
API Design Reviews at Scale

Andrew Macvean
Google Inc.
amacvean@google.com

Martin Maly
Google Inc.
mmaly@google.com

John Daughtry
Google Inc.
daughtry@google.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
CHI’16 Extended Abstracts, May 07-12, 2016, San Jose, CA, USA
ACM 978-1-4503-4082-3/16/05
http://dx.doi.org/10.1145/2851581.2851602

Abstract
The number of APIs produced by Google’s various busi-
ness units grew at an astounding rate over the last decade,
the result of which was a user experience containing wild
inconsistencies and usability problems. There was no sin-
gle issue that dominated the usability problems; rather,
users suffered a death from a thousand papercuts. A lightweight,
scalable, distributed design review process was put into
place that has improved our APIs and the efficacy of our
many API designers. Challenges remain, but the API de-
sign reviews at scale program has started successfully.

Author Keywords
API Usability; API Design Review; Heuristic Evaluation

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces]: Evaluation /
methodology.

Introduction
Peer reviews are a long-used technique for identifying de-
fects in code. They can take many forms, from periodic
code inspections [6] to constant peer review in the form
of pair programming [2]. Research in this area spans from
identifying the characteristic that make good reviews (e.g.,
[4]) to the social aspects that make it work (e.g., [12]). The
focal point, however, has been on the adoption of review

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

849



practices and the efficacy of reviews towards reducing tech-
nical defects, as opposed to reducing usability defects.

This is a problem because developers are users too [3].
When code is written, it is exposed to other programmers
by what is commonly referred to as an Application Program-
ming Interface (API). More akin to a command-line interface
than a graphical user interface, APIs are how blocks of code
turn into systems, and (via web APIs) how systems turn into
global software ecosystems.

Unlike a graphical user interface, the use of an API is exe-
cuted time and time again by a computer. Thus, changes
to the shape of the API are more difficult; if you have 50
million users and you do something as simple as fixing a
spelling mistake on a button (e.g., subbmit to submit), it is
unlikely to cause any problems. If, however, you made the
same change in an API, every system that uses your API
will fail unless they can be allowed to keep using the old
API or developers go in and update their code.

There are a number of decisions API producers must make
to construct an API [11], each of which can have a sig-
nificant impact on the API’s usability. Prior research has
looked at the usability implications of particular design de-
cisions, for example, whether or not to use parameterless
default constructors or explicitly required constructors [10].
There is also a growing field of research on how to test and
evaluate the usability of an API, and the applicability of ‘tra-
ditional’ GUI based testing practice. Empirical research
has looked at the use of heuristic evaluation (e.g., [8]), lab-
based usability testing (e.g., [5]) and generating methods /
metrics for programmatically calculating usability (e.g., [9])

Farooq et al. [7] used peer reviews to explicitly uncover
usability defects in APIs. As they explain, lab studies for
APIs don’t scale well, due to recruiting challenges and time

constraints. To scale out their API usability efforts, they uti-
lized usability-focused peer reviews. They found the peer
reviews to be more efficient than API usability tests, while
also effectively highlighting usability issues in the API de-
sign. Thus, providing a more scalable method for evaluating
APIs. In their data, lab studies were 16 times more pro-
ductive than peer reviews. However, the peer reviews were
substantially faster and didn’t face the same resource prob-
lems as lab studies (e.g., recruiting participants and having
enough usability experts to conduct the studies).

The number of web APIs produced by Google’s various
business units grew at an astounding rate over the last
decade, the result of which was a user experience con-
taining wild inconsistencies and usability problems. There
was no single issue that dominated; rather, users suffered a
death from a thousand papercuts.

