
=

∆vj,t−1k

∆bj,t−1k

.

11Note that this exponential growth occurs in a fashion similar to an analogous phenomenon in POMDP value functions,
where the number of so-called α-vectors in the PWL representation of the value function grows exponentially with the
horizon due to a mapping from possible observations at each state to a next-stage policy tree.
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(For k = 0, we leave BpB undefined, since bj,t−10 = 0 for all j.) This expresses the (per-unit budget)
increase in value associated with increasing the available budget at (j, t − 1) from bj,t−1k−1 to bj,t−1k .
Let j(m), k(m),∆b(m),∆v(m) denote, resp., the state j, the useful budget index for j, the budget
increment, and the value increment associated with the mth element of (the sorted set) B(Sia). Let
M∗i = |Sia|M denote the size B(Sia).

We first consider the Q-functionQt(i, a, b) for a fixed action a as a function of budget b. We derive
the budget allocation that optimizes future value with t − 1 stages to go—Qt(i, a, b) is obtained by
discounting the future value and adding immediate reward rai . We begin with an informal description
of the method to illustrate the underlying intuitions.

For any available budget b at state i, we must consider the optimal allocation of budget to the next
states j ∈ Sia so that the expected spend doesn’t exceed b′ = b− cai . The minimum budget that allows
a to be taken is cai : at this level, no budget is available at any next state and expected future value is
given by

∑
j p

a
ijv

j,t−1
0 .

The first units of budget beyond cai are most effectively allocated to the state j(1)—i.e., the first
state inB(Sia)—since it has the highest BpB for its first useful budget level. Indeed, allocating budget
up to ∆b(1) = b

j(1),t−1
k(1) to j(1) gives an expected (future) value improvement (relative to no budget)

of ∆v(1) = ∆v
j(1),t−1
k(1) with probability pai,j(1), and has an expected spend of pai,j(1)∆b(1). This is, by

definition of B(Sia), the greatest expected (future) value attainable at i for any b′ ≤ paijb
j(1),t−1
k(1) .

The next units of budget should be allocated to j(2): the first ∆b(2) units so allocated provide a
return of BpB(b

j(2),t−1
k(2) ) per unit; but the expected spend and expected return occur with probability

pai,j(2), hence the expected allocation at i is pai,j(2)∆b(2). Any additional budget available at i should
continue to be allocated to next states j ∈ Sia in “increments” of pai,j(m)∆b(m) in decreasing order of
the corresponding BpB ratios. The (future component of a) Q-function constructed from two reachable
next states is illustrated in Fig. 2: it is easily seen that this corresponds to a simple sorted merge of the
linear segments of all reachable-state VFs, with each segment scaled by the transition probability of
its next state.

A simple inductive argument shows that this simple greedy allocation of budget determines the
optimal Q-function for action a. Furthermore, the Q-function is PWLC and monotone, withM |Sai |+1
useful budget levels and values. More formally, we define:

Definition 1. Let V t−1 be a VF such that, for all j ∈ S, V t−1(j, b) is bounded, monotone and PWLC
in b with a finite number of budget points. Define:

• the minimal (i.e., 0th) useful budget for action a at state i to be bi,ta,0 = cai , which gives value
vi,ta,0 = rai + γ

∑
j∈Sa

i
paijv

j,t−1
0 ;

• the mth useful budget, for 0 < m ≤ M∗i , to be bi,ta,m =
∑

`≤m p
a
i,j(`)∆b(`) which gives value

vi,ta,m = rai + γ
∑

`≤m p
a
i,j(`)∆v(`).

For any 0 < m ≤ M∗i , and budget level b falling between two consecutive useful budgets bi,ta,m−1 <
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Fig. 2: (a) VF for state j; (b) VF for state j′; (c) Q-function (future component) for action that reaches j with prob. p and j′

with p′ = 1− p.

b < bi,ta,m, let pi,t,ab =
b−bi,ta,m−1

bi,ta,m−bi,ta,m−1

. Define the Q-function for action a at stage t as follows:

Qt(i, a, b) =


undefined if b < bi,ta,0
vi,ta,m if b = bi,ta,m, for 0 ≤ m ≤M∗i
pi,t,ab vi,ta,m + (1− pi,t,ab )vi,ta,m−1 if bi,ta,m=1 < b < bi,ta,m, for 0 < m ≤M∗i
vi,ta,M∗i

if b > bi,ta,M∗i
.

We show that this Q-function indeed reflects the optimal value that can be extracted from any
action a at the given budget level b:

Theorem 3. The Qt(i, a, b) defined in Defn. 1 gives the maximal expected value that can be extracted
when taking action a at state i with available budget b with future value given by V t−1.

We provide a proof of Thm. 3 in the appendix.

Computing Value Functions Given the PWLC representation of the Q-functions, we can construct
a similar PWLC representation of the value function V t(i, b) = maxaQ

t(i, a, b). Intuitively, we
simply need to take the union of the points that determine each Q-function, and remove any dominated
points (much like in the case of the move from deterministic to stochastic policies). More precisely,
assuming a fixed state-stage (i, t), let Qa be the set of budget-value points in a’s Q-function, and
let Q∗ = ∪aQa be the union of of these points—we also annotate each point with the action from
which is was derived, so each annotated point has the form (b, v, a). We say that (b, v, a) is dominated
in Q∗ if there are two (different) points (b1, v1, a1), (b2, v2, a2) ∈ Q∗ such that b1 ≤ b ≤ b2 and
(1 − α)v1 + αv2 > v, where α = b−b1

b2−b1 . Removing all dominated points from Q∗ leaves the set of
points that form the useful budget levels in the PWLC representation of V t(i, ·). In other words, we
form the convex hull of Q∗. Intuitively, it is easy to see that no dominated point (b, v, a) is useful in a
stochastic policy, since a greater value can be attained, using the same expected budget, by α-mixing
between actions a1 and a2 (and spending the corresponding expected budgets).

The construction above shows that the finite-horizon VF for any fixed state is monotone, PWLC
in budget:
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Theorem 4. For any finite t and state i, V t(i, b) is piecewise linear, concave and monotone in b.

We omit the proof, as it is analogous that that describing the union of Q-functions in the determin-
istic case.

The PWLC representation of V t(i, ·) can be constructed using a variety of convex hull methods.
In our context, a basic Graham scan [25] is especially appropriate, since the budget points in the
Q-functions are maintained in sorted order. A Graham scan inserts these points in order of increasing
budget from the set of Q-functions into the PWLC representation of V t(i, ·). With the insertion of
the next point (bnew , vnew ), its BpB ratio is computed w.r.t. to the last budget point (blast , vlast) in
the VF prior to this insertion. If this new BpB is at least that of last budget point (i.e., vnew−vlastbnew−blast ≥
vlast−v2ndlast
blast−b2ndlast ), then we delete (blast , vlast) from VF. We repeat this process until the “new” last point
remains undeleted. The complexity of this procedure is O(|Q∗| log |Q∗|).

As in the case of deterministic policies, the number of useful budget levels can grow exponentially
in the horizon. In fact, the number of stochastically useful budget levels can be no greater than the
number of deterministically useful levels, since the set of potentially useful budgets and actions over
which randomization occurs is identical to the deterministic case; but it can be significantly less in
practice because stochastic domination can prune many more points. We immediately have:

Proposition 5. For any finite t and state i, V t(i, ·) has at most O((|A|d)t) useful budget levels, where
d is the maximum out-degree of the underlying MDP.

