
Measuring Cross-Device Online Audiences

Jim Koehler, Evgeny Skvortsov, Sheng Ma, Song Liu

Google Inc.

May 10, 2016

Abstract

We extend the work of Koehler, Skvortsov, and Vos (2013) to measure cross-device online audiences.
The method performs demographic corrections in the usual way device-by-device. A new method
that converts cross-device cookie counts to user counts is introduced. We provide practical recipes
for fitting this transformation function and then demonstrate its use using online panel data from
Japan.

1 Introduction

Koehler, Skvortsov, and Vos (2013) [13] (KSV) presents a method for measuring reach and frequency
of online ad campaigns by audience attributes for one device (or cookie) type. The method combines
ad server logs, publisher provided user data (PPD), census data, and a representative panel to
produce corrected cookie and impression counts by these audience attributes. The method corrects
for cookie issues such as deletion and sharing, and for PPD issues such as non-representativeness
and poor quality of demographic labels. It also proposes a model that converts cookie counts to
user counts. However, the method falls short in today’s world of multiple device types such as
desktop, smartphone, and tablet.

This paper extends the existing method to scenarios where information is available for multiple
cookie/device types in the ad server logs. It allows for measurement reports broken out by device
types associated with the different cookie types. For example, there could be a browser-cookie
with device information on desktop, smartphone, and tablet and another app-cookie broken out
by smartphone and tablet. A natural extension of the demographic correction follows from the use
of cookie/device specific correction models. That is, for each cookie/device combo, a correction
model is developed as specified in KSV.

We propose a new formulation for converting multiple cookie counts to people counts. We introduce
the concept of an Activity Distribution Function (ADF), which describes the probability of a person
generating cookies of each type. We theoretically relate ADFs to matching cross-device reach
functions. Furthermore, we show that ADFs can be approximated by a mixture of Dirac delta
functions [4], and estimated empirically using panel data.

In Section 2 we review the single device measurement method, including the demographic correction
model and the cookie-to-user mapping. Section 3 extends the demographic correction model to

1

2. REVIEW OF SINGLE-DEVICE MEASUREMENT METHOD

multiple cookie types, while Section 4 introduces the new cross-device cookie-to-user mapping
along with recommendations for fitting these new models. The method is demonstrated, using a
Japan online panel, in Section 5.

2 Review of Single-Device Measurement Method

KSV develops a method to measure GRPs that allows for reach and frequency estimates for online
audiences to be broken down by audience attributes (e.g., age and gender). However, their approach
only considers a single cookie or device type and therefore does not extend to multiple device types.
This paper extends this methodology to provide these device type breakouts. However, before
showing extentions, we provide an overview of the single-device measurement method.

The method of KSV uses a combination of data from several different sources to compute audience
reach metrics: US census data, ad server logs from the ad serving network, publisher-provided self-
reported demographic data, and a representative online panel. The number of people exposed to a
campaign is inferred from the number of unique cookies exposed to these campaigns. For a subset
of these cookies, demographic information is available from publisher provided data (PPD). These
demographic labels may be incorrect for some of the cookies, and the cookies with labels may not
be representative of all cookies. Demographic correction models adjust for possible inaccurate and
biased labels using panel data. Additionally, a user is typically represented by multiple cookies,
some of which may be shared with other users on the same device. A method is provided to infer the
number of users behind a given number of cookies. These models are trained and evaluated using
an online calibration panel for which the true demo/ppd labels and cookie-to-user relationships are
known.

2.1 Data Sources

The main data source for this method is ad server logs, recording the impressions served to an
associated cookie. Ad server logs provide real-time data broken down by site. Cookies present
significant technical challenges:

• a cookie does not identify a person, but a combination of a user account, a computer, and a
web browser.

• not all cookies have demographic information attached to them, and when there is demo-
graphic information available it may be of questionable quality and biased. In order to obtain
the demographic composition of an audience, at least a subset of the cookies for that audience
need to have an age and gender label.

• cookie deletion (or cookie churn) can also lead to inaccuracies in audience measurement, such
as the overstatement of reach and understatement of frequency.

• the quality of declared demographic information relies on the truthfulness of users and also
the extent to which cookies are shared between multiple users.

A probability-recruited online panel provides reliable data to calibrate and validate the demographic
correction and cookie-to-user conversion models. The panel plays a key role in adjusting for de-
mographic bias and cookie-sharing effects in PPD, in inferring models to accurately estimate the
number of users behind aggregated cookie counts, and in evaluating the accuracy of the method.

2 Google Inc.

2. REVIEW OF SINGLE-DEVICE MEASUREMENT METHOD

The panel should be aligned to census level benchmarks on key demographic variables such as age,
gender, household income, and education through the application of demographic weights. Weight-
ing adjustments [1] aim to reduce the bias of estimates by adjusting for demographic differences
between the panel and the population it represents. This helps to adjust for the effects of panel
attrition, that may cause panels to become less representative of the population over time. This
approach - calibrating ad server logs using a smaller high-quality panel - is able to cover a larger
part of the long tail of the web than using a panel alone. The benefit is that these reach and
frequency estimates get both reduced variance from server logs and reduced bias from the panel.

For our extension of the KSV model it is required that the panel also includes measurement and
monitoring across all devices. Furthermore, we need for PPD labels to be recorded, for the panel,
in the ad server logs.

2.2 Demographic Correction Model for Single Device

The estimate of a campaign’s audience consists of taking the total number of ad impressions,
unique cookies exposed to the campaign, a subset of cookies with PPD demographic labels, and
then breaking down the impressions and unique cookies into demographic groups. The impressions
from each group, when divided by that group’s population number and multipled by 100, estimates
the GRPs1 for that group. Finally, these impressions divided by the number of exposed users from
that group, estimates the average frequency for that group. This section reviews the models to
break either impressions or cookies into demographic groups.

Consider a problem where we have D demographic groups and one publisher providing PPD.
Furthermore, assume we have a set of training campaigns2 broken down by both panel demographics
and PPD labels. Let this data consist of Ntrain campaigns each large enough to be confidently
measured by the panel. For campaign i, let yi be the proportion of panelist cookies (or impressions)
for each of the panel-measured demographic groups (hence yi is a vector of length D). Similarly,
let xi be a D-length vector for the PPD proportions. We model the relationship as3

yi = (1− αi)Axi/||Axi||1 + αiBxi + εi (1)

where A is a D x D “correction” matrix, B is a D x D left-stochastic matrix4, and αi represents
the fraction of cookies (impressions) for the ith campaign either served on the publisher’s site or
via cookie targeting using the PPD. Hence, 1− αi represents the fraction of unlabeled cookies (or
unlabeled impressions) for that campaign.