The web API user experience is affected by all layers be-
tween the developer’s application and the server that pro-
cesses their request and deficiencies anywhere in this
chain of technical elements can impact the experience, in-
clusive of the API itself and the server that interprets and
executes the API requests. A developer writing code has
to work within the constraints and idioms of their program-
ming language. They may or may not use a client library to
make using the API easier. This library could be a generic
client library (e.g., AngularJS’s resource service) or a cus-
tom client library written for that API. Another common in-
termediary is an API proxy. In a browser, the browser itself
is yet another intermediary. And of course, the network it-
self is always an intermediary. Deficiencies anywhere in
the stack compel our users to compensate by writing more
complex code.

When considering an ecosystem of APIs, such as Google’s,
the problems are exacerbated by inconsistencies between

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

850



APIs. For example, three APIs may expose the concept
of a region, but do it in completely different ways (full URL
vs. a short name vs. a region code). As a user, even if you
have a quick way to map the representation between APIs,
do the concepts really mean the same thing in the context
of each API? Another example is when you create a new
resource. One API may return the newly created resource,
another may return a reference to said resource, while a
third may return a promise to create the resource. When
dealing with an ecosystem, one must consider API usability
at a macro level, not just in individual APIs.

Apiness: API Design Reviews at Scale
In 2012, we started the Apiness (API happiness) program
in an attempt to address the quality and consistency of
Google’s APIs. The two initial goals of the Apiness pro-
gram were to not only identify and fix the most egregious
pain points in extant Google APIs, but also to improve the
usability of forthcoming Google APIs. In this paper, we fo-
cus only on the latter goal; specifically, how it was tackled
with an API design review process.

The Apiness review process differs from Farooq et al’s
aforementioned process. Both processes can be charac-
terized in terms of three key steps (see Table 1).

In our Apiness API design review program, the key stake-
holders are:

1. API Owner. The stakeholder who is designing and
building the API. Although it is usually a team of prod-
uct managers / engineers, one main point of contact
is assigned. All team members do however have full
transparency into the process.

Farooq et al. Apiness
Kickoff API owner meets with

the usability engineer
to set objectives, define
reviewer criteria (e.g.,
prior experience with a
particular technology),
define scenarios, and
produce source code to
be reviewed.

API owner requests a
review of their API spec-
ification and is assigned
a design reviewer and a
shadow reviewer.

Review The API owner, usability
engineer, and reviewers
meet in person and walk
through the scenarios
(code using the API), pro-
viding feedback with the
usability engineer moder-
ating to keep the review
focussed on usability.

The design reviewer and
shadow reviewer review
the API specification
asynchronously, provid-
ing feedback directly to
the API owner, and vice
versa, iteratively.
Issues encountered (for
example, insights with
broad applicability, or
particularly unique / chal-
lenging discussion) are
brought to a design re-
view team and decisions
can be captured in our
API style guide.

Exit The usability engineer
and API owner meet to
review notes and con-
solidate into actionable
usability defects.

The review goes back
and forth until the design
reviewer is satisfied, and
approves the API.
At this point, the design
reviewer has the option
to graduate the shadow
reviewer into a design
reviewer for future API
reviews.

Table 1: A comparison of the Farooq et al. [7] and Apiness API
design review processes.

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

851



2. Design Reviewer. An experienced API design re-
viewer who conducts the review and provides guid-
ance.

3. Design Review team. The larger team of reviewers,
who act as consultants on an as-need basis, pro-
viding their collective knowledge and experiences,
particularly when the reviewer and the API owner dis-
agree.

4. Shadow Design Reviewer. The shadow reviewer is
a ‘design reviewer in training’ whose exact responsi-
bilities are dependent on their progress through the
training program. They contribute to the review, with-
out being solely responsible.

5. Moderator. The moderator manages the review, en-
suring that reviewers are assigned, timelines are ad-
hered to, and the review from the feedback is clear
and actionable. They mediate communication, ad-
dress issues, and drive agenda of the design review
team meetings.

The shadow reviewer ensures we continue to scale the pro-
gram, by providing on the job training in the real world con-
text of reviews. The moderator is an essential addition to
ensuring the process scales. As with all large programs,
a project manager with a holistic view and understanding
is required to keep the process as smooth and efficient as
possible.