For infinite horizon problems, we may no longer have a finite number of useful budget levels.
However, the VF remains concave:

Theorem 6. For any state i, the optimal infinite-horizon value function V (i, b) is concave and mono-
tone in b.

This can be shown using a simple mixing argument (see proof in the appendix). Standard MDP
approximation bounds apply when using the finite-horizon approximation V t to approximate the
infinite-horizon VF. Let the Bellman error of V t be maxi,b≤Bmax V

t(i, b) − V t−1(i, b). Then we
have:

Observation 7. Let V t be the optimal t-stage VF for a BMDP have Bellman error ε. Then

max
i,b≤Bmax

V ∗(i, b)− V t(i, b) ≤ ε

1− γ
.

We note that the computation of Q-functions and VFs can be distributed rather easily for large
BMDPs by distributing the computation of V t for different states to different compute nodes. Com-
munication is needed of the final VFs only between consecutive stages.

4.4 Value Function Approximation

The complexity of determining the optimal VF is largely determined by the number of useful budget
points (i.e., the number of segments in the PWLC representation)—this is clearly evident from Prop. 5
and the algorithm outlined above. Fortunately, the VF can be approximated in a natural fashion by
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removing non-dominated points that are “close” to lying within the convex hull of the remaining
points. For instance, in Fig. 2(c), deletion of the second and third points, (pb1 + p′b′0, pv1 + p′v′0)
and (pb1 + p′b′1, pv1 + p′v′1), would result in a simpler Q-function with a single segment from (pb0 +
p′b′0, pv0 + p′v′0) to (pb2 + p′b′1, pv2 + p′v′1) replacing the three segments in the true Q-function.
It would however, closely approximate the true Q-function since the slopes (BpBs) of all deleted
segments are nearly identical. Similarly, deleting point (pb2 + p′b′2, pv2 + p′v′2) would induce very
little approximation error because it is very close to the following point (pb2 + p′b′3, pv2 + p′v′3) (even
if the adjacent BpBs differ significantly).

A simple pruning criterion can be added to the insertion step of the Graham scan used to construct
the convex hull. Without approximation, when inserting (bnew , vnew ) with BpB βnew , the last point in
the current VF—say, (bk, vk) with BpB βk—is deleted if βnew ≥ βk. To approximate the set, we can
instead delete this point if βnew ≥ βk − ε, with a given approximation tolerance ε. Assuming max-
norm error, which is the standard (and most useful) for MDP applications, this pruning introduces a
(one-shot) error in the VF of at most ε(bk − bk−1). In the recursive application of this pruning rule,
error accumulates at most additively: if a single insertion step results in s pruning steps, error is at
most sε(bk − bk−s), and exact maximum error can be computed easily. Since the error introduced
also depends on the length bk − bk−s of the segment being pruned (i.e., the difference in the budget
endpoints), we can also prune if the budget points are close. Thus we distinguish slope pruning and
length pruning: both criteria can be used, or pruning be dictated by the product, i.e., terminated when
this product bound reaches some threshold τ .

Once pruning is halted at a specific insertion step, any pruning at subsequent insertion steps in-
troduces independent error, since the VF is exact at any unpruned point. The overall error is bounded
by the maximum of the per-insertion-step introduced errors. If a maximum pruning tolerance of τ is
used while creating the VF, then total error in the finite-horizon VF can be bounded using standard
MDP approximation bounds:

Observation 8. Let V t be the optimal t-stage VF for a BMDP, and Ṽ t be the approximation produced
with a maximum pruning tolerance of τ . Then

max
i,b≤Bmax

V t(i, b)− Ṽ t(i, b) ≤ (1− γt)τ
1− γ

.

In practice, it is often useful to use aggressive pruning early in the DP process to get a crude ap-
proximation of the VF—essentially getting the VF in the right neighborhood while minimizing com-
putation by dramatically reducing the number of segments maintained in the PWLC VF representation—
followed by pruning with a much lower error tolerance for the final few iterations. This exploits the
contraction properties of Bellman backups to discount the error/impact of the early aggressive prun-
ing stages. For example, if V t is approximated using an aggressive pruning tolerance τhigh for the
first k stages and a much lower tolerance τlow for the final t− k stages, the bound in Obs. 8 becomes
(τhigh−τlow )(1−γk)+τlow (1−γt)

1−γ .As we show empirically in Sec. 4.7, this scheme can reduce computation
time significantly with little introduction of error.
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4.5 Policy Execution

The optimal value function V ∗ and policy π∗ for a BMDP allow one to easily assess the tradeoff be-
tween the expected budget one is willing to spend and the expected value one obtains by implementing
the corresponding optimal policy. For instance, given an initial state i0, the graph of V ∗(i0, b) can be
used to visually determine the “sweet spot” in spend (see Fig. 4 for examples). The PWLC representa-
tion of the VF can also be used directly to determine the maximum spend that achieves a certain ROI.
Finally, the VFs can be used to assess the budget-value tradeoff across different MDPs, or different
states of the same MDP (e.g., as occupied by different users). We return to this last point in the next
section.

Suppose we use the optimal value function V ∗ to determine the ideal level of (expected) spend b0
at some initial state of the MDP i0, with an expected return of V ∗(i0, b0). One method to determine
how to act is to use the BMDP model as a true constrained MDP, solving the CMDP with a fixed
budget of b0 (and initial distribution Pr(i0) = 1), and implementing the resulting policy. However,
this is wasteful since the BMDP solution embeds the optimal solution to this specific CMDP in its
solution.12

The execution of the BMDP policy π∗ is somewhat subtle however. Policy execution is not simply
a matter of taking the action distribution π∗(i, b) whenever the current state is i and b remains of
the initial budget (as would be typical of a stationary MDP policy). This is so because the optimal
value V ∗(i0, b0) is determined by a policy whose expected spend is b0—and achieving this value
sometimes requires spending more than b0. Specifically, the optimization in Eqns. 1 and 2 (whether
with deterministic or stochastic policies) generally assigns some future states a greater budget than
that actually remaining (i.e., greater than b0 − cai0) after taking the action a drawn from distribution
π∗(i0, b0), and some future states less. It is only the expected spend that must not exceed the remaining
budget. If the next state j is one whose “assigned budget” bj differs from b0 − cai0 , whether greater
or less, then we must execute action π∗(j, bj) in order to ensure we achieve the expected value of
V ∗(i0, b0).

Implementing this non-stationary policy requires that we maintain (at least, indirectly) some form
of “history” to identify the action-determining budget level at any state we could reach at each stage
of policy execution. Fortunately, this history is Markovian. Specifically, at the final stage of our DP
algorithm, when we compute V ∗(i, b) for each useful budget level b, we not only record its expected
value, but also record the mapping of the remaining budget b− cai to next states Sai . Thus for any state
i and any useful budget level b (with optimal action a), we record the budget assignment b to Sai that
maximizes expected future value in Eqns. 1 and 2 (again, this is only required at the final Bellman
backup for stationary policies).

We initiate policy execution, given starting state i0 and initial expected budget b0 in the usual way,
by determining the optimal action distribution π∗(i0, b0)—generally, this randomizes the choice of
expected budget b between two useful budget levels, and the corresponding action a. However, we
also note the choice of next-state budget assignment bj to each j ∈ Sai —if the next state reached
is j, we act as if budget bj is available, even if that exceeds the true remaining budget. The next

12This is an informal claim, unless the CMDP solution method admits non-stationary policies, since the optimal BMDP
policy will be non-stationary w.r.t. states (though not state-budget pairs).
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action chosen proceeds in the same way, executing π∗(j, bj). Thus the only history that needs to be
accounted for when selecting an action at state j is the budget assignment to j from the state at the
previous stage.