If the PPD labels are perfect for the publisher’s site, then B = I. But usually the PPD labels have
misclassification issues and hence B should be a left-stochastic matrix. That is, it re-distributes
the PPD demographic proportions to better represent the actual population proportions for those
cookies with PPD labels exposed to the campaign. It is sometimes possible to estimate B from
panel cookies (impression) that have PPD labels directly, rather than through a model fit.

Matrix A is used to measure cookies (impressions) without PPD labels. For these cookies (im-
pressions) it adjusts xi for both misclassification and non-representiveness between the labeled and

1Strictly speaking, this is the target rating points (TRPs) indicating this is the GRPs for this group.
2For training data we could use a set of campaigns, site visit data, or a combination of both. Campaigns are

required for advertiser-based reports, while site visit data are required for publisher-based reports. We refer to just
campaigns here for convenience.

3||z||1 is L1 distance of z or
∑
d |zd|.

4A left-stochastic matrix is a square matrix with non-negative entries and columns that sum to one.

Google Inc. 3

2. REVIEW OF SINGLE-DEVICE MEASUREMENT METHOD

non-labeled cookies (impression). If B has been fit directly from the panel then the appropriate
regression model is

ỹi =
yi − αiBxi

1− αi
= Axi/||Axi||1 + εi (2)

and should be fit using either least squares or penalized least squares. KSV found that uncon-
strained regression provided the best results using simulated data.

2.3 Mapping Cookies to Users

KSV provides an equation for converting cookie counts to people counts. This equation depends
on some defined time interval T :

u =
cγTPT

CT + c(γT − 1)
(3)

where u is the estimated people (user) counts, c is the cookie count, PT is the total active online
population count during time interval T , CT is the total active cookie count during time interval
T , and γT is a parameter to be estimated. They also found that typically γT ≈ κCT /PT for
κ ≈ 1. Equation 3 does not generalize well for arbitrary T and doesn’t adjust well for a particular
demographic group, as CT is unknown for a any given demographic group. An almost equivalent
formulation5 that is useful for arbitrary T and for a given demographic group d is

ud =
κdcdPd
Pd + κdcd

(4)

where Pd is the active online population (defined over a long time period - say 90 days) for group
d, cd is the corrected cookie count for group d (output from Equation 1), and κd is a parameter
estimated for demographic group d. In practice κd could be set to the same κ for all demographic
groups and is close to 1.0 for mature cookies and slightly less than 1.0 for younger cookies.

Equation 4 has theoretical justification and has been used in the literature (cf. [9], [3], [11], and
[6]). Suppose we have a campaign with c total cookies exposed and that for an arbitrary person
the number of his/her cookies exposed, ci, follows a Poisson distribution with rate parameter λ and
that these rate parameters - across people - follow an exponential distribution:

ci|λ, c
ind6∼ Poisson(λ)

λ|c iid∼ Exp(θ)

Then it is easy to show - by integrating out λ - that

5Letting κ = γP/C then cγP
C+c(γ−1)

= cκC
C+c(κC/P−1)

≈ cκC
C+cκC/P

= cκP
P+cκ

.
6The ci’s are not technically independent as

∑
i ci = c, but since the number of people is large, the ci’s are

practically independent.

4 Google Inc.

2. REVIEW OF SINGLE-DEVICE MEASUREMENT METHOD

P (ci = n|c) =

∫ ∞
0

P (ci = n|λ) · fexp(λ|θ)dλ

=

∫ ∞
0

e−λλn

n!
θe−θλdλ

=
θ

n!

∫ ∞
0

λne−λ(θ+1)dλ

=
θ

n!
· Γ(n+ 1)

(θ + 1)(n+1)

=

(
θ

θ + 1

)(
1

θ + 1

)n

This can be used to calculate

P (ci > 0|c) = 1− P (ci = 0|c) = 1− θ

θ + 1
=

1

θ + 1

and hence by adding these probabilities over all P people that

E[u|c] =
P

θ + 1
=

P

P/κec+ 1
=

κec

P + κec

by subsituting θ = P/κec which is the same as Equation 4. We call this cookie-to-user function
the Exponential Bow model. Note that the derivative of the Exponential Bow model evaluated at
the origin (c = 0) is κe. Hence, κe represents the expected number of people reached with the first
impression and should be close to 1.0.

Consider another case where every person has the same rate parameter λi ≡ κ0c/P , then P (ci >
0|c) = 1 − e−κ0c/P . We call this cookie-to-user function the Dirac Bow model. Note that for this
model, κ0 is the slope at the origin so again should be close to 1.0. We will extent these concepts
of heterogeneity of the rate parameter to the multi-device situation in Section 4.

Taken together, for a campaign with a total of I impression on c cookies with normalized PPD
labels x (a vector of size D) the “Impression” version of Equation 1 is used to get the impression
demographic breakdown

Id = yId ∗ I

and the “Cookie” version of Equation 1 is used to get the cookie demographic breakdown

cd = yCd ∗ c

Finally, Equation 4 is used to convert cookies (cd) to users while the average frequency is calculated
as f̄d = Id/ud.

Google Inc. 5

3. DEMOGRAPHIC CORRECTION MODEL FOR CROSS-DEVICE MEASUREMENT

3 Demographic Correction Model for Cross-Device Measurement

Section 2.2 reviews the model for estimating GRPs for a single device type. Specifically, first a set
of demographic correction models are applied to impressions and cookies, respectively. And second,
the results from the cookie-correction model are input into a cookie-to-user model that estimates
the unique number of people reached by the campaign. This section generalizes the demographic
correction model for multiple device types while Section 4 generalizes the conversion of multiple,
post-corrected, cookie types to people.

The generalization of the demographic correction models to multiple device types is straightforward
where a unique pair of models (impressions, cookies) is estimated for each device type, as described
in Section 1. But first attention is needed to weight the panel properly to reflect the associated
target audience. Most panelists will have multiple weights. For example, for two device types there
are: weights for device 1, weights for device 2, and then either weights for (device 1 AND 2) or
for (device 1 OR 2). For the demographic correction models, the single device weights should be
applied for each of the single device correction models. However, the joint weights need to be used
in developing the multi-device cookie-to-user models as discussed in Section 4.

