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Abstract. Large flows like video streams consume signifi-
cant bandwidth. Some ISPs actively manage these high vol-
ume flows with techniques like policing, which enforces a
flow rate by dropping excess traffic. While the existence of
policing is well known, our contribution is an Internet-wide
study quantifying its prevalence and impact on transport-
level and video-quality metrics. We developed a heuristic to
identify policing from server-side traces and built a pipeline
to process traces at scale collected from hundreds of Google
servers worldwide. Using a dataset of 270 billion packets
served to 28,400 client ASes, we find that, depending on re-
gion, up to 7% of connections are identified to be policed.
Loss rates are on average 6× higher when a trace is policed,
and it impacts video playback quality. We show that alterna-
tives to policing, like pacing and shaping, can achieve traffic
management goals while avoiding the deleterious effects of
policing.

CCS Concepts
•Networks→Network measurement; Network performance
analysis;

1. INTRODUCTION
Internet traffic has increased fivefold in five years [16],

much of it from the explosion of streaming video. YouTube
and Netflix together contribute nearly half of the traffic to
North American Internet users [47,55,66]. Content providers
want to maximize user quality of experience. They spend
considerable effort optimizing their infrastructure to deliver
data as fast as possible [11, 25, 29].

In contrast, an ISP needs to accommodate traffic from a
multitude of services and users, often through different ser-
vice agreements such as tiered data plans. High-volume ser-
vices like streaming video and bulk downloads that require
high goodput must coexist with smaller volume services like
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Policing

Enforces rate by dropping excess packets immediately
– Can result in high loss rates
+ Does not require memory buffer
+ No RTT inflation

Shaping

Enforces rate by queueing excess packets
+ Only drops packets when buffer is full
– Requires memory to buffer packets
– Can inflate RTTs due to high queueing delay

Table 1: Overview of policing and shaping.

search that require low latency. To achieve coexistence and
enfore plans, an ISP might enforce different rules on its traf-
fic. For example, it might rate-limit high-volume flows to
avoid network congestion, while leaving low-volume flows
that have little impact on the congestion level untouched.
Similarly, to enforce data plans, an ISP can throttle through-
put on a per-client basis.

The most common mechanisms to enforce these policies
are traffic shaping – in which traffic above a preconfigured
rate is buffered – and traffic policing – in which traffic above
the rate is dropped [15]. Table 1 compares both techniques.
To enforce rate limits on large flows only, networks often
configure their shapers and policers (the routers or middle-
boxes enforcing rates) to accommodate bursts that temporar-
ily exceed the rate. In this paper, we focus on policing and
briefly discuss shaping (§5.1.2).
The Impact of Policing. Policing is effective at enforc-
ing a configured rate but can have negative side effects for
all parties. While operators have anecdotally suggested this
problem in the past [15, 62], we quantify the impact on con-
tent providers, ISPs, and clients at a global scale by an-
alyzing client-facing traffic collected at most of Google’s
CDN servers, serving clients around the world. Policing im-
pacts content providers: it introduces excess load on servers
forced to retransmit dropped traffic. Globally, the average
loss rates on policed flows are over 20%! Policing impacts
ISPs: they transport that traffic across the Internet from the
content provider to the client, only for it to be dropped. With
20% loss, a fifth of the bandwidth used by affected flows is
wasted — the content provider and ISPs incur costs transmit-
ting it, but it never reaches the client. This traffic contributes
to congestion and to transit costs.

Policing impacts clients: ISP-enacted policing can inter-
act badly with TCP-based applications, leading to degraded
video quality of experience (QoE) in our measurements. Bad
QoE contributes to user dissatisfaction, hurting content pro-
viders and ISPs.

Figure 1 shows the time-sequence plot of a policed flow
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Figure 1: TCP sequence graph for a policed flow: (1 and 4)
high throughput until token bucket empties, (2 and 5) multiple
rounds of retransmissions to adjust to the policing rate, (3) idle
period between chunks pushed by the application.

collected in a lab experiment (see §3). Because the policer
is configured to not throttle short flows, the flow ramps up to
over 15 Mbps without any loss (bubble 1), until the policer
starts to throttle the connection to a rate of 1.5 Mbps. Since
packets are transmitted at a rate that exceeds the policed rate
by an order of magnitude, most of them are dropped by the
policer and retransmitted over a 5-second period (2). Fol-
lowing the delivery of the first 2 MB, the sender remains
idle until more application data becomes available (3). Since
the flow does not exhaust its allotted bandwidth in this time
frame, the policer briefly allows the sender to resume trans-
mitting faster than the policing rate (4), before throttling the
flow again (5). Overall, the flow suffers 30% loss.
Understanding Policing. Little is known about how traffic
policing is deployed in practice. Thus, we aim to answer the
following questions at a global scale: (1) How prevalent is
traffic policing on the Internet? (2) How does it impact appli-
cation delivery and user quality of experience? (3) How can
content providers mitigate adverse effects of traffic policing,
and what alternatives can ISPs deploy?