4.6 Variance in Spend

As noted above, the optimal policy π∗(i, b) that attains value V ∗(i, b) satisfies the budget constraint b
in expectation; but depending on the realization of state transitions, it may in fact spend more or less
than b. If we execute the policy many times, possibly initiating it a variety of different states (as in
our ad domain), such variance in will be unproblematic; but when executed in one or a small number
of instances, the actual variance in spend can be an important determinant in the budget allocation
process.

The variance in actual spend b associated with executing π(i, b) can, in fact, be computed within
the DP algorithm while the optimal VF is being constructed. Specifically, we can readily compute the
variance associated with the useful budget points determined at each stage of the DP algorithm (for
both Q-functions and VFs) and propagate these through Bellman backups. We describe the recursion
here briefly, and note that we need only compute variance at useful budget points (since variance at
intermediate points is derivable from these).

Beginning with 1-stage-to-go, we note that there is no variance in spend at the useful budget
points b in V 1(i, ·) (for any state i). Of course, for any budget point b that lies strictly between
useful points b1 < b < b2, the optimal 1-stage to go policy will randomize spend with probabilities
p, 1 − p (see Sec. 4.3 for the definition of the mixing probabilities), and hence has variance σ2i,b,1 =

p · (b1)2 + (1− p) · (b2)2 − b2. This latter variance term is useful if acting in a 1-stage process, but is
especially so when computing variance for the 2-stage VF.

Suppose we have recorded the variance σ2j,b,t−1 for the optimal t-stage-to-go VF V t−1 for each
state j and for each useful budget point b in V t−1(j, ·). As above, this allows us to compute the
variance for each intermediate budget point as well. Recall that any useful budget point b in V t(i, ·)
is given by an action a with cost cai and a mapping associating budget levels bj to each reachable next
state j. The spend at stage t− 1 is thus a mixture random variable, with each expected spend level bj
realized with probability paij , and the spend bj itself subject to its own variance.13 Thus the variance
of spend, whose expectation is Ci,t,b = cai +

∑
j∈Sa

i
paijbj , is that of a mixture distribution:

σ2i,b,t =
∑
j∈Sa

i

paij((bj)
2 + σ2j,bj ,t−1)− (Ci,t,b − cai )2.

4.7 Empirical Evaluation

We evaluate the effectiveness of our dynamic programming method on a selection of MDPs, and
measure the impact of approximating the PWLC value functions.

13We note that spend, hence the associated variance, at all j ∈ Sa
i will lie at one of j’s useful budget levels, with the

exception of at most one such j, for which the simple computation above for variance at an intermediate budget point may
be needed.
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Begin s1 s5s2 s3 s4

s6s9 s8 s7

s10s13 s12 s11

End

Search: s1: unint; s2: general int; s3: search1, s4: search2, s5:search3
Advertiser: s6: interest1; s7: interest2; s8: interest3, s9: conversion
Compt'r: s10: interest1; s11: interest2; s12: interest3, s13: conversion

Fig. 3: A Synthetic Ad MDP. Note that the “Begin” state reflects the beginning of a customer’s search process (and transi-
tions from it can be viewed as encoding a prior distribution over interest states). From an advertiser’s perspective, the MDP
for a specific customer can begin at any state of this process depending on when that customer became a target (when they
entered the ad network, when a targeted campaign began, etc.).

Synthetic Ad MDP We begin with evaluation of a small synthetic MDP that reflects the influence
of ads on product search behavior. The small size of the MDP allows a detailed examination of its
optimal VF and policy structure. The MDP Msynth , depicted in Fig. 3, consists of 15 states reflecting
various levels of customer interest in an advertiser’s product (or those of its competitors), and five
actions comprising various levels of advertising intensity (e.g., reflecting ad position or ad format),
including a zero-cost “no-op” (no advertising).14 It is assumed that competitor behavior is stationary.
Transitions representing “nominal” (stochastic) progress through the search funnel are shown in the
figure, with other stochastic transitions omitted for clarity. More intense ad actions are more costly, but
increase the probability of progressing in the funnel and developing specific interest in the advertiser’s
product (as opposed to those of competitors), and decrease the odds of regression or abandoning one’s
purchase intent (moving to the zero-cost absorbing/terminal state).

We solve the corresponding BMDP using a discount rate of 0.975 and a horizon of 50. We
use four methods with different degrees of approximation: exact (no pruning); mild pruning (slope
and length pruning set to 0.01); aggressive pruning (both set to 0.05); and hybrid (mild pruning for
45 iterations followed by exact computation for the final five stages). The following table shows the
average (and minimum, maximum) number of segments in the PWLC VF over the 15 MDP states15—
it is the number of segments that determines the (representational and computational) complexity of
the VFs—and computation time under each regime. For the regimes involving approximation, we also
show the maximum absolute and relative errors induced by the approximation (and the optimal value
at which the maximum error occurs). For calibration, we note that the optimal VF has an average
maximum value of 56.5 and an average maximum useful budget of 15.2 (excluding the terminal
states).

No pruning Mild Aggressive Mild then No
Segments 3066 (0–5075) 18.3 (0–47) 10.4 (0–26) 480.8 (0–877)

Max. Err. — 4.84 (26.61) 4.84 (26.61) 0.21 (58.77)

Max. Rel. Err. — 40.9% (4.24) 48.7% (1.54) 2.3% (0.55)

CPU Time (s.) 1055.4 17.54 10.36 28.67

14See Archak et al. [6] for further motivation for this type of model.
15The minimum is always 0 due to the absorbing and conversion states.
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Fig. 4: PWLC VFs for (a) state s1; (b) state s8.

We see that the optimal VF has a large number of segments per state (over 3000 on average, and
as many as 5000), but can be approximated quite well with very few segments. With aggressive and
mild pruning, the VF is very compact, but has reasonably large maximum error (4.84, which is 18%
rel. error at the point at which it occurs); the maximum relative error is also significant in each case
(from 41–49%), though it occurs at points with low value (hence corresponds to small abs. error).
The hybrid scheme that prunes during the first stages of DP, but then stops pruning for the last few
iterations, works very well—by exploiting the contraction properties of the MDP, we see that the
error associated with the initial pruning is almost entirely overcome by a final few iterations with
no approximation. This reduces the number of segments in the final VF by an order of magnitude,
and the computation time by nearly two orders of magnitude, while introducing very small maximum
absolute error (0.21, or about 0.36%) and maximum relative error (2.3%, or about 0.0013).16

Fig. 4 illustrates the form of the PWLC VFs for two representative states: s1, which occurs early
in the search funnel; and s8, a state indicating maximal interest in the advertiser’s product prior to
potential conversion. Recall that these VF curves, plotted for initial states or initial distributions,
make it possible to make budget-value tradeoffs and assess ROI prior to making actual allocations of
budget.

We note that the variance associated with the actual spend induced by the policy associated with
a specific budget level is quite high. This is to be expected given the inherent uncertainty in customer
behavior in this model.17 For instance, while maximal useful budget at s1 is 4.09, should a customer
reach s5, the maximal useful budget increases dramatically to 22.31. We discuss the impact of this
variance in further detail in the next section.