For device type j, build the pair of demographic correction models - one for impressions and one for
cookies - as prescribed in Section 1. Specifically, find N j

train campaigns each large enough so that
device type j activity is confidently measured by the panel. These training data should include
cross-device campaigns but could also include single device campaigns. The training data is used
to estimate both the impression and correction models (Equation 1) for device type j:

yIij = (1− αIij)AIjxI
ij/||AIjxI

ij ||1 + αIijB
I
jx

I
ij + εIij

yCij = (1− αCij)ACj xC
ij/||ACj xC

ij ||1 + αCijB
C
j x

C
ij + εCij (5)

where the superscript denotes impression or cookie data/parameters, the device specific subscript
j indicates the data (yij ,xij , and αij) for campaign i and device j, and Aj and Bj are the
device specific correction and redistribution matrices, respectively. If Iij and cij are the device j’s
total impressions and cookies measured for campaign i, respectively, then demographic group d’s
estimates are Idij = (yIij)d · Iij and cdij = (yCij)d · cij . The vector cdi = (cdi1, c

d
i2, · · · , cdiJ)′ is the input

into the multiple-device reach function for campaign i and demo group d.

4 General Approach for Mapping Cookies to Users

Section 2.3 describes a method for converting cookie counts for a specific demo group into people
counts but only handles one device type. Here we extend that model to address the following needs:

• Estimate the number of unique people in a cross-device audience. We need to deal with
multiple types of cookie counts instead of just one cookie count. In particular, counts of
cookies by device type and potentially app-specific logged-in user ids. We need to treat these
cookie types differently, as churning behaviour of desktop and mobile cookies is different.
Some people are reachable only through a desktop computer or only through a mobile device.

6 Google Inc.

4. GENERAL APPROACH FOR MAPPING COOKIES TO USERS

• Provide modeling flexibility. Equation 7 from KSV depends on one parameter and gives a
reasonable first approximation of generic desktop cookie behavior. If sufficient training data
is available the accuracy can be improved by a more flexible cookie-to-user model. This can
be achieved for both single and multiple cookie types.

We first introduce a simple method involving individual device-specific reach functions. Then we
consider a general approach to estimate people counts from multiple cookie types.

4.1 Multiple Device Reach Curves via Independence Assumption

For multiple cookie types we could assume that advertising on different device types reaches people
independently from each other. That is, if reach of the j-th cookie type is given by function Rj(cj)

7

then the overall (multi-cookie type) reach function is computed - under this assumption - as

R(c) = 1−
∏
j

(1−Rj(cj)) (6)

This assumption provides a simple and easy method to construct a multi-device reach surface by
fitting one dimensional marginals and then joining them. It is often a good working assumption,
particularly for campaigns with relatively small reach, and for countries with high percentage of the
population using multiple device types. For example, consider a campaign with two device types
each having a reach of 10%. This formula would estimate the combined device reach as 19% and the
formula estimates that the audience reached by both devices is only 1% (= 10% * 10%). The true
overlap would need to be far from this assumption to materially affect the overall reach estimate.
However, for large campaigns this isn’t true. As another example, consider a campaign with 50%
reach for both device types - hence the overall reach estimate is 75% with the overlap estimate of
25% (= 50% * 50%). Now the overlap assumption could materially affect the overall reach estimate.
Caution should be exercised to validate this assumption using cross-device campaigns measured by
the panel.

This assumption is better for device types with high user pentration. For example, this assumption
can’t be true in a country where the the single-device ownership is changing over time. As an
extreme example, if a country has two types of people - owners of only device type 1 and owners of
only device type 2 - then this assumption breaks down as R(c1, c2) = R1(c1) + R2(c2) as the true
overlap is zero. There are two easy adjustments to this assumption: adjust the model to accurately
account for population device type adoption using census data and possibly adjusting the overlap
independence assumption using panel data.

Consider a simplified situation where only two device types are of interest, and let a population
have P1 users of only device 1, P2 users of only device 2, and P12 users of both devices. Suppose
we have, based on the single device models, estimates of reach for each device type, Rj . Then a
modification of Equation 6 is

R = P1R1 + P2R2 + P12 · [1− (1−R1)(1−R2)]

= (P1 + P12)R1 + (P2 + P12)R2 − P12R1R2 (7)

7Rj(·) is a reach function so its maximum is one (R(∞) = 1)

Google Inc. 7

4. GENERAL APPROACH FOR MAPPING COOKIES TO USERS

where the reach estimate for device j is applied directly to the device j subpopulation and then the
approach of Equation 6 is only applied to the cross-device subpopulation. This model can further
be modified based on information from the panel that the cross-device subpopulation reach overlap
doesn’t satisfy the independence assumption by applying an additional parameter β12

R = (P1 + P12)R1 + (P2 + P12)R2 − β12P12R1R2 (8)

Here β12 = 1 matches the independence assumption while β12 < 1 matches positive (> 1 matches
negative) correlation between the reach of the two device types.

4.2 Multiple Device Reach Curves via Activity-Distribution Functions

We generalize the modeling of the cookies-to-user mapping function by introducing the concept of
an Activity Distribution Function (ADF) that models the heterogeneity of the number and type of
cookies owned by people. We show that any ADF directly relates to a reach function. We illustrate
this for the Exponential Bow and Dirac Bow models that were introduced in Section 2.3. Finally,
we present two particularly useful ADFs: the first based on mixtures of Dirac functions which can
model any arbitrary multiple device reach curve; and the second that extends the Exponential Bow
to allow for more flexibility in modeling the reach curve.

For this section, to generalize to any population, we introduce a new variable, t, that is the average
cookie counts rather than raw cookie counts. That is, t = c/P where P is the number of internet
users. Particularly, for demographic group d, we convert cookie counts for device j (cj) by tdj =

cdj/Pd where Pd is the internet population for demographic group d. After dropping the dependence
on d, we define t = (t1, t2, · · · , tJ)′ as the input into the reach function. We also now model the
reach function, R(·), rather than the user function as presented in subsection 2.3. Ultimately, we
multiply the output from the reach function by P to yield number of people.