The question of user experience is especially important,
yet ISPs lack mechanisms to understand the impact of traffic
management configurations on their users. They lack visi-
bility into transport-layer dynamics or application-layer be-
havior of the traffic passing through their networks. Further,
policing means that content providers lack full control over
the performance experienced by their clients, since they are
subject to ISP-enacted policies that may have unintended in-
teractions with applications or TCP.

To answer these questions, we need to overcome two hur-
dles. First, traffic management practices and configurations
likely vary widely across ISPs, and Internet conditions vary
regionally, so we need a global view to get definitive an-
swers. Second, it is logistically difficult, if not impossible,
to access policer configurations from within ISPs on a global
scale, so we need to infer them by observing their impact on
traffic and applications. We address these hurdles and an-
swer these three questions by analyzing captured traffic be-
tween Google servers and its users.
Contributions. We make the following contributions:

1. We design and validate an algorithm to detect traffic
policing from server-side traces at scale (§2, §3).

Region Policed segments Loss rate
(among lossy) (overall) (policed) (non-pol.)

India 6.8% 1.4% 28.2% 3.9%
Africa 6.2% 1.3% 27.5% 4.1%
Asia (w/o India) 6.5% 1.2% 22.8% 2.3%
South America 4.1% 0.7% 22.8% 2.3%
Europe 5.0% 0.7% 20.4% 1.3%
Australia 2.0% 0.4% 21.0% 1.8%
North America 2.6% 0.2% 22.5% 1.0%

Table 2: % segments policed among lossy segments (≥ 15
losses, the threshold to trigger the policing detector), and over-
all. Avg. loss rates for policed and unpoliced segments.

2. We analyze policing across the Internet based on global
measurements (§4). We collected over 270 billion pack-
ets captured at Google servers over a 7-day span. This
dataset gives us insight to traffic delivered to clients
all over the world, spread across over 28,400 different
autonomous systems (ASes).

3. We describe solutions for ISPs and content providers
to mitigate adverse effects of traffic management (§5).

We find that between 2% and 7% of lossy transmissions
(depending on the region) have been policed (Table 2).1 While
we detected policing in only 1% of samples overall in our
dataset, connections with packet loss perform much worse
than their loss-free counterparts [22, 68]. Thus, understand-
ing and improving the performance for lossy transmissions
can have a large impact on average performance [22]. We
find that policing induces high packet loss overall: on aver-
age, a policed connection sees over 20% packet loss vs. at
most 4.1% when no policing is involved. Finally, policing
can degrade video playback quality. Our measurements re-
veal many cases in which policed clients spend 15% or more
of their time rebuffering, much more than non-policed con-
nections with similar goodput. With every 1% increase in
rebuffering potentially reducing user engagement by over 3
minutes [18], these results would be troubling for any con-
tent provider.

While this study primarily highlights the negative side ef-
fects of policing, our point is not that all traffic manage-
ment is bad. ISPs need tools to handle high traffic vol-
umes while accommodating diverse service agreements. Our
goal is to spur the development of best practices which al-
low ISPs to achieve management needs and better utilize
networks, while also enabling content providers to provide
a high-quality experience for all customers. As a starting
point, we discuss and evaluate how ISPs and content providers
can mitigate the adverse effects of traffic management (§5).

Stepping back, this paper presents an unprecedented view
of the Internet: a week of (sampled) traffic from most of
Google’s CDN servers, delivering YouTube, one of the largest
volume services in the world serving 12-32% of traffic world-
wide [55]; a global view of aspects of TCP including loss
rates seen along routes to networks hosting YouTube’s huge
user base; measurements of policing done by the middle-
boxes deployed in these networks; and statistics on client-
1The video traffic we examine is delivered in segments (or chunks), thus
we analyze the dataset on a per-segment granularity. Many video content
providers stream video in segments, permitting dynamic adaptation of de-
livery to network changes.



side quality of experience metrics capturing how this polic-
ing impacts users. The analysis pipeline built for this paper
enabled this scale of measurement, whereas previous stud-
ies, even those by large content providers like Google, were
limited to packet captures from fewer vantage points [2, 20,
22, 27, 38, 52, 68].

2. DETECTING & ANALYZING POLIC-
ING AT SCALE

In this section, we present an algorithm for detecting whether
a (portion of a) flow is policed or not from a server-side trace.
We added this algorithm to a collection and analysis frame-
work for traffic at the scale of Google’s CDN.