Advertiser MDPs We next consider two MDPs, of size ranging from roughly 1500 to half a million
states, with these states to derived from the contact data of a large advertiser. The data consists of

16CPU time is measured using a simple prototype implementation written in Python, executed on a Intel(R) Xeon(R)
3.5GHz CPU E5-1650 with 32Gb of RAM.

17For example, e.g., the probability of a customer moving to an abandon state from any other state is at least 0.05 under
any action (and up to 0.175 in several non-conversion states), at which point any allocated budget would not be used.
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sequences of cross-channel advertising touch points with specific users—each touch point is labeled
with a specific “channel” or contact event (e.g., display ad, email, paid search ad, direct navigation to
web site) or type of activity on the advertiser’s web site (including “transactions” or “conversions”).
There are a total of 28 event types in a data set of 3.6M trajectories comprising 10 million events.

From this data, we learn several variable-order Markov chain (VOMC) models [13, 37, 16] using
simple maximum likelihood estimation (MLE). These VOMCs predict the transitions induced by the
advertiser’s contact policy, based on a small sufficient history involving up to 10 of the preceding
events. The sufficient histories comprising each VOMC form the state space of a Markov chain over
histories (i.e., the states of the MDP are “event trajectories” of varying lengths). From these we derive
action-conditional transition models by substituting the end points of these sufficient histories with
one of a small number of “controllable” events and using the VOMC model for these altered histories
for action-conditional transition predictions. In all cases, we consider four actions (no-op, email, paid
search, display ad). We consider two different models: the first is a single VOMC model with a
maximum state-order of 10 and an average state-order of five. This induces an MDP with 481,582
states and actions. The second is a two-component mixture of much smaller VOMC models (with a
maximum state-order of three). We experiment with the first component, which has 1469 states.

We solve the corresponding budgeted MDPs for both models using the same horizon (50) and
discount factor (0.975) as above. The table below shows pruning level, number of segments, and
computation time for the 1469-state MDP using the same pruning strategies as above.18

No pruning (1469) Mild (1469) Aggr. (1469) Mild then No (1469)
Segments 251.5 (74–359) 234.2 (77–342) 25.6 (5–39) 76.84 (18–321)

Max. Err. — 5.13 (171.56) 28.88 (169.33) 3.94 (167.61)

Max. Rel. Err. — 2.99% (171.56) 12.32% (169.33) 2.35% (167.61)

CPU Time (s.) 19918.9 10672.5 1451.8 2390.0

As above, hybrid pruning proves to be most effective, reducing computation time by an order of
magnitude, while introducing a maximum relative error of only 2.35%. For the large model (481K
states), the BMDP was solved only with aggressive pruning (slope 2.0, length 0.1), and averaged about
11.67 segments per state and 1168s. per DP iteration.

5 Budget Allocation across MDPs

We now consider the problem facing an advertiser with a (roughly) fixed budget and a specific set
of target customers, each of whom occupies the state of some underlying MDP. As discussed above,
while this could be viewed as a large joint MDP, the per-user MDPs exhibit almost complete indepen-
dence: given a specific joint action a, the transitions and rewards of one user have no impact on—and

18Given the large branching factor and small transition probabilities in these MDPs, the number of segments without
pruning blows up quickly—indeed, after as few as 12 DP steps, many states have many thousands of segments with length
on the order 10−6 (i.e., making inconsequential budget distinctions on the order of millionths of dollars); so the “no pruning”
optimal benchmark in fact uses slope/length pruning of 0.001/0.0001 for 20 iterations and 0.01/0.001 for 30. Aggressive
is slope/length = 0.2/0.01; mild is 0.02/0.001.
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provide no information about—those of another. Indeed, the sub-MDPs are linked only by the budget
constraint: the action taken in one sub-MDP may limit the ability to take an action in another (concur-
rently or in the future) by consuming budget. In this sense, the problem is a weakly coupled MDP [32].
As a consequence, we apply the same general decomposition method of [32] to solve the joint MDP:
we solve the sub-MDPs offline, and compose their solutions online. However, because of differences
in the structure of the sub-MDP solutions, we handle the online composition phase differently.

5.1 Offline Decomposition

Our approach to decomposition is straightforward. We first solve each single-user sub-MDP, 〈S,A, P, U,C, γ〉,
as a budgeted MDP with a some natural per-user maximum budget Bu.19 For ease of exposition, we
will proceed as if there is only one user type, so each user behaves (e.g., responds to ads) according to
the same dynamics; this means there is only one user MDP, with one user distinguished from another
only by the MDP state they occupy. In such a case, there is only a single BMDP to solve.20

The solution of the BMDP gives an optimal single-user policy π and value function V spanning
all s ∈ S and b ≤ Bu. Both π and V indicate the action choice and value as a function of the budget
available to be spent (in expectation) on that user alone. We take advantage of this when solving the
joint MDP below. Indeed, it is for this reason that we do not solve the user MDP as a constrained
MDP: such an approach would fail to indicate the value of allocating varying levels of budget to users
in different states.

5.2 The Budget Allocation Problem

Suppose the initial (or current) state of the joint MDP with M customers is s = 〈s[1], · · · s[M ]〉 and
our available budget is B. A natural way of exploiting the offline solution of the BMDP is to allocate
some portion b[i] of the budgetB to each customer i ≤M to optimize the sum of expected values v[i]
obtained from each i given optimal engagement with i given an expected budget of b[i]. Specifically,
define the budget allocation problem (BAP) to be:

max
b[i]:i≤M

∑
i≤M

V (s[i], b[i]) subj. to
∑
i≤M

b[i] ≤ B, (3)

where V is the optimal value function for the underlying BMDP.
Intuitively, the BAP determines an allocation b∗ = 〈b∗[1], . . . , b∗[M ]〉 that maximizes the ex-

pected value of committing a specific (expected) budget b∗[i] to customer i. If we implement the
corresponding optimal policy for each such user, then by linearity of expectation, we obtain the ex-
pected value given by the optimal solution to the budget allocation problem, and have an expected
spend no greater than B:

19Bu, the maximum profitable spending level for a single user, is much less than the global budget B and can be de-
termined using a variety of techniques. This upper bound can omitted if future budget spend is discounted in the budget
constraint, since the BMDP solution will find natural caps regardless.

20More broadly, if there a multiple user types, there will be a single BMDP per type—the solution does not depend on
the number of customers. The extension of our algorithm below to multiple types is straightforward.
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Observation 9. Let V be the optimal VF and π the optimal policy for the user BMDP. Let b be the
optimal solution to the budget allocation problem. Then the joint (non-stationary) policy π(s) =∏
i π(s[i], b[i]) has expected value

∑
i V (s[i], b[i]) and expected spend

∑
i≤M b[i] ≤ B.

We cannot ensure that this policy is truly optimal for the joint MDP, since this decomposed policy
does not admit recourse in the execution of one user’s MDP that depends on the realized outcome of
some other user’s MDP. For instance, consider a trivial two-user joint MDP, with one user beginning
in state s1, the other in s2. Suppose the optimal allocation b1, b2 exhausts the global budget B, but
does not hit the maximum useful budget in s2 (i.e., b2 would have been greater if b had been larger).
Suppose user 1 reaches a state s′, prior to consuming all of b1, in which the optimal policy (in the
single-user MDP) spends nothing further. The expected value of the BAP solution does not consider
that the unused budget could profitably be applied to user 2. With no ability to reallocate, should user
2 be in a state where this additional budget would prove useful, persisting with original allocation of
b2 is suboptimal from the perspective of the joint MDP.