Assume that there is an underlying population of people (P), and each person has a certain prob-
ability of generating a cookie of each type. Let the (multivariate) probability distribution A model
the heterogeneity of these probabilities. A can be converted to a cross-device reach surface using

R(t) =

∫
x∈R+

A(x) · (1− e−tx)dx (9)

We have found that cookie-to-user dependencies, that occur in practice, arise from applying Equa-
tion 9 using an appropriate distribution. We call the function A an Activity Distribution Function
(ADF). Next we illustrate the use of the ADF/Reach function relationshp for one-dimensional reach
curves.

4.2.1 Exponential Bow Reach Model

Recall that the Exponential Bow model with κe > 0 is defined in Equation 4. Converting this to a
reach function and introducing t yields

R(t) =
κet

κt+ 1
. (10)

This corresponds to an exponential cookie generation probability distribution (ADF) which is
defined by

8 Google Inc.

4. GENERAL APPROACH FOR MAPPING COOKIES TO USERS

A(x) =
e−x/κe

κe
. (11)

Notice that for this ADF, the expected number of cookies per person is κe. Interestingly, the
exponential ADF has maximum entropy over all ADFs, under the condition that the expected
number of cookies is fixed at κe.

4.2.2 Dirac Bow Reach Model

Also recall the Dirac Bow model with κ0 > 0. In terms of a reach function this is defined as

R(t) = 1− e−κ0t. (12)

The corresponding ADF is a Dirac delta function located at κ0, i.e.

A(x) = δ(x− κ0) (13)

Note that when assigning c cookies to a set of people, the Dirac ACF corresponds to distributing
them according to an uniform distribution (each person has equal probability of being assigned any
of the c cookies). Subsequently, the assignment of cookies-to-people has maximum entropy.

4.2.3 Dirac Mixture Models

We can extend the Dirac Bow model to higher dimensions by considering a multivariate Dirac Delta
function located at x0 = (x01, x

0
1, · · · , x0J)′. That is, we can define the ADF as

A(x) = δ(x− x0).

The assumption of similar device usage across all people does not yield a particularly interesting
ADF in itself. However, we can add arbitrary heterogeneity by considering mixtures of multivariate
Dirac Delta functions (cf. [8] and [7])

A(x) =
∑
k

αkδ(x− x0
k). (14)

This ADF has subpopulations of people with each subpopulation having similar device usage. For
example, subpopulation k has usage centered at x0

k and the fraction of the population represented
by this group is αk. For this ADF, we have the associated reach surface represented as a sum of
exponents

R(t) =
∑
k

αk(1− ex
0
k·t). (15)

If we have training data in the form of (ti, ri)
8 and choose a set of subpopulations centered at

x0
k, then we can easily find the set of coefficients αk’s using constrained linear regression (as the

αk ≥ 0). The locations of x0
k can either be picked along a grid or found via local search. This

approach is illustrated in Section 4.3 and specific algorithms are discussed in the Appendix.

8ri is an estimate of the reach surface at ti so ri ≈ R(ti).

Google Inc. 9

4. GENERAL APPROACH FOR MAPPING COOKIES TO USERS

4.2.4 Generalized Exponential Family Distribution

The exponential ADF is often a good approximation of the reach surface, but it is natural to consider
its generalization in cases when more flexibility is needed. In this subsection we restrict ourselves
to the one dimensional case. Multidimensional generalization is conceptually straightforward, but
requires working with more complex indices.

Consider the Generalized Exponential ADF of order N - defined for x > 0 - as

A(x) = e
∑N
n=0 λnx

n
,

for parameters λ0, . . . , λn
9.

In this case the reach curve has form

R(t|λ) =

∫ ∞
0

e
∑N
n=0 λnx

n
(1− e−xt)dx.

Techniques for finding such parameters by matching first moments of the distribution are well
known [15]. Note that the moments of the distribution are equal to the corresponding derivatives
of the reach curve evaluated at t = 0. (e.g., first moment is equal to the first derivative).

One of the simplest algorithms that can be used for fitting the Generalized Exponential distribution
in the context of reach estimation is gradient descent. Indeed, the partial derivative of the reach
curve with respect to λk has the form

∂R(t)

∂λk
=

∫ ∞
0

xke
∑N
n=0 λnx

n
(1− e−xt)dx (16)

which can be calculated by numeric integration. Thus given a set of points of the reach curve
{(ti, ri)} we can calculate the gradient of the reach estimation error

∇λ0,...,λN

(∑
i

(R(ti)− ri)2
)

= 2
∑
i

∂R(t)

∂λk
· (R(ti)− ri) (17)

and use it in the gradient descent algorithm to optimize the parameters λ0, . . . , λN .

4.3 Simulations

We illustrate the multiple device reach methods presented above using various simulation scenarios.
We begin with three examples demonstrating the performance of the Adaptive Dirac Mixture
algorithm for estimating both the underlying ADFs and more importantly the reach surface. We
also include a brief example for fitting the Generalized Exponential reach curve.

4.3.1 Adaptive Dirac Mixture

The Adaptive Dirac Mixture (ADM) algorithm is a very general procedure for estimating the Dirac
Mixture Model. It estimates the number of Dirac mixtures, their locations, and associated weights.
More details on this algorithm can be found in the Appendix. For each of our examples we begin

9We require that λN < 0 and note that λ0 is used as a normalizing constant so that A integrates to one.

10 Google Inc.

4. GENERAL APPROACH FOR MAPPING COOKIES TO USERS

by constructing a true underlying ADF. We next construct a training set of I campaigns. For
each campaign, we randomly simulate cookie counts across multiple cookie types (i.e., ti) using a
truncated (at 0) Gaussian with mean 0.5 and standard deviation of 1.5. We then use Equation 9
to find the corresponding reach. Hence we construct (ti, ri) for i = 1, · · · , I. Finally, we use these
as inputs to the ADM algorithm to estimate the ADF and associated reach surface. We assume no
error in the r’s for our examples. However, our simulations indicate that the algorithm is robust
against reasonable noise.

For our first example, we construct an ADF using nine Dirac mixtures located at random positions
all with equal weights (αk = 1/9). We randomly generate our I = 2, 000 campaigns and then
estimate the ADF. We initialize the algorithm with one Dirac and it converges with nine clusters
of Diracs each with weight very close to 1/9 and with locations indistiguishable from the original
ADF (see Figure 1).