In addition to extending the roles, our process itself has
evolved from that of Farooq et al. The key difference is
that the reviews are not conducted as a group-based walk-
through with multiple reviewers, nor are usability insights
filed as bugs against the feature owner team. Instead, re-
views occur in a more iterative and collaborative fashion.

API owners submit the design of their API, sample imple-
mentation, code snippets, and relevant supporting material
as an online document. Reviewers then leave comments
and suggestions directly in the document. This allows for
an open dialogue between producer and reviewer, which is
particularly critical in situations where specific API domain
nuances could lead to misunderstandings or the need for
clarifications. This quick and contained back-and-forth di-
rectly on the document allows feedback to be contained in
a single source, with a trail of all conversation and decision
making logic. This approach isn’t without fault, as we reflect
on in our analysis. Critically, the review remains iterative in
nature. Once both API owners and design reviewers agree
and sign-off on the API design, reviewers are then auto-
matically assigned as reviewers on any future API changes
(e.g. when an API moves from Beta to Generally Available,
or if constraints elsewhere force a change to the originally
agreed upon design), this provides additional opportunity to
review the API, provide guidance on effective design, and
ensure that earlier feedback has been considered prior to
release, while also maintaining consistency. Critically, this
highlights that the review is not done after one linear pass
over the document, but rather continues to move and evolve
throughout the lifecycle of the API.

In comparison to Farooq et al’s. method, which proceeds
more like a cognitive walkthrough of an example use of the
API (what do you think the next step is? what do you think
this code module does? etc), the Apiness review process
contains more focus on heuristic evaluation of API design.
Samples of end user source code is however essential, as
it allows reviewers to see in practice how the API is used,
the way in which calls are strung together, the level of ab-
stractions chosen, etc. The Apiness review program uses
heuristic evaluation, combined with knowledge of exist-
ing Google API designs, to evaluate amongst other things,

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

852



naming conventions, level of abstraction, error messages,
the resource model, the use of standard methods (GET,
LIST, PUT, etc), and the use of common design patterns
(e.g. pagination, long running operations, etc). Additionally,
while also specifically evaluating the API in front of them,
as previously mentioned, the Apiness reviewer is looking
for consistency with existing Google APIs, and using preex-
isting knowledge of potential usability issues to drive their
reviews. The Apiness team also goes beyond the surface
of the API, looking also at the way in which an API will work
with Google’s programmatically generated client libraries.

The program has now been in place for around 2 years,
with a total of 43 APIs receiving review this year. The pro-
gram, which started with a team of 2 members, has grown
to include 18 full reviewers, with 6 shadow reviewers cur-
rently in training. Although the program continues to de-
velop and evolve, it has reached a point of maturity. As
such, we decided to begin a formal evaluation to evaluate
its impact on Google APIs, while reflecting on the execution
of the program, and in particular, the challenges involved
in implementing API design reviews at scale. In this paper,
we discuss early insights gathered from our API producing
stakeholders.

Analysis
In order to begin evaluating our design review process,
we have initiated a mixed-methods program of investiga-
tion which focuses on the experience of our API producing
stakeholders, i.e. those individuals / teams that are having
their API designs reviewed. This research serves two pri-
mary purposes:

1. Better understand how stakeholders perceive the
efficacy of the API design process itself.

2. Better understand how stakeholders perceive the im-
pact that the process has on the quality and usability
of the API they are building.

Method
In total, since beginning our research, 43 APIs have gone
through the API design review process. All of those stake-
holders received a survey at the launch of their APIs, which
signals the formal end of the design review engagement. Of
the 43 stakeholders who went through the review, a total of
39 survey responses have been gathered, for a response
rate of approximately 91%.