For MDPs with large numbers of customers, or where the variance in the spend induced by the
local (per-user) policy is low, the impact of this form of suboptimality will be small. However, as we
discuss below, repeated online reallocation of budget can largely overcome this potential suboptimal-
ity in practice, even in joint MDPs with a small number of users. In our example above, reallocating
the remaining budget from user 1 to user 2 would improve the quality of the (implicit) joint policy.21

We now discuss the optimization of Eq. 3, the budget allocation problem. This can be viewed as
a (multi-item variant of the) multiple-choice knapsack problem (MCKP) [40]. In the classic MCKP,
we are given M classes of items, with each class i containing ni items. Each item j has a profit pj
and weight wj , and we have a knapsack with capacity C. The goal is to select a set of items, one
from each class, with maximum profit, such that the total weight does not exceed the capacity of the
knapsack.

The budget allocation problem can be viewed similarly. Let B∗j be the finite set of (stochastically)
useful budget levels at state j in the PWLC representation of V (j, ·).22 We assume that the points
β0j , · · · , βLj in B∗j are indexed in increasing order (i.e., βkj < βk+1

k ). (To reduce the the number of
indices we write as if all useful budget sets have the same size m.) For any user i, let B∗[i] = B∗s[i]
and βik = βks[i].

We first consider the useful-budget assignment problem (UBAP) in which each user i must be
assigned a useful budget level from the discrete set B∗[i] (we will relax this constraint below). The
UBAP is exactly an MCKP: each user i can be viewed as an item class for whom exactly one budget
level must be chosen from the set of items B∗[i] in that class. The “weight” of an item b ∈ B∗[i]
is b (i.e., the amount of the budget it consumes); and the profit of assigning b to i is V (s[i], b). The
capacity is the global budget B, so total “weight” (i.e., total budget assigned) cannot exceed B. We
can also view this as a multi-item version of MCKP since we have multiple “copies” of the same
class—specifically, all users in state j have exactly the same items (i.e., weights/budget levels and
profits/value V (j, ·)) in their corresponding classes.

21While this reallocation can only improve overall quality, it still does not ensure optimality—the optimal joint policy
may well induce a different behavior w.r.t. user 2 even prior to this reallocation in anticipation of this (stochastic) occurrence.

22We restrict attention to finite B∗j (in infinite horizon cases, we use a finite horizon, possibly pruned, approximation).
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MCKP can be solved in pseudo-polynomial time by dynamic programming, but can also be for-
mulated as an integer program (IP) and solved directly using IP solvers. Treating each user as a
distinct item class, let xik be a binary variable indicating that user i has been allocated the kth useful
budget level βik from the set of useful budget levels B∗[i]. The MCKP IP for the budget allocation
problem is:

max
xik

∑
i≤M

∑
k≤L

V (s[i], βik)xik (4)

subject to
∑
i≤M

∑
k≤L

βikxik ≤ B (5)

∑
k≤L

xik = 1, ∀i ≤M (6)

xik ∈ {0, 1} (7)

This IP is quite large, requiring O(ML) integer variables (where L bounds the number of useful
budget levels for any state). The problem can be simplified considerably by treating all users in the
same state identically, reducing the number of integer variables to O(NL) by multiplying the value
of a budget allocation to a state by the number of users in that state. In the UBAP (where we insist
on assigning useful budgets), this incurs a potential loss of optimality, but this can be overcome as we
discuss below.23

Fortunately, the linear programming (LP) relaxation of this IP has considerable structure, allowing
approximately optimal solutions to the discrete UBAP to be found in polynomial time with a simple
greedy algorithm. More importantly, this relaxation induces optimal solutions to the original BAP
(Eq. 3). Specifically, the LP relaxation of UBAP can readily be viewed as allowing the stochastic
choice of discrete budget allocations to users (or states if we aggregate users that lie within the same
state). This is equivalent (w.r.t. expected value) to assigning a user some arbitrary (non-useful) budget
point equal to the expected budget given the randomized discrete assignment. Indeed, a minor adap-
tation of the analysis of Sinha and Zoltners [40]—and their greedy algorithm for the LP relaxation of
MCKP—to our BAP shows that any randomization will only occur between two consecutive useful
budget levels, exactly as in the optimal policies for BMDPs.

Consider the LP relaxation of the IP Eq. 4 and its optimal solution, which gives a (potentially
fractional) assignment of budget levels to user i in state s[i] = j. We claim that this optimal allocation
to any user i is either integral (i.e., assigns a useful budget level to i), or is a mixture of two consecutive
budget levels, in which case the expected budget bi and expected value vi corresponds to a point on
the convex hull of the useful points. In other words, it lies on the PWLC VF V (i, ·). This implies that
the optimal solution of the LP relaxation of the discrete UBAP is an optimal solution to the true BAP.

Proposition 10. The optimal solution to the LP relaxation of the IP formulation Eq. 4 of UBAP is such
that, for each i: (a) xik = 1 for one value of k; or (b) there is some k such that only xik, xi,k+1 > 0
(i.e., only two budget levels are allocated, and they must be consecutive).

23The suboptimality arises because, at the “edges” of the global budget, the optimal UBAP solution generally needs to
treat some users in a class differently if we do not have enough budget to treat them all the same. This happens in at most
one class, as we discuss below.
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The proof of this proposition follows very closely the analysis of Sinha and Zoltners [40] for
general MCKP (but we provide a proof sketch in the appendix for completeness). Intuitively, this
must be the case since the integral allocation of a single budget point, or the fractional allocation
of (exactly) two consecutive budget points, to a user gives an expected value that lies on the PWLC
VF. Any non-degenerate mixture involving any two non-consecutive points (including any mixture of
three or more points) with the same expected budget consumption has an expected value dominated by
the VF, due to its “strict” concavity across budget points. As a consequence, we immediately obtain:

Corollary 11. The optimal solution to the LP relaxation of UBAP is an optimal solution to the budget
allocation problem BAP.

The structure of the LP relaxation of MCKP is very valuable. Sinha and Zoltners [40] show that
a simple greedy algorithm can be used to solve the relaxation, hence the same greedy algorithm can
be used to solve the relaxation of UBAP, Eq. 4, and hence our original BAP. We briefly outline the
algorithm, which we call greedy budget allocation (GAB).

For each state sj , and each 1 ≤ k ≤ L, we define the bang-for-buck ratio exactly as we did above
when constructing VFs:

BpB jk =
V (sj , βjk)− V (sj , βjk−1)

βjk − βjk−1
.

As before, this expresses the per-unit budget increase in value associated with increasing a user’s
(discrete, useful) budget from βj,k−1 to βjk. GBA assigns budget incrementally to each user in the
order given by the BpB ratio. Initially each i in state s[i] = sj is assigned a budget of βj0 = 0,
and the remaining budget is set to B (our budget constraint). At any stage of GBA, let b denote the
unallocated budget, let βj,ki be i’s current allocation and i’s current ratio to be BpB [i] = BpB jki+1.
Let i∗ be any best user, with maximum ratio BpB [i]. If sufficient budget remains, we increase i’s
allocation from βj,ki to βj,ki+1, then update both i’s ratio and the remaining budget (decrease it by
βj,ki+1 − βj,ki). We continue until the remaining budget is less than βj,ki+1 − βj,ki . At that point, we
allocate the remaining budget “fractionally” to the best user i, assigning it the lower amount βj,ki with

probability p and the higher amount βj,ki+1 with probability 1 − p. Setting p to be
(βj,ki+1−βj,ki )−b
(βj,ki+1−βj,ki )

ensures that the “expected” budget allocation to i is βj,ki + b.
It is not hard to show that GBA will find the optimal solution to the LP relaxation of the IP in

Eq. 4 [40]. More precisely, for any user i in state sj , apart from the one allocated fractionally at the
last stage, we set xik = 1 iff βjk was the final allocation to i. For the user allocated at the last stage,
we set xik = p and xik+1 = 1 − p. Thus we see the optimal solution is purely integral except for
(possibly) two fractional variables consisting of positive assignment to two adjacent budget levels for
a single user.