In our second example, we increase the number of cookie types to three and use a continuous ADF,
specifically a trivariate Gaussian distribution with the mean of (0.7, 0.8, 1.0)′ and covariance matrix

 0.05, 0.05, 0.00
0.05, 0.10, 0.00
0.00, 0.00, 0.15


For this ADF, analytically solving Equation 9 is impossible and hence we use Monte-Carlo integra-
tion, specifically in the form of

R(t) =

∫
x∈R+

A(x) · (1− e−tx)dx ≈ 1

|Sample(A)|
∑

xl∈Sample(A)

(1− e−txl), (18)

where Sample(A) is a sample of |Sample(A)| points from the distribution A. In our simulations we
use 1,000 points. Note that this integration actually reduces the continuous distribution to a Dirac
mixture. Since the difference in estimated reach surfaces using different large samples is very small,
the ADM algorithm does not converge to the exact sample, but rather to some other configuration
that approximates the underlying continuous ADF.

Figure 2 shows the Sample(A) on the left and the estimated ADF using the ADM algorithm on the
right. For this example we increased I to 3,000. The top row shows the three-dimensional centers
of the ADFs while the middle and bottom rows show two-dimensional scatterplots. The estimated
ADF has mean (0.711, 0.818, 1.003) which is within three digits of the average from Sample(A).
The estimated ADF has covariance matrix

 0.046, 0.045, −0.001
0.045, 0.092, −0.001
−0.001, −0.001, 0.167


which is within two digits of the covariance matrix from Sample(A). Hence the majority of the
error is introduced by using Monte-Carlo integration rather than from the ADM algorithm.

Most important is how well we construct the reach surface as this is the ultimate use of this method.
Figure 3 shows the scatterplot of R̂i vs ci for the I campaigns on the left and the estimate reach
(R̂i) vs. the truth (Ri) on the right. In this example we see that the model almost exactly estimates
the true reach surface.

Google Inc. 11

5. CASE STUDY

For our third example, we make the ADF more complicated by taking a 50/50 mixture of trivari-
ate Gaussian distributions. The first distribution is the same as in Example 2 while the second
distribution has mean (1.5, 0.5, 0.5) and covariance matrix

 0.03̄, −0.03̄, 0.00
−0.03̄, 0.06̄, 0.00

0.00, 0.00, 0.15


Figure 4 shows the results in fitting this ADF - analogous to Figure 2. Again, we very closely
reconstruct the ADF (we are actually closer to Sample(A)) and the reach surface estimates are
reconstructed almost exactly (not shown but similar to Figure 3).

These examples (and other simulations we’ve performed) demonstrate that the ADM algorithm
with an appropriate amount of training data, starting from centers sampled uniformly at random
from a cube of an appropriate dimension, can closely approximate reasonably complex ADFs and
their associated reach surfaces.

4.3.2 Generalized Exponential Distribution

As discussed in Section 4.2.4, gradient descent can be used to estimate parameters of a Generalized
Exponential distribution. Since it involves doing computationally expensive numeric integration at
each step, we recommend using it with a very few pre-computed reach curve points. For instance,
the points can be obtained from counts of cookies and people for weekly and monthly audiences of
the network in question. Figure 5 is an example of an Generalized Exponential-based reach curve.
We fit it using gradient descent to pass through two points: (0.05, 0.04) and (1.0, 0.47).

5 Case Study

We illustrate the methods using desktop and smartphone campaigns served in Japan by the Google
Display Network, DoubleClick for Advertisers, and DoubleClick for Publishers. We first describe
the panel and the PPD available in the ad server logs. We then show the performance of the
cookie-correction models for both desktop and smartphone. And finally, we show the results for
the cross-device cookie-to-user models.

5.1 The panel

Panel data is provided by Intage10 from their i-SSP (INTAGE Single Source Panel). It includes
panelist weights that are calibrated to population benchmarks derived from the Population Census
conducted by Japan Statistic Bureau[12] and Intage’s propriertary survey. Figure 6 shows the
number of panelists by gender and 10-year age groups. It shows that the 13-17 (aka age 13 to 17)
and 65-99 age groups have very few panelists. In this case study, we remove all 13-17 panelists from
consideration, and merge 55-64 and 65-99 panelists into a common 55-99 age group, separately for
each gender.

10Intage’s web site: https://www.intage.co.jp/english

12 Google Inc.

5. CASE STUDY

5.2 Campaign data

This case study focuses on Google ads campaigns in Japan that were active from 2016/02/01 to
2016/02/28, and reached at least 10011 panelists from desktop or from smartphone. We collected
Google ad serving events for these campaigns together with their cookies and their YouTube de-
clared labels when available. YouTube declared labels are provided by users when they create their
YouTube accounts. Such labels were merged with Google ad events for logged-in users. Figure 7
shows the histograms of αij , the fraction of cookies that had YouTube declared labels in a campaign
for desktop and smartphone, respectively.

5.3 Corrected cookies by device

KSV describes the root mean squared error (RSME) for measuring the goodness of fit of a model.
We introduce the shuffle distance as an additional metric to gain better interpretation and insight
of the performance of the model’s ability to estimate demographic decompositions. The shuffle
distance is very similar to edit distance [5]. It measures the difference between two proportion
vectors by computing the minimum fraction that needs to be relabelled to achieve an exact match.
In our case, shuffle distance is defined as

shuffleij =
||yij − ŷij ||1

2
. (19)

yij represents the demo proportion of cookies observed from panel data for campaign i and device
j. It is regarded as ground truth for training. ŷij represents our model estimate.

Section 3 describes the methodology for training per device cookie-correction models for both
impressions and cookies. This case study only focuses on cookie-correction models for desktop and
smartphone. The redistribution matrix Bj , where j indexes device, represents the probabilty of
true demo of a cookie given its observed YouTube label. It can be computed directly by counting
weighted (using associated panelists weights) cookies by their true demo (rows) and YouTube labels
(columns) and then column normalizing. The correction matrix Aj is trained by campaigns using
cookies from device j. For these models we require for each training campaign that at least 100
panelists are reached for the desktop (smartphone) models. We use unconstrained linear regression
as discussed in KSV.

Table 1 summarizes the performance of our models for demographic proportions. The first and
the second rows in the table are for the cookie-correction models for desktop and smartphone,
respectively. The third and the fourth rows are for the overall cross-device people demographics,
and will be discussed in the next section.