Each survey, which contains a mixture of quantitative likert-
style satisfaction scales and qualitative open-ended ques-
tions, gathers data on:

1. Overall satisfaction with the design review [quantita-
tive measure, 5-point likert].

2. Reasoning behind overall satisfaction level [qualita-
tive].

3. Perception of impact on API quality [quantitative mea-
sure, 5-point likert].

4. The value (or lack thereof) of the design review pro-
cess [qualitative].

5. Additional comments or suggestions on any aspect of
the design review process [qualitative].

Additionally, informal semi-structured interviews have been
conducted with a small subset of API producing stakehold-
ers. These interviews cover the same broad themes, but
aim to provide richer input into the experience. In total, data
from 2 stakeholder interviews are considered in this paper.

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

853



These interviewees, who also completed the survey, were
selected via a convenience sampling approach. Their sur-
vey data had not been viewed or analyzed prior to interview.

Results
Overall, stakeholders who had their API reviewed were
generally satisfied with the design review process. 29 re-
spondents (approximately 75%) rated themselves as either
completely or somewhat satisfied (the top 2 buckets of the
likert-style scale). Only 3 respondents rated themselves as
dissatisfied.

With respect to perceived impact on quality, 35 of the re-
spondents (approximately 91%) felt that the overall quality
of their API had improved post review, with about one third
(14 respondents) stating that their API was much better (the
top bucket on the likert-style scale). Only one stakeholder
felt that their API post review was, overall, lower quality.

We thematically coded open-ended qualitative feedback
to better understand what lead API design producers to
score the design review process, and its implications on the
quality of their API, as they did. First, we focus specifically
on the positives, and in particular on three key themes that
emerged from the data:

Improved API Surface
Consistent with the quantitative data, and key to the overall
goal of the program, many of the API producers reflected
that their API design had improved.

“[Reviewer] was great in finding issues with the API”

“The design review gave us a lot of actionable feedback”

Greater consistency across Google’s API Ecosystem
Again, key to the overall goal of the program, API producers
consistently reflected that their API was now more con-

sistent with other Google APIs, to the greater benefit of
Google’s API ecosystem.

“The [sign-off] from the reviewer gave me the comfort in
knowing that our API would have the same consistent look-
and-feel as the other Google APIs.”

“The most useful part is that it produces uniformity across
the whole set of Google APIs.”

Validation from Experts
Even in cases where the API producer felt that their API
design had not changed considerably, validation from an
external API design expert was welcomed, giving the API
owner confidence in their design.

“The design review was a nice sanity check that our APIs
are understandable to people who didn’t write them.”

It is positive that API producers saw value in the design re-
view program, and consistently identified the primary goals
of the program in their positive reflections. These initial in-
sights provide early validation that the design review pro-
cess can be effectively utilized at scale, to help API produc-
ers build usable APIs, that maintain consistency despite a
heavily federated build process.

Reflections on Scaling API Design Reviews
Despite these positives, it is important to reflect on areas
for improvement as we continue to grow and iterate on the
program. Thematic coding of all open-ended responses
identified a number of themes for reflection. One obvious
direction for this analysis would be to focus on those API
producers who indicated in the scale questions that they
were dissatisfied with the process, or its impact on their
API. However, due to the small number of respondents
who fit into this category, it is difficult to tease out specifics.

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

854



Anecdotally, we notice that the feedback given by dissatis-
fied respondents fits consistently into the broad themes out-
lined below. In this paper we highlight four particular issues,
selected due to their prevalent occurrence in our feedback.

Keeping Feedback Consistent
Key to any review process is consistency in advice and
guidance. Inconsistent messages cause frustrating time de-
lays and impact the trust one has in the quality of the review
process. When scaling the API design review process to
multiple APIs and reviewers simultaneously, it is important
to ensure the advice and guidance given is coherent and
consistent. This is particularly true given the dependencies
that exist between APIs, and the fact that API producing
stakeholders are likely to go through the process multiple
times, particularly for products that expose multiple APIs to
their customers. While satisfaction was broadly high, lack
of consistency was regularly mentioned in our qualitative
feedback as negatively impacting the experience.