As mentioned above, we can optimize GBA by aggregating all users that are in the same state
and increasing all of their budgets at once. If the remaining budget is insufficient, we do this for the
greatest number of users from that class who can be increased fully to the next budget level (chosen
arbitrarily), and the fractionally allocate one last user via the process above.24 Fig. 5 details GBA,
exploiting this aggregation.

24In terms of expected value, it is equivalent to fractionally assign all users in this class in a way that satisfies the expected
budget constraint. The approach described simply involves less randomization.
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1: Input: Budget B; Value function V ; Non-dominated budget set B∗j = {βj0, . . . , βjL}, j ≤ N ; Bang-per-
buck ratios Rjk, j ≤ N, k ≤ L; User count Cj , j ≤ N ;

2: b← B . remaining budget
3: kj ← 0 , ∀j ≤ N . Index of budget level allocated to all users in state j; initially allocated βj0 = 0.
4: Rj ← Rjkj+1, ∀j ≤ N . Bang-per-buck ratio of users in state j at current allocation.
5: J ← argmaxj Rj . State with largest BBP.
6: while b ≥ CJ(βJkJ+1 − βJkJ

) do
7: b← b− CJ(βJkJ+1 − βJkJ

) . decrease remaining budget
8: kJ ← kJ + 1 . increase budget allocation to every user in state J
9: RJ ← RJkJ+1 . Update J’s BBP.

10: J ← argmaxj Rj . Update state with largest BBP.
11: end while
12: Assign budget βjkj

to all users in state j, for all j 6= J
13: m← bb/(βJkJ+1 − βJkJ

)c . m = 0 if insufficient budget to move some user to next budget level.
14: Assign budget βJkJ+1 to m arbitrary users in state J .
15: b← b−m(βJkJ+1 − βJkJ

)
16: Assign to an m + 1st arbitrary user in state J budget βJkJ+1 with probability b/(βJkJ+1 − βJkJ

), and
budget βJkJ

with probability (βJkJ+1 − βJkJ
− b)/(βJkJ+1 − βJkJ

) . If b = 0, then βJkJ
is assigned

with probability 1.
17: Assign budget βJkJ

to the remaining CJ −m− 1 users in state J .

Fig. 5: The greedy budget allocation (GBA) algorithm.

The GBA algorithm can easily be extended to account for the stochastic arrival of customers of
various types, or at various states. Given a global budget constraint, some of the budget should be
“allocated” and set aside to account for new arrivals. We defer details to a longer version of the paper.

5.3 Empirical Evaluation

We test the effectiveness of GBA on the synthetic and advertiser-based BMDPs described in Sec. 4.7.
We assess the expected spend and expected value of the resulting “implied” joint policies, as well as
the variance in spend and how often it exceeds the global budget (since budget constraints are satisfied
in expectation only).

We consider two ways of implementing policies induced by the solution of BAP. The first joint
policy is the BMDP policy, where once the BAP allocation b[i] is made to each user i, we implement
the corresponding BMDP policy starting at state s[i]—recall that this ensures that the expected spend
does not exceed b[i], but doesn’t guarantee this constraint won’t be violated for any specific user. The
second is the static user budget policy (SUB): once the BAP allocation b[i] is made to each user i, we
implement the first action a in the BMDP policy at s[i]; but once we move to the next state, we take
the optimal action as if we only had that user’s remaining budget, essentially ignoring the next state
budget mapping from the BMDP policy, and limiting ourselves to using i’s “actual” budget b[i]−c(a)
at the next state. The remaining budget is updated at each stage to reflect the cost of the action just
taken. Apart from the risk of some small overspending due to c(a), this policy will recalibrate the
actual spend to minimize the odds of overspending b[i].

One important value of solving BMDPs and using GBA to allocate budget is that it allows one
assess the tradeoffs when allocating budget to different users in different states (or in different MDPs).
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Without the budget-dependent value function, these tradeoffs can only be made heuristically. An
alternative allocation scheme when the BMDP has not been solved is to simply apportion the global
budget equally across all users, an approach we dub uniform budget allocation (UBA). Once the budget
is allocated, one could in principle solve the induced constrained MDP (one per occupied user-state)
and implement that policy. We can simulate this process by using UBA and then implementing the
BMDP policy given this uniform allocation.

Synthetic Ad MDP We begin with the synthetic MDP, adopting a basic setup with 1000 customers
starting in the initial state s0. The following table shows the expected value obtained by three different
policies (we explain DBRA below) for four different global budgets:

Total Budget BMDP Value DBRA Value SUB Value
1000 8209.9 8578.8 (830.5) 4106 (707)

2000 10,905 11,019 (964) 4429 (825)

5000 15,692 15,658 (1239) 5270 (830.5)

10,000 18,110 17,942 (—) 6329 (1159)

The BMDP value shown is the true expected value of executing the optimal BMDP policy for each
user. The SUB values are estimated by executing the policy for all 1000 users, averaged over 100 trials
(with sample std. dev. also shown). Using the optimal BMDP policy has a considerable advantage over
selecting a static budget per user and not allowing that budget to be exceeded, yielding 2-3 times the
return.25

The expected value under BMDP also show a clear pattern of diminishing return with increasing
budget. Indeed, our MCKP-based GBA method allows one to rapidly assess the value of optimally
using different global budgets to find the “sweet spot” in spend. Fig. 6 illustrates the budget-value
tradeoff (or sweet spot curve) for this MDP at 16 budget points (from 0 to just above the maximally
useful budget). With the BMDP solution in hand, generating this tradeoff curve requires just 16 runs
of GBA.26

As discussed earlier, the optimal BMDP policy for this MDP has consider variance in spend.
In one run of 1000 customers at initial state s0, each given an initial budget allocation of $10 (just
under s0’s maximal useful budget of 11.77), the average spend of 10.012 is very close to the expected
spend; but the sample standard deviation is 15.24. Indeed, with an initial budget of $10/user at s0,
the empirical odds that the spend on any single user exceeds the budget is 32.7%, and the odds of
exceeding it by at least 50% is 28.7%. This alone explains the poor performance of the SUB allocation
policy—by “capping” the spend per user, rather than allowing it to vary around a target expected
value, SUB forces the abandonment of the optimal BMDP policy if the required actions have spends
that push on over the cap.

Even across a large user population, because of the inherent variance in the spend associated with
the optimal BMDP policy, there is always some risk that the global budget constraint will be exceeded.
This risk is greater when the number of customers being addressed is small and the variance in the
optimal policy is large, and is much less so for large populations. But even in the synthetic BMDP

25Note that the expected values are discounted and incorporate the actual budget spent (i.e., reflect reward less cost).
26The greedy algorithm averages 1.47ms. to compute the optimal allocation at each budget point.
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Fig. 6: A plot of global budget (x-axis) and expected value (y-axis) tradeoffs (1000 users). The flat tail demonstrates that
the maximal useful budget has been reached.

results above with 1000 users, the global budget is exceeded in 13 of 30 trials, in 5 instances by over
3%, with the largest overspend exceeding the budget by 11.7%.