2.1 Detecting Policing
Challenges. Inferring the presence of policing from a server-
side packet trace is challenging for two reasons. First, many
entities can affect traffic exchanged between two endpoints,
including routers, switches, middleboxes, and cross traffic.
Together they can trigger a wide variety of network anoma-
lies with different manifestations in the impacted packet cap-
tures. This complexity requires that our algorithm be able to
rule out other possible root causes, including congestion at
routers.2 The second challenge is to keep the complexity
of policing detection low to scale the detection algorithm to
large content providers.
Definition. Traffic policing refers to the enforcement of
a rate limit by dropping any packets that exceed the rate
(with some allowance for bursts). Usually, traffic policing
is achieved by using a token bucket of capacity N , initially
filled with m tokens. Tokens are added (maximum N tokens
in the bucket) at the preconfigured policing rate r. When a
packet of length p arrives, if there are ≥ p tokens available,
the policer forwards the packet and consumes p tokens. Oth-
erwise it drops the packet.
Goal. The input to our algorithm is an annotated packet
flow. Our analysis framework (§2.2) annotates each packet
to specify, among other things: the packet acknowledgement
latency, as well as packet loss and retransmission indicators.

Our goal is to detect when traffic is policed, i.e., when
a traffic policer drops packets that exceed the configured
rate. Our approach uses loss events to detect policing (as
described below).3 If a flow requires fewer than m tokens,
policing will not kick in and drop packets, and we do not
attempt to detect the inactive presence of such a policer.
The output of the algorithm is (a) a single bit that specifies
whether the flow was policed or not, and (b) an estimate of
the policing rate r.
Detection. Figure 2 outlines our policing detector (PD, for
short). PD starts by generating the estimate for the token
2Whether tail-drop or those using some form of active queue management,
such as Random Early Drop (RED) or CoDel [24, 48].
3Since we rely on loss signals, we only detect policing when a flow experi-
ences loss. To be robust against noise, we only run the algorithm on flows
with 15 losses or more. We derived this threshold from a parameter sweep,
which found that lower thresholds often produced false positives. On aver-
age, flows marked as policed in our production environment carried about
600 data packets out of which 100 or more were lost.

Variable: r (estimated policing rate)
Variable: pfirst_loss, plast_loss (first/last lost packet)
Variable: tu, tp, ta (used/produced/available tokens)
Variable: lloss, lpass (lists of # tokens available when

packets were lost/passed)
Variable: nloss, npass (fraction of lost/passed packets

allowed to not match policing constraints)
1 r ←rate(pfirst_loss, plast_loss);
2 tu ← 0;
3 for pcurrent ← pfirst_loss to plast_loss do
4 tp ← r · (time(pcurrent)− time(pfirst_loss));
5 ta ← tp − tu;
6 if pcurrent is lost then
7 Add ta to lloss;
8 else
9 Add ta to lpass;

10 tu ← tu+bytes(pcurrent);

11 if average(ta in lloss) < average(ta in lpass)
12 and median(ta in lloss) < median(ta in lpass)
13 and |[ta ∈ lloss : ta ≈ 0]| ≥ (1− nloss) · |lloss|
14 and |[ta ∈ lpass : ta & 0]| ≥ (1− npass) · |lpass|
15 and RTT did not increase before pfirst_loss then
16 Add traffic policing tag to flow;

Figure 2: Policing Detector

refresh rate r, as follows. We know that a policer drops
packets when its token bucket is empty. Assuming losses
are policer-induced, we know there were not enough tokens
when the first loss (pfirst_loss) and last loss (plast_loss) hap-
pened within a flow. All successfully delivered packets in-
between must have consumed tokens produced after the first
loss. Thus, PD uses the goodput between the first and last
loss to compute the token production rate (line 1).4 Our al-
gorithm is robust even if some losses have other root causes,
such as congestion, so long as most are due to policing.

Next, PD determines if the loss patterns are consistent with
a policer enforcing rate r. To do so, it estimates the bucket
fill level as each packet arrives at the policer and verifies if
drops are consistent with expectation. For this estimation, it
computes the following values for each packet between the
first and the last loss (lines 3–10).

• The number of produced tokens tp, i.e., the overall
(maximum) number of bytes that a policer would let
through up to this point (line 4), based on the good-
put estimate and the elapsed time since the first loss
(telapsed = time(pcurrent)− time(pfirst_loss)).
• The number of used tokens tu, i.e., the number of bytes

that passed through the policer already (line 10).
• The number of available tokens ta, i.e., number of bytes

that a policer currently would let through based on the
number of produced and already used tokens (line 5).

If the number of available tokens is roughly zero, i.e., the
4If the first and/or last loss are not triggered by policing we potentially mis-
calculate the policing rate. To add robustness against this case, we always
run the algorithm a second time where we cut off the first and last two losses
and reestimate the policing rate.



token bucket is (almost) empty, we expect a packet to be
dropped by the policer. Conversely, if the token count is
larger than the size of the packet, i.e., the token bucket accu-
mulated tokens, we expect the packet to pass through. The
exact thresholds depend on the goodput and the median RTT
of the connection to account for the varying offsets between
the transmission timestamp of packets that we record and the
arrival times at the policer.