“there was a particularly frustrating cycle of reviews around
naming conventions where I received contradicting mes-
sages”

“As an example, during the course of our API being de-
veloped the best practice on pagination tokens went from
string to bytes and finally back to string”

“the feedback coming from various folks on the [design re-
view] team often conflicted with each other”

Currently, the design review team has bi-weekly meetings
to discuss the design review process and API design best
practice. Additionally, when in doubt, design reviewers can
use the wisdom of the crowd, and take issues to the en-
tire review team. Additionally, new reviewers go through a
shadow review process before individually reviewing APIs.

Despite all this, the team faces the challenge of ensuring
high quality review, while continuing to meet demand in a
timely fashion.

To help scale, the design review team has undertaken two
initiatives. The first is increased documentation, and thus
transparency, into the design review process. When one
reviewer identifies a usability issue, and provides guidance
on improved design, this should be centrally documented
so that other reviewers are clear on the advice their peers
are giving, and API producing stakeholders, who may still
be designing their API, can ensure they themselves do not
fall for the same usability pitfalls. Documenting in this way
keeps the API reviewers honest, and ensures API produc-
ers can get design advice before submitting their review.
The second initiative is API design classes. By taking the
wisdom of good API design and running regular classes, we
can help API producing engineers avoid common design
mistakes / challenges before they begin their API design.
Synthesizing advice into materials for a class gives review-
ers the time to reflect on best practice, while also providing
API producers with one source of truth for advice prior to
designing their API. Raising the bar of the APIs proposals
prior to design review submission makes the review pro-
cess itself simpler and more timely, the latter of which is
another key challenge for scaling API design reviews.

Time is Money
Time very literally is money when it comes to launching a
new product. As such, it is critical that an API design re-
view process is not seen as a blocker. This is really com-
prised of two factors. First, the value of the API design re-
view process must be established, such that API producers
are clear that it is necessary, and not simply a zero-sum
game. Rather, any delay to launch will be outweighed by
the user/customer benefit derived from the improved qual-

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

855



ity of the API. With this in mind though, API design reviews
should still be as timely and efficient as possible. The single
most frequent theme in our data was the time required for
the API design review.

“The design review process took very long for us. The re-
view was helpful, but just hope it was faster.”

“It took a while to get the API review started, and this caused
some delays on our end as people who had bandwidth to
help with implementation became busy and unable to help.”

As previously discussed, the team is already working on
initiatives to help raise API design quality and set expec-
tations for the process, through clear documentation and
API design classes. However, beyond this, given the scale
of Google’s API ecosystem, it is worth considering whether
other measures can be implemented. For example, if a new
version of an API is being released, where 90% of the sur-
face remains unchanged, how should that review look? Is
this an opportunity to revisit the API, and ensure current
best practice is in place, or can a lightweight review be con-
structed? If an API is a single resource and method, should
there be a different approach to that for a 100 method API?
Likewise, if an API will likely never see more than 10 ex-
ternal users, how should the review look compared to an
API which is targeting hundreds of thousands? If a context
dependent review process is initiated, how can we ensure
consistency (in both process and API design) while clearly
setting expectations for API producing stakeholders? Fu-
ture work will aim to measure the impact of the two initia-
tives currently in place, and assess the utility of the other
approaches discussed in this section.

API Expertise Vs. Domain Expertise
All of Google’s major product areas, from Cloud Platform
to Maps, offer APIs, each of which serves its own audience

and use cases. With over 100 public APIs already available,
and an ever growing list in the pipeline, it is increasingly
difficult for API design reviewers to be knowledgeable on
all services. While the reviewer is recruited and trained on
API design best practice, providing design advice inherently
requires a baseline level of understanding of the service.
We see in our data the emergence of a tension between
expertise on API design and domain level expertise on the
product area of the API.