The first column in Table 1 reports the number of campaigns. The second and third columns are
RMSE and the average shuffle distance for 10-fold cross validation. The last three columns report
the performance of models trained and evaluated using all data samples. Ten-fold cross validation
[14][2] is a standard model validation technique for assessing how the results of a statistical model
will generalize to an unseen data set. The fact that the performance of 10-fold validation is very close
to those using all campaigns confirms that the training procedure does not have any generalization
or overfitting issues.

11While arbitrary, we require campaigns to have at least 100 panelists reached to maintain precision of the “ground
truth” estimated from the panel. Using a lower cutoff allows too many noisy campaigns into the dataset while using
a higher cutoff biases the dataset towards large campaigns. With a 100 panelists cutoff, we are able to include
campaigns with reach as low as 0.6%.

Google Inc. 13

5. CASE STUDY

In practice, we consider 20% shuffle distance to the ground truth is an acceptable difference. The
“%within20” (the last column in Table 1) measures the faction of campaigns whose shuffle distances
to the respective ground truth are less than 20%, and thus have acceptable performance. As shown
in the table, 92.0% of desktop campaigns and 90.5% of smartphone campaigns have their cookie
demos estimated within the acceptable distance (20% shuffle distance) to their respective panel
truths.

Figures 8 and 9 show the demo proportion comparison for cookies between the “panel” ground truth
(y-axis) and the estimate (x-axis) for each demo group for desktop and smartphone, respectively.
These plots show that our model fits the training campaigns reasonably well for both desktop and
smarpthone.

5.4 Cross-device people demo and reach

The previous section evaluates the per device cookie-correction model. This section evaluates the
cross-device cookie-to-user models for the independence model as described in Section 4.1 and the
Dirac mixture model as described in Section 4.2.

5.4.1 Cross-device independence model

Following the methodology presented in Section 4.1, we first train Bow models for desktop and
smarphone, separately. These Bow models estimate people reached by cookies from a single device.
We then dedupe per device reach through the independence assumption (Equation 6).

The Dirac Bow model fits the training data better than the Exponential Bow model for both devices.
The fitted kappas are 0.92 and 1.00 for desktop and smartphone, respectively. As expected the
desktop model has a lower kappa as a person has more desktop cookies (because of higher chance
of cookie churn and multiple browsers) than smartphone cookies. Figures 10 and 11 shows per
device reach results for desktop and smartphone, respectively. Overall, the model reach estimates
match the panel estimates very closely. The smartphone model shows a close one-for-one matching
of cookies to people.

To evaluate the cross-device reach model using the independence assumption, we focus on cross-
device campaigns that have reached at least 100 panelists from desktop and at least 100 panelists
from smartphone. We evaluate the performance for both cross-device people demo decomposition
and cross-device people reach.

The third row in Table 1 shows the summary performance for cross-device people demographic
estimates. The results show that the independence cross-device model performs reasonably well:
91.3% of evaluation campaigns are within acceptable distance to their respective panel ground
truth. Figure 12 shows detailed comparisons of the cross-device people demographic proportions
between the model estimates and the panel ground truth.

The first row in Table 2 shows the summary performance of cross-device people reach for the
independence model. The cross-device reach estimates are within 10% of the panel estimates for
88.6% of campaigns. Figure 13 shows the reach performance for the campaigns. The left plot
shows the relative difference between estimated reach from the model and the ground truth from
the panel while the right plot shows the panel vs. model estimates.

In summary, the independence cross-device cookie-to-user model performs well for estimating both
the people-demographic proportions and total reach.

14 Google Inc.

6. CONCLUSION

5.4.2 Dirac Mixture Model

The Dirac mixture model described in section 4.2 was trained by the ADM algorithm described in
Appendix A.2. The fitted model has three Dirac delta functions (see parameters in Table 3). The
first Dirac delta represents people who have only smartphone devices (estimated at 10.6%), the
second Dirac delta represents people who have both desktop and smartphone devices (estimated
at 47.0%), and the third Dirac delta represents people who have only desktop devices (estimated
at 42.4%). While the properties of the Dirac mixtures are interesting, they are ultimately a means
to estimate the reach surface and hence should not be over-interpreted.

The fourth row in Table 1 shows the summary performance for cross-device people demographic
estimates. The %within20 is 90.9% which is slightly better than the independence model although
all metrics are very close between the two models. Figure 14 shows detailed comparisons of the
cross-device people demographic proportions between the model estimates and the panel ground
truth. The results are almost identical to those for the independence model (Figure 12).

The second row in Table 2 shows the summary performance of cross-device people reach using the
Dirac mixture model. The cross-device reach estimates are within 10% of the panel estimates for
88.1% of campaigns - slightly better than the independence model. Figure 15 shows the reach
performance by campaigns for the Dirac mixture model. Again, it has very similar results as the
independence model.

6 Conclusion

We have developed a generalized methodology for measuring the reach and frequency of online
audiences with demographic breakdowns. The method handles cross-device audiences and combi-
nations of cookie types and therefore can measure both signed-in and signed-out users. The method
calibrates ad server logs and PPD using a smaller high-quality panel that is itself calibrated to cen-
sus benchmarks. To measure cross-device audiences, we have introduced an Activity Distribution
Function that models the joint cookie ownership distribution across a population. We’ve included
algorithms for fitting the ADF and provided simulation results that demonstrates the method
provides accurate results given enough training data from the calibration panel.

We demonstrated the method using data from Japan where we fit two reach models:

• one that assumes that campaigns reach desktop and smartphone users independently

• one using the Dirac mixture model and fit using the ADM algorithm

In this example, both models fit the campaign data well with over 90% of campaigns within 20%
shuffle distance for demographic breakdowns and over 88% of campaigns within 10% for reach.
Apparently, for these data, the independence assumption is not too strict an assumption. However,
in general, not all markets nor device combinations considered will adhere to this assumption. The
Dirac mixture model, with its added flexibility, fits slightly better and provides a more generalized
solution.

Google Inc. 15

REFERENCES REFERENCES

References

[1] Bethlehem, J. Selection bias in web surveys. International Statistical Review, 78(2), 161-188,
2010.

[2] Cross validation wiki. More information of cross validation can be found in
https://en.wikipedia.org/wiki/Cross-validation (statistics)

[3] Danaher, P. Modeling Pageviews across multiple websites with an application to internet
reach and frequency prediction. Marketing Science, 26(3), 422-437, 2007.