Dynamic Budget Reallocation One way to alleviate the risk of overspending is through dynamic
budget reallocation (DBRA). Rather than committing to the optimal BMDP policy for each user given
their initial budget allocation (as SUB does), we reallocate the remaining budget at each stage relative
to the current state of each user. More precisely, at each stage of the process, given the current joint
state s = 〈s[1], . . . , s[M ]〉 and remaining budget B, we: we: (a) solve the BAP to determine an
allocation b[i], i ≤ M given (s, B); (b) execute the action π(s[i], b[i]) prescribed by the optimal
BMDP policy for each i, incurring the cost of each such action; and (c) observe the resulting state s′

and remaining budget B′ and repeat. This approach closely follows that of Meuleau et al. [32].
This approach has the advantage of (virtually) guaranteeing that the global budget B will not

be overspent (if the BMDP policy randomizes, there may be a small chance of some small budget
violation). It also has the benefit of implementing a form of recourse—should the initial budget
allocated to some user no longer be useful due to, say, a transition to an unprofitable state, that budget
can be effectively reallocated to a more profitable user (conversely, budget can be reclaimed for a user
who makes an unlikely transition to a profitable state). The DBRA column in the table above shows
the performance (over 100 trials) of this strategy. In each trial the global budget constraint is satisfied,
yet the average return matches or exceeds the expected value of the BMDP policy, which attains its
value at the (typically small) risk of violating the budget constraint. Indeed, in the case of the very
constrained budget (1000), DBRA appears to offer the additional advantage of reallocating budget to
more promising customers over time. It is unsurprising that reallocation helps most when budgets are
tightly constrained, since many customers will be lacking the budget needed to exact a high value in
the initial allocation, but can benefit from the budgets gradually freed-up from others.

We also compare GBA to uniform budget allocation (UBA), which seems to be the most reason-
able alternative if one does not have access to the BMDP solution. We do the comparison on the same
MDP, but with 1000 customers uniformly spread among the 12 non-terminal, non-conversion states
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Fig. 7: Budget-value tradeoffs for (a) 451K-state BMDP; (b) 1469-state BMDP. Both are for 1000 customers evenly dis-
tributed over the 50 states with the largest value gaps.

(the methods will obviously be identical in the setting above, where all customers begin the process
in the same state). The table below shows (exact) expected value of GBA and UBA (where the opti-
mal BMDP policy is then implemented given the corresponding budget allocations) for several global
budgets.

Total Budget GBA Value UBA Value
1000 39818.6 36997.2
2000 44559.5 40311.8
5000 53177.7 47142.4

10,000 58356.8 53773.8

We see that using the optimal BMDP solution to make budget tradeoffs among customers in different
states offers significantly greater value than using a uniform scheme.

Advertiser MDPs We also examine the results of applying GBA on the advertiser-based MDPs
described above. We first use GBA to derive “sweet spot” curves for both advertiser MDPs. In each
case, we assume 1000 customers, with 20 customers each entering the process in the 50 states with
the largest “value spans” (i.e., difference in expected value at the state given the minimal and maximal
useful budget). Fig. 7 shows the budget-value tradeoff for both MDPs.

These MDPs model behavior that is quite random (i.e., not influenced very strongly by the ac-
tions).27 As a consequence, once the GBA algorithm is run, there is not a great difference between
implementing the BMDP policy, or implementing the SUB policy (as discussed above) with users at
these states. The table below shows results for the large, 451K-state BMDP for two fairly constrained
budget levels (DBRA, SUB are averaged over 50 trials, BMDP and UBA values are exact expected
values).

27Indeed, since a large fraction of the states (about 75%) have no-ops as optimal actions at any budget level, maximal
useful budgets tend to be relatively small.
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Fig. 8: Difference in expected value obtained by GBA (blue solid line) vs. UBA (green dashed line); 481K states, 1000
customers.

Total Budget BMDP Value DBRA Value SUB Value UBA Value
15 113358 99236 (3060) 112879 (1451) 106373
25 157228 142047 (3060) 157442 (2589) 149175

Neither BMDP or SUB exhibits much variance in spend and both give similar expected values; and
the SUB policy rarely overspends (e.g., the maximum overspend for SUB with B = 25 is 0.16%).
Variance tends to be greater when budgets are tighter. Among the 50 BMDP trials, 14 instances exceed
the global budget, though only four instances exceed the spend by more than 4.0% (and one does so
by 8.6%). As above, the dynamic reallocation scheme can eliminate the risk of overspending, but has
little effect in this instance (indeed, we see it has a negative impact on expected value).

The table also shows that GBA offers greater expected value than UBA (which is one of the only
viable options if the BMDP has not been solved). Fig. 8 shows the expected value of both GBA and
UBA for a range of reasonably constrained global budgets. GBA exceeds UBA by up to 6.5% in this
budget range.

6 Concluding Remarks

We have addressed the problem of budget (or other resource) allocation in MDPs in a way that allows
budget-value tradeoffs to be addressed effectively. Our first contribution was the formulation of bud-
geted MDPs, an alternative view of constrained MDPs that allows value to be derived as a function of
available budget (as opposed to fixing a specific budget constraint). We characterized the structure of
optimal VFs and developed a DP algorithm that exploits the PWLC form of these VFs. We showed
how this method can be approximated and how the results can be used to discover the sweet spot in
the tradeoff between value and expected budget used (or other resources).

Our second contribution was a method for exploiting the solution to a BMDP to allocating budget
across a variety of independently operating processes. Casting the problem as a multi-item, multiple-
choice knapsack problem, we showed how a simple greedy algorithm can be used to rapidly optimally
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allocate budget in a “committed” fashion. We also demonstrated that dynamic reallocation of budget
over time can reduce the risk of exceeding the expected budget (and could in some circumstances
offer a form of recourse that improves overall return).

The extension of our methods to account for dynamic user populations is straightforward, but
warrants empirical investigation. Future work includes the further study of and experimentation with
our algorithms on richer models of user behavior. We are also interested in extending our models
to partially observable settings (e.g., where user type estimation based on behavioral observations is
needed).
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A Appendix: Proofs of Main Results

We provide proofs of the main results in this appendix.

Proposition 1. For any finite t and state i, V t
D(i, ·) has a finite number of useful budget levels.

Proof. We refer to Section 4.2, including the algorithm for computing useful budget levels and piece-
wise constant VFs, for relevant definitions. The proof is a simple inductive argument that, for any
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i ∈ S, V t
D(i, b) is piecewise constant in b with finite number of useful budget levels whenever V t−1

D

is. As a base case, it is easy to see that this holds for V 0
D(i, b) = ui for all b.

Assume this holds for V t−1
D , and for ease of exposition, assume that each state j has M + 1 useful

levels bj,t−10 , . . . , bj,t−1M . We first show that QtD(i, a, b) is finite and piecewise constant in b ≥ cai . Let
Σa
i be the set of mappings from Sai into {0, 1, . . . ,M}, where σ(j) = m denotes the optimal use of

(expected) budget level bj,t−1m if state j is reached with t−1 stages to go after taking action a at state i.
This gives an expected value of vj,t−1m . Hence the expected value of doing a followed by implementing
σ is EV (a, σ) = rai + γ

∑
j p

a
ijv

j,t−1
σ(j) and has expected cost EC (a, σ) = cai + γ

∑
j p

a
ijb

j,t−1
σ(j) .