“The beginning of the process was very frustrating. We had
a hard time getting the review team to understand what we
were trying to accomplish in our API”

“It would be nice if there would be reviewers from major
product area such as [X] as most of the time was spend in
describing how [product X] works.”

As Beaton et al. discuss, applying traditional usability heuris-
tics to API evaluation requires careful consideration [1]. It is
important to question the extent to which it is possible to
construct a fully centralized API design review process,
where reviewers are tasked with reviewing and providing
guidance on a drastically diverse array of APIs. Is it possi-
ble to provide a centralized set of design guidance that is
abstract enough to be suitable to diverse APIs, while con-
crete enough to ensure consistent interpretation and ap-
plication? Certainly, our early survey results indicate API
stakeholders are, for the most part, satisfied with the pro-
cess. However, qualitative responses indicate that this is an
issue that we must keep an eye on.

“The only downside that we experienced from this was the
necessity to conform to specific REST styles. In some
ways, this limited our API. Since our API doesn’t fit the
cookie cutter mold of a RESTful API we had to make some
design concessions.”

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

856



“...part was that the use-case for our API differed so strongly
from what I think the process was intended for.”

Dependent Services
One interesting challenge when scaling a design review
program up to multiple simultaneous API reviews is that
there is potential for dependencies between APIs currently
under-review. As such, recommendation for change in one
place can have a cascading effect on other services, ser-
vices which themselves may be in-flux through the design
review.

“There were several changes, though, which wound up cre-
ating enormous amounts of work in the [x] client and ser-
vice.”

This adds complication to the design review process, and
requires careful coordination between API stakeholders
and design reviewers. In an ideal world, the bottom level
APIs would be reviewed and approved before any other
services were built on top of them, however in practice, this
isn’t always feasible due to time or resource constraints.
Given this, more emphasis is placed on getting things ‘as
right as possible’ the first time. The aforementioned API
design classes, and documentation of previous reviews
and outcomes should help API producers ensure their API
does not fall into any big traps before initiating the review
process, or building dependent services on top of them.

Next Steps and Future Work
In this paper we have provided early insights into our Api-
ness API design reviews at scale program. Early indication
from our API producing stakeholders suggest the program
has been successfully implemented, with consistent pos-
itive sentiment towards the goals of the program and the
impact it has on Google’s APIs. One open question remains
though, are these APIs really more usable to the external

developers? Apiness also has the goal of better under-
standing what makes an API more usable. Work is currently
underway to assess the usability of the APIs that have gone
through the design review process, and benchmark per-
formance against those APIs that were released pre API
design review program. A mixture of API log file analysis,
high-touch usability studies, and survey data are being em-
ployed, although the work is too early in nature to report on
here.

Additionally, outlined in our results, we highlight four key
areas for further reflection. It is important to also stress,
our API program continues to grow, with ever more APIs
being built for both internal and external consumption. As
such, we face a number of key challenges, which are in-
herently related to the themes identified in this paper. In
particular, how can we continue scaling the API design re-
view program to not only review more APIs, but also reduce
turnaround time, all while striving to maintain the quality
of the review process? Further, with more APIs, comes
greater diversity in product, service, use-case, and target
audience. With a centralized review process, can we con-
tinue to ensure Google wide API consistency? And, does
a one-size-fits-all review process make sense? If a usable
API in one domain looks very different to that in another,
would a more federated process, where reviewers are both
domain specific experts and API design experts, lead to
more usable APIs? Additionally, with a growing field of work
assessing programatic evaluation of API usability, we con-
tinue to explore whether the wisdom of the API design team
can be captured in our tooling. One exploration includes the
use of linting as a first pass over an API design, in order to
identify common / low-hanging API design issues before
human assessment is required.

In our future work, we will continue to analyze our survey

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

857



responses, while iterating on our design review program to
ensure API usability and API consistency are top of mind
for Google APIs. Additionally, future work will aim to mea-
sure the resultant impact on the end-developer who works
with the APIs, to assess whether our API design review pro-
gram is really having the influence both reviewers and API
producing stakeholders believe.