[4] Dirac, P. (1958), The Principles of Quantum Mechanics (4th ed.), Oxford at the Clarendon
Press, ISBN 978-0-19-852011-5.

[5] Edit distance. Wiki page for edit distance: https://en.wikipedia.org/wiki/Edit distance

[6] Georg, G. (2014) Estimating reach curves from one data point. Technical report, Google,
Inc.
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43218.pdf

[7] Hanebeck, U, M Huber, and V Klumpp. Dirac mixture approximation of multivariate Gaus-
sian densities. Joint 48th IEEE conf. on decision and control and the 28th chinese control
conference. Shanghai, P R China. Dec. 16-18, 2009. p3851-8.

[8] Hanebeck, U, and O Schrempf. Greedy algorithms for Dirac mixture approximation of ar-
bitrary probability density functions. Proceedings of the 2007 IEEE conference on decision
and control (CDC 2007). New Orleans, LA. Dec. 2007. p3065-71.

[9] Huang, C-Y and C-S Lin. Modeling the audience’s banner ad exposure for internet advertising
planning. J. Advertising, 35(2), 23-37, 2006.

[10] Hormozi, A. Cookies and privacy. EDPACS. Vol.32, Iss. 9; pp. 1-13, 2005.

[11] Jin, Y, S Shobowale, J Koehler, and H Case. (2012) The incremental reach and cost efficiency
of online video ads over tv ads. Techinical report, Google, Inc.
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/40426.pdf

[12] Japan Population Census and Statistics Bureau, Japan. 2010 population census.
http://www.stat.go.jp/english/data/kokusei/index.htm

[13] Koehler, J, E Skvortsov, and W Vos. A method for measuring online audiences. Technical
report, Google Inc.
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/41089.pdf

[14] Stone M. Cross-validatory choice and assessment of statistical predictions. J. Royal Stat.
Soc., 36(2), 111-147, 1974

[15] Wu, X. Calculation of maximum entropy densities with application to income distribution.
Journal of Econometrics, 115(2), 347-354, 2003.

16 Google Inc.

REFERENCES A. ALGORITHMS

A Algorithms

In this section we describe practical algorithms for fitting reach surfaces. The first two algorithms
show how to fit marginal reach curves for the Exponential and Dirac Bow models, respectively. The
third and fourth algorithms generalize this to fit reach surfaces using the Dirac Mixture Model.
Algorithm 3 assumes that the Dirac mixture centers are fixed and hence uses least squares to find
the population fractions (α’s). Algorithm 4 shows the adaptive Dirac mixture algorithm where the
number and location of the Dirac mixtures are allowed to vary. Lastly, we describe how to fit the
Generalized Exponential ADF in Algorithm 5.

A.1 Building reach surfaces from simple marginals

When we build cross-device reach surface via independence assumption we just need to fit the reach
marginals. The Exponential Bow and Dirac Bow models use two coefficients: κ and the maximum
population estimate P . Now for the population limit it is natural to use the internet population
usually available from census data and hence the models only have one parameter to estimate.
When fitting to panel data it is reasonable to set P to be the total number of panelists.

The Intuitive interpretation of the κ parameter is the number of people per cookie in small audi-
ences. We recommend estimating κ via quantile regression by selecting the median κ going through
points of your training data.

input : training data {(ci, ri)}i∈{1,...,n}, imposed limit P

set κ to be an empty array;
for i ∈ {1, . . . , n} do

append element riP
ciP−rici to the end of κ

end
return median(κ)

Algorithm 1: Exponential Bow Model

input : training data {(ci, ri)}i∈{1,...,n}, imposed limit P

set κ to be an empty array;
for i ∈ {1, . . . , n} do

append element −P log(1−ci/P)
ti

to the end of κ

end
return median(κ)

Algorithm 2: Dirac Bow Model

A.2 Building reach surfaces from Dirac mixtures

As it was mentioned above, when we have a collection of locations of delta functions then the Dirac
Mixture can be fit using least squares. We define [x0

1, . . . ,x
0
K] as a matrix composed of vectors

x0
1, . . . ,x

0
K as its columns.

If the dimensionality (e.g. number of devices) of your model is low (say 1 or 2) then the activity
space can be covered by a grid of reasonably high precision and Algorithm 3 can be used to find
weights (α’s) of the delta functions located on the grid. As the dimensionality increases above
two, the size of a grid with reasonable resolution becomes prohibitively high. For instance, in four

Google Inc. 17

A. ALGORITHMS REFERENCES

dimensions a grid of 10 points in each dimension has 10,000 points. For this situation the Adaptive
Dirac Mixture algorithm is better. It tries to locate the number of delta functions, their optimal
positions, and associated weights.

In summary, Algorithm 4 does at each iteration

• adds new centers around existing ones,

• finds optimal weights of the new set of centers and

• removes centers of zero weight.

input : training data {(ci, ri)}i∈{1,...,n}, imposed maximum population P , locations of
delta functions, J-dimensional vectors {dk}k∈{1,...,K}

output : A collection of delta function centers and coefficients {(dk, αk)}k∈{1,...,K}
defining a Dirac Mixture

let Cik = 1− eci·dk ; // C is n×m matrix

let α = NNLS(C, r) ; // α is m-dimensional

return {(dk, αk)}k∈{1,...,K}
Algorithm 3: Dirac Mixture Coefficients

input : training data {(ci, ri)}i∈{1,...,n}, imposed maximum population P
output : A collection of delta function centers and coefficients {(dk, αk)}k∈{1,...,K}

defining a Dirac Mixture
parameters: l: number of random centers to add at each step, σ: variance of random

centers, N : number of iterations to run
let m = 1;
let α1 = 1;

let d1 = (1, . . . , 1) ; // Starting with 1− e−
∑
cj/P

for iteration ∈ {1, . . . , T} do
sample {dk}k∈{m+1,...,m+l} from

∑m
k=1 αkN (dk, diagonal(σ));

let m = m+ l;
let α be result of the call to Algorithm 3 on {(ci, ri)}i∈{1,...,n} and {dk}k∈{1,...,m};
update m,α, {dk}k∈{1,...,m} removing αk,dk where αk = 0

end

Algorithm 4: Adaptive Dirac Mixtures

A.3 Fitting a Generalized Exponential ADF

Recall that parameters λ1, . . . , λN of a Generalized Exponential ADF can be fit via gradient descent,
where the gradient is computed by formula (16).