We claim that the (potentially) useful budget levels for (i, a, t) are only those of the form EC (a, σ).
Suppose to the contrary that some b, distinct from these, is useful for (i, a, t); note that b ≥ cai since
action a cannot be taken otherwise. This means that there is an expected spend vector b = (bj)j∈Sa

i

at stage t − 1 such that: (a) the total expected spend EC (a,b) = cai + γ
∑

j p
a
ijbj ≤ b and ex-

pected value is EV (a,b) = rai + γ
∑

j p
a
ijV

t−1
D (j); and (b) there is no σ with EC (a, σ) ≤ b and

EV (a, σ) ≥ EV (b). Let σ′ be the “tightest lower bound” on b, i.e., the unique σ′ ∈ Σa
i s.t., for all j,

bj,t−1σ′(j) ≤ bj and bj,t−1σ′(j)+1 > bj (if bj ≥ bj,t−1M , we waive the second condition). Since V t−1 is piecewise
constant, it follows immediately that EV (a, σ′) = EV (a,b) at state i. But EC (a,b) ≥ EC (a, σ′)
at i, contradicting the existence of a distinct useful budget level.

The correctness of the algorithm for pruning dominated budget levels in the representation of
Qt(i, a, b) is easily seen: the budget level for mapping σ is pruned iff there is some σ′ where EC (a, σ′) ≤
EC (a, σ) and EV (a, σ′) ≥ EV (a, σ). Since the highest-valued such mapping σ′ can be realized after
taking a with lower expected cost than σ, the Q-value for a at budget level b is given by the mapping
with highest value with cost EC (a, σ′) ≤ b.

Since V t(i, b) = maxaQ
t(a, i, b), the finiteness of useful budget levels for V t(i, ·), and its piece-

wise constant nature, follows immediately from the finiteness of the action set A. And the correctness
of the pruning phase of the algorithm holds by the same reasoning given above for pruning the Q-
function.

Proposition 2. For any finite t and state i, V t
D(i, ·) has at most O((|A|d)t) useful budget levels, where

d is the maximum out-degree of the underlying MDP.

Proof. Since action choice at any state i can be conditioned on the budget, potentially different deci-
sions can be made at state i at each stage-to-go h ≤ t within the horizon t. Thus the set of all t-stage
non-stationary policies determines all possible behavioral choices, and each non-stationary policy has
a unique expected cost (i.e., determines a potentially useful budget level) for (i, t). The number of
non-stationary policies of depth t rooted at state i is |A|D where D is the number of distinct decision
points in a depth t policy tree; and D =

∑t
h=1 d

h = dt+1

d−1 − 1 = O(dt). The result follows.

Theorem 3. The Qt(i, a, b) defined in Defn. 1 gives the maximal expected value that can be extracted
when taking action a at state i with available budget b when future value given by V t−1.
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Proof. Let b be the allocation of budget b−cai after taking a at i (i.e., budget remaining) to next states
Sai as determined by the greedy allocation outlined in Defn. 1. If the greedy algorithm determines
a suboptimal Q-value for (i, a, b), there must be an allocation b′ 6= b s.t.

∑
paijb

′
j ≤ b − cai , where

EV (b′) > EV (b). This means bj < b′j and bk > b′k for some j, k ∈ Sai . For ease of exposition,
assume that the allocations differ only on these two next states (generalizing to multiple next states is
straightforward). We can assume w.l.o.g. that

∑
j p

a
ijbj =

∑
j p

a
ijb
′
j , hence that δ(k) = bk − b′k and

δ(j) = b′j − bj satisfy δ(j) =
paik
paij
δ(k) (i.e., we obtain b′ by shifting budget from state k to state j at

rate paik
paij
δ(k)).

Recall that B(Sai ) denotes the (sorted) set of budget points over all successor states of i in V t−1.
Let mj denote the index of the segment of V t−1(j, bj) in which bj lies, and similarly for mk; i.e,
bj,t−1mj−1 < bj ≤ bj,t−1mj and bk,t−1mk−1 < bk ≤ bk,t−1mk . Notice that the greedy algorithm must allocate
budget to at least one of j or k that satisfies the upper bound with equality (only one state in Sai
can have budget different than one of its useful budget points). We prove the result for the case of
bj = bj,t−1mj and bk = bk,t−1mk ; the arguments when either bj or bk differs from the end point of its
segment is analogous.

Suppose δ(j) ≤ bj,t−1mj − bj,t−1mj−1 and δ(k) ≤ bk,t−1mk+1 − b
k,t−1
mk . Then the loss in future value by

removing δ(j) from the budget available at j at stage t− 1 is

paij · BpB(bj,t−1mj−1) · δ(j),

while the gain from adding δ(k) to k’s future budget is

paik · BpB(bk,t−1mk
) · δ(k).

Since segmentmj−1 was added to b by the greedy algorithm, butmk was not, we know BpB(bj,t−1mj−1) ≥
BpB(bk,t−1mk ).

The difference in expected value between b and b′ is solely due to the lesser allocation to state j
(in b relative to b′), Loss(δ(j)), and the greater allocation to k, Gain(δ(k)). Thus:

Loss(δ(j)) = paij · BpB(bj,t−1mj−1) · δ(j)

≥ paij · BpB(bk,t−1mk
) · δ(j)

= paij · BpB(bk,t−1mk
) ·
paik
paij
· δ(k)

= BpB(bk,t−1mk
) · paik · δ(k)

= Gain(δ(k)).

This contradicts the claim that EV (b′) > EV (b).
If δ(j) reduces the j’s budget below the preceding budget point, the loss per unit budget decreases

is even greater due to the PWLC nature of the value function; similarly, if δ(k) increases k’s budget
greater than the next budget point, the per-unit gain is even less.
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Theorem 4. For any finite t and state i, V t(i, b) is piecewise linear, concave and monotone in b.

Proof. The proof is analogous to that for deterministic policies.

Proposition 5. For any finite t and state i, V t
D(i, ·) has at most O((|A|d)t) useful budget levels, where

d is the maximum out-degree of the underlying MDP.

Proof. This follows directly from Prop. 2.

Theorem 6. For any state i, the optimal infinite-horizon value function V (i, b) is concave and mono-
tone in b.

Proof. We provide a simple proof sketch. For monotonicity, suppose by way of contradiction that, for
some i and b′ > b, we have V (i, b) > V (i, b′). Since any policy that realizes V (i, b) with an expected
spend of b can be implemented at state i with budget b′, this is not possible.

For concavity, suppose by way of contradiction that, for some i, there exist three budget points
b1 < b2 < b3, with b2 = αb1 + (1 − α)b3 for some α ∈ (0, 1), s.t. V (i, b2) < αV (i, b1) + (1 −
α)V (i, b3). Let V (i, b1), V (i, b3) be realized by policies π1, π3, respectively. Since the policy that
mixes these two policies with probabilities α and (1 − α), respectively, has expected value greater
than V (i, b2) but uses an expected budget of b2, this contradicts the hypothesized non-concavity.

Proposition 10. The optimal solution to the LP relaxation of the IP formulation Eq. 4 of the budget
allocation problem is such that, for each i: (a) xik = 1 for one value of k; or (b) there is some k such
that only xik, xi,k+1 > 0 (i.e., only two budget levels are allocated, and they must be consecutive).

Proof. The proof follows that of [40]) and is omitted.
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