Based on this intuition, PD infers traffic policing if all
of the following conditions hold (lines 11–15). First, the
bucket should have more available tokens when packets pass
through than when packets are lost. Second, we expect the
token bucket to be roughly empty, i.e., ta ≈ 0 in the case of
a lost packet. This check ensures that losses do not happen
when the token bucket is supposed to have sufficient tokens
to let a packet pass (ta � 0), or when the token bucket
was supposed to be empty and have dropped packets earlier
(ta < 0). We allow a fraction of the samples (at most nloss)
to fail this condition for robustness against noisy measure-
ments and sporadic losses with other root causes. A similar
condition applies to the token counts observed when packets
pass through, where we expect that the number of available
tokens is almost always be positive. We allow fewer out-
liers here (at most npass < nloss) since the policer always
drops packets when the token bucket is empty. We derived
the noise thresholds nloss and npass from a parameter sweep
in a laboratory setting (§3.1) with a preference for keeping
the number of false positives low. For our analysis, we used
nloss = 0.1 and npass = 0.03. Finally, PD excludes cases
where packet losses were preceded by RTT inflation that
could not be explained by out-of-order delivery or delayed
ACKs. This check is another safeguard against false posi-
tives from congestion, often indicated by increasing buffer-
ing times and RTTs before packets are dropped due to queue
overflow.

By simulating the state of a policer’s token bucket and
having tight restrictions on the instances where we expect
packets to be dropped vs. passed through, we reduce the risk
of attributing losses with other root causes to interference by
a policer. Other causes, like congestion, transient losses, or
faulty router behavior, will, over time, demonstrate different
connection behaviors than policing. For example, while a
policed connection can temporarily achieve a goodput above
the policing rate whenever the bucket accumulates tokens, a
connection with congestion cannot do the same by temporar-
ily maintaining a goodput above the bottleneck rate. Thus,
over time the progress on connections affected by congestion
will deviate from progress seen on policed connections.

2.2 Analyzing Flow Behavior At Scale
We have developed, together with other collaborators within

Google, a pipeline for analyzing flows at scale. The first
step of this pipeline is a sampler that efficiently samples
a small fraction of all flows based on 5-tuple hashes, cap-
turing all the headers and discarding the payload after the
TCP header. The sampler is deployed at most of Google’s
CDN servers and periodically transfers collected traces to
an analyzer backend in a datacenter. By running the analy-

sis online in a datacenter, we minimize the processing over-
head introduced on the CDN servers. As the traces arrive at
the analyzer backend, an annotator analyzes each flow. We
designed the annotator to be broadly applicable beyond de-
tecting policing; for example, in §5.1.2, we use it to detect
traffic shaping. For each trace, the annotator derives anno-
tations at the individual packet level (e.g., the RTT for the
packet, or whether the packet was lost and/or a retransmis-
sion), and at the flow level (e.g., the loss rate and average
throughput experienced by the flow). It can also identify
application-level frames within a flow, such as segments (or
chunks) in a video flow. The annotator also captures more
complex annotations, such as whether a connection expe-
rienced bufferbloat [26]. PD is just one component of the
annotator: it annotates whether a segment was policed and,
if so, at what rate.

Developing these annotations was challenging. The an-
notation algorithms had to be fast since a single trace might
need several hundred annotations and we have many traces.
The more complex annotations also required significant do-
main knowledge and frequent discussions with experienced
network engineers looking at raw packet traces and identify-
ing higher-level structures and interactions. Also complicat-
ing the effort were the complexity of the TCP specification,
implementation artifacts, and application and network ele-
ment behavior that led to a very large variety in observed
packet traces. Our annotator is a significant step in packet
analysis at scale beyond existing tools [10, 12, 45, 51, 53, 58,
61, 63]. Our analysis framework helped us explore policing
in the wild and was also helpful in iterating over different
designs of complex annotations. The framework can detect
CDN-wide anomalies in near real-time (e.g., when traffic
from an ISP experiences significant loss).

3. VALIDATION
We validate our algorithm in two ways. First, we evaluate

the accuracy of PD by generating a large set of packet traces
in a controlled lab setting with ground truth about the under-
lying root causes for packet loss (§3.1). Second, we show
that the policing rates in the wild are consistent within an
AS, meaning the AS’s traces marked as policed have good-
put rates that cluster around only a few values, whereas the
remaining traces see goodput rates that are dispersed (§3.2).

3.1 Lab validation
Our lab experiments are designed to stress-test our algo-

rithm. We generated a large number of packet traces while
using different settings that cover common reasons for dropped
packets, focusing on the ones that could elicit traffic patterns
similar to a policed connection.