18 Google Inc.

REFERENCES A. ALGORITHMS

input : training data {(ci, ri)}i∈{1,...,n}, imposed maximum population P
output : A set of parameters λ0, . . . , λN defining a Generalized Exponential ADF that

approximates the training data.
let λ0 = 1, λ1 = −1 and λn = 0 for n > 1 ; // starting with an Exponential Bow

for iteration ∈ {1, . . . , T} do
compute gradient of reach estimation error ∇ using formulas (16) and (17);
update λ0, . . . , λN subtracting ∇;

end

Algorithm 5: Fitting a Generalized Exponential ADF by Gradient Descent

Tables

10-fold CV Full samples

#campaigns avg shuffle RSME avg shuffle RSME %within20

Desktop (indep. model) 4418 0.121 0.0336 0.121 0.0334 92.0%

Smartphone (indep. model) 766 0.128 0.0339 0.125 0.0339 90.5%

X-device (indep. model) 596 0.114 0.0321 91.3%

X-device (Dirac mix model) 596 0.115 0.0324 90.9%

Table 1: Demo performance. The first two rows provide evaluation results for the desktop and the smart-
phone cookie-correction models using the independence model, respectively. The third and the forth rows
are the evaluation for cross-device people demo for the indendence model and the Dirac mixture model,
respectively.

#campaigns Avg relative diff %within10 %within20

Independence model 596 0.057 88.6% 96.6%

Dirac mixture model 596 0.053 88.1% 96.6%

Table 2: Cross-device people reach performance for the independence model and the Dirac mixture model.
Relative difference is the defined as the absolute difference between the ground truth (reach observed from
panel data) and the estimated reach from our model divided by the ground truth. %within10 and %within20
are the fraction of campaigns whose relative differences to their ground truths are less than 10% and 20%,
respectively.

Dirac delta index 1 2 3

Weight (α) 0.106 0.470 0.424

Desktop (xi1) 0.00 0.922 1.10

Smartphone (xi2) 4.64 1.28 0.00

Table 3: Estimated parameters of Dirac mixture model using the ADM algorithm. It has three Dirac
deltas shown as columns. Each Diract delta is paramerized by weight (α), desktop activity and smartphone
activity.

Google Inc. 19

A. ALGORITHMS REFERENCES

Figures

Figure 1: True locations of the ADF Dirac Mixture (left) and the result of the ADM algorithm (right)
using the simulated training data from Example 1.

20 Google Inc.

REFERENCES A. ALGORITHMS

Figure 2: True locations of the ADF Dirac Mixture (left) and the result of the ADM algorithm (right)
using the simulated training data corresponding to a 3-dimensional Gaussian ADF from Example 2.

Google Inc. 21

A. ALGORITHMS REFERENCES

Figure 3: Cookies-to-people (left) and reach truth-to-estimate (right) scatterplots for the simulated three-
dimensional normal ADF from Example 2 (see also Figure 2).

22 Google Inc.

REFERENCES A. ALGORITHMS

Figure 4: True locations of the ADF Dirac Mixture (left) and the result of the ADM algorithm (right)
using the simulated training data corresponding to a 3-dimension Gaussian mixture ADF from Example 3.

Google Inc. 23

A. ALGORITHMS REFERENCES

Figure 5: Generalized Exponential based curve.

Figure 6: The number of panelists by gender and 10-year age demo group.

24 Google Inc.

REFERENCES A. ALGORITHMS

Figure 7: Distribution of cookie proportions with YouTube labels across campaigns, split by device.

Google Inc. 25

A. ALGORITHMS REFERENCES

Figure 8: Demographic performance of the desktop cookie-correction model. For each demo group,
the scatter plot compares the proportion of cookies in a campaign observed from panel data (truth demo in
y-axis) to that estimated based on our cookie-correction model (estimated demo in x-axis). The green line
marks the identity line.

26 Google Inc.

REFERENCES A. ALGORITHMS

Figure 9: Demographic performance of the smartphone cookie-correction model. For each demo
group, the scatter plot compares the proportion of cookies in a campaign observed from panel data (truth
demo in y-axis) to that estimated based on our cookie-correction model (estimated demo in x-axis). The
green line marks the identity line.

Google Inc. 27

A. ALGORITHMS REFERENCES

Figure 10: Desktop Reach performance of the Dirac Bow model with κ0 = 0.92. The left plot shows the
relative difference between the truth (observed reach from panel data) and the model estimate (y-axis) vs.
the truth (x-axis) for campaigns. The horizontal lines mark zero and ±10% relative differences. The right
plot is the panel reach (i.e. the number of people reached by a campaign divided by total population) vs.
the normalized cookie reach (i.e. the number of cookies divided by total population). The circles represent
the panal reach for a campaign. The smoothed line is the reach prediction by the Dirac Bow model.

28 Google Inc.

REFERENCES A. ALGORITHMS

Figure 11: Smartphone reach performance of the Dirac Bow model with κ0 = 1.00. The left plot shows
the relative difference between the truth (observed reach from panel data) and the model estimate (y-axis)
vs. the truth (x-axis) for campaigns. The horizontal lines mark zero and ±10% relative differences. The right
plot is the panel reach (i.e. the number of people reached by a campaign divided by total population) vs.
the normalized cookie reach (i.e. the number of cookies divided by total population). The circles represent
the panal reach for a campaign. The smoothed line is the reach prediction by the Dirac Bow model.

Google Inc. 29

A. ALGORITHMS REFERENCES

Figure 12: Demographic performance of the independence cross-device model for people demographic
decomposition using cross-device campaigns.

30 Google Inc.

REFERENCES A. ALGORITHMS

Figure 13: Reach performance for cross-device people using the independence cross-device model. The
left panel shows the relative difference between truth (observed reach from the panel data) and its estimate.
The right panel shows the truth vs. estimated reach.

Google Inc. 31

A. ALGORITHMS REFERENCES

Figure 14: Demographic performance of Dirac mixture model for people demographic decomposition
using cross-device campaigns.

32 Google Inc.

REFERENCES A. ALGORITHMS

Figure 15: Reach performance for cross-device people using the Dirac mixture model. The left panel
shows the relative difference between truth (observed reach from panel data) and its estimate. The right
panel shows the truth vs. estimated reach.

Google Inc. 33