Conclusions
In this paper we introduced Apiness, a program designed
to improve the usability of Google’s APIs. We reported on
one particular facet, API design reviews at scale. Building
upon prior work in the field, we implemented a process to
review APIs for usability and consistency issues, and did so
in a way that scales to the number and diversity of Google’s
APIs. Early indications suggest the program has started
successfully, although further work remains to fully validate
the usability impact on the APIs being produced. This paper
contributes to the field an overview of our implementation of
the program, as well as the key lessons learned and chal-
lenges others may face when implementing an API design
review program of their own.

References
[1] J. Beaton, B. Myers, J. Stylos, S. Y. Jeong, and Y. Xie.

2008. Usability Evaluation for Enterprise SOA APIs.
In Proc. of the 2nd International Workshop on Sys-
tems Development in SOA Environments (SDSOA
’08). ACM, 29–34.

[2] K. Beck and C. Andres. 2004. Extreme Programming
Explained: Embrace Change (2nd Edition). Addison-
Wesley Professional.

[3] J. Bloch. 2006. How to Design a Good API and Why
It Matters. In Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’06).
ACM, 506–507.

[4] A. Bosu, M. Greiler, and C. Bird. 2015. Characteris-
tics of Useful Code Reviews: An Empirical Study at
Microsoft. In Proc. of the International Conference on
Mining Software Repositories. IEEE.

[5] S. Clarke. 2004. Measuring API usability. Dr Dobb’s
Journal. (2004). http://www.drdobbs.com/windows/
measuring-api-usability/184405654

[6] M. E. Fagan. 1999. Design and Code Inspections to
Reduce Errors in Program Development. IBM Syst. J.
38, 2-3 (June 1999), 258–287.

[7] U. Farooq, L. Welicki, and D. Zirkler. 2010. API Usabil-
ity Peer Reviews: A Method for Evaluating the Usabil-
ity of Application Programming Interfaces. In Proc. of
the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’10). ACM, 2327–2336.

[8] T. Grill, O. Polacek, and M. Tscheligi. 2012. Methods
towards API Usability: A Structural Analysis of Usabil-
ity Problem Categories. In Human-Centered Software
Engineering, M. Winckler, P. Forbrig, and R. Bernhaupt
(Eds.). Lecture Notes in Computer Science, Vol. 7623.
Springer Berlin Heidelberg, 164–180.

[9] G. M. Rama and A. Kak. 2015. Some structural mea-
sures of API usability. Software: Practice and Experi-
ence 45, 1 (2015), 75–110.

[10] J. Stylos and S. Clarke. 2007. Usability Implications
of Requiring Parameters in Objects’ Constructors. In
Proc. of the 29th International Conference on Software
Engineering (ICSE ’07). IEEE, 529–539.

[11] J. Stylos and B. Myers. 2007. Mapping the Space of
API Design Decisions. In Proc. of the IEEE Sympo-
sium on Visual Languages and Human-Centric Com-
puting (VLHCC ’07). IEEE, 50–60.

[12] L. Williams and R. Kessler. 2000. All I Really Need to
Know About Pair Programming I Learned in Kinder-
garten. Commun. ACM 43, 5 (May 2000), 108–114.

Casy Study: Design Methodology #chi4good, CHI 2016, San Jose, CA, USA

858

http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.drdobbs.com/windows/measuring-api-usability/184405654

	Introduction
	Apiness: API Design Reviews at Scale
	Analysis
	Method
	Results
	Improved API Surface
	Greater consistency across Google's API Ecosystem
	Validation from Experts

	Reflections on Scaling API Design Reviews
	Keeping Feedback Consistent
	Time is Money
	API Expertise Vs. Domain Expertise
	Dependent Services

	Next Steps and Future Work
	Conclusions
	References