• Policing. We use a carrier-grade network device from
a major router vendor to enforce traffic policing. We
configured the device in much the same way an ISP
would to throttle their users, and we confirmed with
the router vendor that our configurations are consistent
with ISP practice. Across multiple trials, we set the
policing rates to 0.5, 1.5, 3, and 10 Mbps, and burst



Scenario Accuracy
A Policing (except (B) and (C) below) 93.1%
B Policing (special cases) 48.0%
C Policing (multiple flows) 12.3%
D Congestion (all AQM schemes) 100.0%
E Congestion (drop-tail, single flow, except (G)) 100.0%
F Random loss 99.7%
G Congestion (drop-tail, single flow, min. queue) 93.2%
H Congestion (drop-tail, multiple flows) 96.9%

Table 3: PD classification accuracy for several controlled sce-
narios.

sizes to 8kB, 100kB, 1MB, and 2MB.
• Congestion. We emulate a bottleneck link which gets

congested by one or multiple flows. We evaluated drop-
tail queueing and three active queue management (AQM)
schemes: CoDel [48], RED [24], and PIE [50]. We
varied bottleneck link rates and queue sizes across tri-
als using the same values as for the policing scenario.
• Random loss. We used a network emulator to ran-

domly drop 1% and 2% of packets to simulate the po-
tential behavior of a faulty connection.

We simulated traffic resembling the delivery of data chunks
for a video download, similar to the type of traffic we target
in our analysis in §4. Overall, we analyzed 14,195 chunks
and expected our algorithm to mark a chunk as policed if
and only if the trace sees packet loss and was recorded in
the Policing setting. Table 3 summarizes the results, with a
detailed breakdown of all trials available online [1].
Policed traces. PD was able to detect policing 93% of the
time for most policing configurations (A). The tool can miss
detecting policing when it only triggers a single large burst
of losses,5 or when the token bucket is so small that it allows
almost no burstiness and is therefore similar in behavior to
a low-capacity bottleneck with a small queue. We aggre-
gated these cases as special cases (B). PD is conservative in
order to avoid false positives for non-policed traces (D–H).
Consequently, we likely underestimate global policing lev-
els by failing to recognize some of the special cases (B).
We also analyzed the scenario where multiple flows towards
the same client are policed together (C). For our in-the-wild
study (§4), PD typically does not have visibility into all flows
towards a single client, as the CDN servers in the study in-
dependently select which flows to capture. To emulate this
setting in our validation, we also only supply PD with a sin-
gle flow, and so it can only account for some of the tokens
that are consumed at the policer. Therefore, its inference al-
gorithm is unable to establish a single pattern that is consis-
tent with policing at any given rate. Since we are interested
in a macroscopic view of policing around the globe, we can
tolerate a reduced detection accuracy for cases where clients
occasionally receive content through multiple connections
at the same time.6 We leave improving the algorithm’s ac-
curacy for this scenario to future work which would also re-
5Given only a single burst of losses, we cannot estimate a policing rate since
all losses happened at roughly the same time.
6For video transfers in our setting, most of the time only one connection
is actively transmitting a video chunk from the server to the client, even
though multiple connections are established between them.
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quire the deployment of a different sampling method.
Non-policed traces. In our experiments, PD correctly classi-
fies as non-policed almost all segments suffering from other
common network effects, including network bottlenecks such
as a congested link with packets dropped due to AQM (D)
or drop-tail policy (E, G, H), and random packet loss (F). PD
is able to rule out policing because it checks for consistent
policing behavior across many RTTs, and other network ef-
fects rarely induce loss patterns that consistently mimic the
policing signature over time. For example, when congestion
overflows a queue, it drops packets similar to a policer that
has exhausted tokens. However, over time congestion will
not always happen at exactly the same moment as a policer
enforcing the rate limit for a specific flow.

A closer look at the single-flow congestion cases shows
that only trials using the minimum configurable queue size
(8 kB) cause misclassifications (G). This is because a bot-
tleneck with almost no available queue size to temporarily
accommodate bursts results in the same packet loss patterns
as traffic passing through a policer. However, in the wild
(§4), 90% of the traces tagged as policed temporarily sus-
tain larger bursts of 30 kB or more and therefore cannot fall
in this category of false positives. In addition, a few cases
of congestion from background traffic (H) induced loss pat-
terns that were misclassified as policing. These cases have
inferred bottleneck rates that vary widely, whereas we show
in §3.2 that, in the wild, traces we classified as policed clus-
ter around only a handful of goodput rates per AS. Note
that a flow in the wild might experience more complex con-
gestion dynamics, e.g., when contending with hundreds of
other flows at a router. However, these dynamics are un-
likely to result in a per-chunk traffic pattern consistent with
a policer enforcing a rate (e.g., where losses always happen
when exceeding a certain throughput rate), and, even if there
are cases where chunks are misclassified as policed, we do
not expect this to happen consistently for a large number of
chunks within an AS.

Finally we validated our algorithm against traces gener-
ated by Kakhki et al. [32]. These traces were also generated
with carrier grade equipment, configured to perform traffic
shaping only. As such, none of the traces should be labeled
as policed by our tool. The 1,104 traces we analyzed con-
tained 205,652 data chunks, of which only 37 chunks were
falsely marked as policed by PD. This represents an accuracy
of 99.98% for this dataset.



3.2 Consistency of Policing Rates
Our case studies (discussed later in §4.5) suggest that polic-

ing rates are often tied to advertised data plan rates. Thus we
conjectured that, because most ASes have few plan rates, we
should observe few policing rates per AS. To validate this
conjecture, we computed the number of prevalent policing
rates seen per AS, based on traces from most of Google’s
CDN servers (see §4). We derived the minimum number of
rate clusters required to cover at least 75% of the policed
traces per AS. We define a rate cluster with center value v
as all rates falling into the range [0.95 · v, 1.05 · v]. For ex-
ample, the 1-Mbps cluster incorporates all rates that are ≥
0.95 Mbps and ≤ 1.05 Mbps. To find a solution, we use
the greedy algorithm for the partial set cover problem which
produces a good approximation of the optimal solution [40].

We looked at the distribution of goodput rates for seg-
ments marked as policed in ASes with at least 3% of their
traffic being policed. Rates in the majority of ASes can be
accounted for by 10 clusters or less (Figure 3). By visiting
ISP homepages, we observe that many offer a range of data
rates, some with reduced rates for data overages. Further,
many ISPs continue to support legacy rates. Thus it is not
surprising that we see more than just a couple of policing
rates for most ASes. In contrast, goodput rates in ASes with
no policing do not display clustering around a small num-
ber of rates and see a much wider spread. Since the false
positives in our lab validation see a wide spread as well, this
result provides us confidence that the traces we marked as
policed in our production dataset are mostly true positives.

4. POLICING IN THE WILD
In this section, we characterize the prevalence and impact

of policing in the Internet.
The dataset. We analyze sampled data collected from most
of Google’s CDN servers during a 7-day period in Septem-
ber 2015. The dataset consists of over 277 billion TCP pack-
ets, carrying 270 TB of data, associated with more than 800
million HTTP queries requested by clients in over 28,400
ASes. The TCP flows carried different types of content, in-
cluding video segments associated with 146 million video
playbacks. The dataset is a sampled subset (based on flow ID
hashing) of Google’s content delivery traffic. To tie TCP per-
formance to application performance, we analyze the data at
a flow segment granularity. A segment consists of the pack-
ets carrying an application request and its response (includ-
ing ACKs).
Overview of Results. In the following sub-sections, we
present our key findings:
• Especially in Africa, a sizable amount of throttled traf-

fic is limited to a rate of 2 Mbps or less, often inhibiting
the delivery of HD quality content (§4.1).
• Policing can result in excessive loss (§4.2).
• The user quality of experience suffers with policing, as

measured by more time spent rebuffering (§4.3).
• Policing can induce patterns of traffic and loss that in-

teract poorly with TCP dynamics (§4.4).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

C
D

F

Policing Rate (in Mbps)

Africa
India

South America
Asia (w/o India)

Europe
North America

Australia

Figure 5: Observed policing rates per segment.

• Through ISP case studies, we reveal interesting polic-
ing behavior and its impact, including losses on long-
distance connections. We also confirm that policing is
often used to enforce data plans (§4.5).

As an aside, we conducted a supplemental study on the
publicly available M-Lab NDT dataset7 using the same de-
tection algorithm [1, 23]. The results from the NDT dataset
support this paper’s findings in terms of the prevalence and
impact of policing in the wild. Our technical report includes
further analysis of policing rates within individual ISPs, per-
country breakdowns, and longitudinal trends seen over the
past seven years.

4.1 The Prevalence of Policing
A macroscopic analysis of the data (Table 2) shows that,

depending on geographic region, between 2% and 6.8% of
lossy segments were impacted by policing. Overall, between
0.2% and 1.4% of the segments were affected.

Which policing rates are prevalent across the globe? Fig-
ure 5 shows the rates enforced by policers. In Africa and In-
dia, over 30% of the policed segments are throttled to rates
of 2 Mbps or less. The most frequent policing rates in these
two regions are 1, 2, and 10 Mbps, as is evident from the pro-
nounced inflections in the CDF. In §4.5 we examine some
ISPs to demonstrate that this step-wise pattern of policing
rates that emerge in the data reflects the available data plans
within each ISP. The distributions in other regions of the
world show no dominant rates, with many segments being
permitted to transmit at rates exceeding 10 Mbps. This is
due to aggregation effects: these regions have many ISPs
with a wide variety of data plans. That said, even in these re-
gions, at least 20% of segments stream at less than 5 Mbps.

4.2 Impact of Policing on the Network
Policing noticeably increases the packet loss rate, which

can in turn affect TCP performance [22, 68] and user satis-
faction.8 In our dataset, we observed an average packet loss
7http://measurementlab.net/tools/ndt
8To ensure that packet loss is caused by policing instead of only being cor-
related with it (e.g., in the case where policing would be employed as a
remedy to excessive congestion in a network), we compared the perfor-
mance of policed and unpoliced flows within an AS (for a few dozen of
the most policed ASes). We verified that policed connections observed low
throughput yet high loss rates. Conversely unpoliced connections achieved
high throughput at low loss rates. In addition, we did not observe any diur-
nal patterns – loss rates and the fraction of traffic impacted by policing are
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Figure 4: Distribution of loss rates observed on unpoliced (N) and policed (P) segments in different regions of the world.
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rate of 22% per segment for policed flows (Table 2).
Figure 4 plots the loss rate CDF for policed and non-

policed segments observed in different regions. Policed flows
in Africa and Asia see a median loss rate of at least 10%,
whereas the median for unpoliced flows is 0%. Other regions
witness lower loss rates, yet a sizable fraction of segments in
each experiences rates of 20% or more. The 99th percentile
in all regions is at least 40%, i.e., almost every other packet
is a retransmission. In §4.4 we analyze common traffic pat-
terns that can trigger such excessive loss rates.

The loss rate distributions shown in Figure 6 see a wide
variability with long tails: the overall loss rate distribution
(All Segments) has a median of 0% and a 99th percentile of
over 25%. The figure also shows the distribution for two
segment subsets: one including the 20 million requests with
an average goodput of 0.5 Mbps (±50 kbps), and the other
with the 7 million requests achieving 5 Mbps (±50 kbps).
Though there is some correlation between goodput and loss
rates, there are many cases where high loss did not result in
bad performance. For example, about 4% of the segments
achieving a goodput of 5 Mbps also observe a loss rate of
10% or more. Policers are one cause for the uncommon high
loss, high goodput behavior, as we show in §4.4.

One situation that can trigger high loss is when there is
a wide gap between the rate sustained by a flow’s bottle-
neck link and the rate enforced by the policer. We esti-
mate the bottleneck capacity (or the burst throughput) by
evaluating the interarrival time of ACKs for a burst of pack-
ets [13, 28, 35]. We found that in many cases the bottleneck
capacity, and sometimes even the goodput rate achieved be-
fore the policer starts dropping packets is 1-2 orders of mag-
nitude higher than the policing rate. Figure 7 compares the

not affected by the presence of peak times. §3 provides additional evidence
that policers are the root cause for losses and not the other way round.

achieved burst throughput and policing rates we observed.
The gap is particularly wide in Africa and India. With such
large gaps, when the policer starts to drop packets, the sender
may already be transmitting at several times the policing
rate. Since the sender’s congestion control mechanism usu-
ally only halves the transmission rate each round trip, it needs
multiple round trips to sufficiently reduce the rate to prevent
further policer packet drops. We investigate this and other
interactions with TCP in §4.4.

When policers drop large bursts of packets, the sender
can end up retransmitting the same packets multiple times.
Overshooting the policing rate by a large factor means that
retransmissions as part of Fast Recovery or FACK Recov-
ery [44] are more likely to also be lost, since the transmission
rate does not decrease quickly enough. The same applies
to cases where policing results in a retransmission timeout
(RTO) followed by Slow Start. In this situation, the token
bucket accumulated tokens before the RTO fired, leading to
a few rounds of successful retransmissions before the expo-
nential slow start growth results in overshooting the polic-
ing rate again, requiring retransmissions of retransmissions.
Multiple rounds of this behavior can be seen in Figure 1.

These loss pathologies can be detrimental to both ISPs and
content providers. Policing-induced drops force the content
provider to transmit, and ISPs to carry, significant retrans-
mission traffic. This motivates our exploration of more be-
nign rate-limiting approaches in the §5.

4.3 Impact on Playback Quality
In addition to the large overheads caused by excessive

packet loss, policing has a measurable impact on the user’s
quality of experience. Figure 9 shows, for a selection of
playbacks delivered at different goodput rates, the distribu-
tion of the ratio of time spent rebuffering to time spend watch-
ing. This ratio is an established metric for playback quality
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and previous studies found a high correlation between this
metric and user engagement [18]. Each of the selected play-
backs had at least one of their video segments delivered at
a goodput rate of either 300 kbps, 1.5 Mbps, or 3 Mbps
(±15%). 300 kbps is the minimum rate required to play
videos of the lowest rendering quality, leaving little opportu-
nity to bridge delayed transmissions by consuming already
buffered data. For each selected rate, between 50% and 90%
of the playbacks do not see any rebuffer events. For the rest,
policed playbacks perform up to 200% worse than the un-
policed ones. For example, in the 90th percentile, playbacks
policed at a rate of≈ 300 kbps spend over 15% of their time
rebuffering, vs. 5% when not policed. Prior work found that
a 1% increase in the rebuffering ratio can reduce user en-
gagement by 3 minutes [18]. This result substantiates our
claim that policing can have a measurable negative impact
on user experience.

Another way to assess playback quality is to explore the
impact of observing a high-goodput short burst at the be-
ginning of the flow, before policing starts. This can hap-
pen when the policer’s token bucket starts out with a sizable
amount of tokens. As such, a flow might temporarily sustain
a rate that is good enough for HD video delivery, while the
policing rate enforced later prevents this, i.e., the rate is be-
low the target of 2.5 Mbps. To quantify the impact of this
behavior on the application, we evaluate the wait time. This
is the delay between a segment request and the time when
its playback can commence without incurring additional re-
buffering events later. We can compute wait time from our
traces since we can observe the complete segment behavior.

Figure 8 shows that delivering even a single HD segment
over a slow connection results in larger wait times. In the
median, a client has to wait over 1 second for a policed seg-
ment, whereas the median for unpoliced ones is only 10 ms.

4.4 Interaction Between Policers and TCP
Enabling traffic policing itself does not automatically re-

sult in high loss. Thus, before we can design solutions to
avoid the negative side effects of policing, we need to have
a better understanding about when and why configurations
trigger heavy losses. We found that high loss is only ob-
served when the policer and TCP congestion control interact
poorly in specific settings. To depict these interactions, we
use the diagrams in Figure 10 that show specific patterns of
connection progress.
Congestion Avoidance Pattern. In the most benign interac-
tion we have seen, the policer induces few losses over long
time periods. The congestion window grows slowly, never
overshooting the policing rate by much. This results in short
loss periods, as shown in Figure 10a.

In this pattern, the sender slowly increases the conges-
tion window while a small number of excess tokens accu-
mulate in the bucket (1). Towards the end of this phase, the
progress curve has a slightly steeper slope than the polic-
ing rate curve. Consequently, we exceed the policing rate at
some point (the black dashed line) resulting in packet loss
(2). The congestion window is reduced during the fast re-
covery, followed by another congestion avoidance phase (3).
Staircase Pattern. A particularly destructive interaction be-
tween TCP and policers is a “staircase” when flow rates be-



fore the policer drops packets are multiple times the policed
rate (Figure 10b). This results in short periods of progress
followed by long periods of stagnation, with the sequence
graph resembling a staircase.

Initially the sender pushes data successfully at a high rate
(bubble 1 in the figure). Eventually, the policer runs out of
tokens and starts dropping. Since the token refresh rate is
much lower than the transmission rate, (almost) all packets
are lost (2). This results in a high probability of the last
packet in a burst being lost, so TCP needs to fall back to
timeout-based loss detection, since there are no subsequent
packets to trigger duplicate ACKs. Consequently, the sender
idles for a long time (3). This is problematic on low-RTT
connections, since the loss detection mechanism accounts
for possibly delayed ACKs, usually requiring a timeout of
200 ms or more [7], which may be much higher than the
RTT. Once packets are marked as lost and retransmitted, the
sender accelerates quickly (4), as the policer accumulated a
large number of tokens during the idle time. In §5.1.1 and
§5.2.2 we discuss how we can avoid this pattern by optimiz-
ing a policer’s configuration and reducing bursty transmits.
Doubling Window Pattern. For clients near the server,
the very low RTTs can enable connections to sustain high
throughput rates even when the congestion window (cwnd)
enables the sender to have only one packet carrying MSS
bytes in flight at a time, where MSS is the maximum seg-
ment size allowed by the network. The throughput rate equals
cwnd
RTT excluding loss events. The policing rate lies between
the throughputs achieved when using a congestion window
of 1 MSS and a window of 2 MSS (see Figure 10c). Note
that the window will grow linearly on a byte granularity,
thus observing values between 1 and 2 MSS. However, Na-
gle’s algorithm in TCP delays transmissions until the win-
dow allows the transmission of a full MSS-sized packet [46].
The pattern starts with the sender pushing data while using
a congestion window of 1 MSS. In congestion avoidance
mode, the window increases by 1 MSS every RTT. Thus,
even though the window is supposed to grow slowly, it dou-
bles in this extreme case (1). Next, the higher transmission
rate makes the policer drop packets (2). The sender backs
off, setting the congestion window back to 1 MSS. Timeout-
based recovery isn’t necessary since the low amount of in-
flight data enables “early retransmit” upon the reception of a
single duplicate ACK (3).

Even though the connection makes continuous progress
without excessive loss periods, valuable bandwidth is wasted.
To avoid this pattern the sender would need to send pack-
ets that carry fewer bytes than the MSS allows to match the
policing rate. Since the protocol is not configured to do this,
using a window of 1 MSS is the only setting enabling per-
manent stability. This is not supported by TCP’s congestion
control mechanism, since “congestion avoidance” will in-
crease the window by 1 MSS every RTT.

4.5 Policing Pathologies
We now focus on the analysis of traces from a small set

of ISPs to highlight different characteristics of policed traf-

ISP ISP Region Samples RTT Mobile
A Azerbaijan 64K Medium
B USA 31K Medium X
C India 137K Very low
D India 17K Low
E Algeria 112K Medium

Table 4: Overview of 5 highly policed ISPs. The RTT estimates
apply only when content is fetched from the local cache. With
cache misses content needs to be fetched from a data center
which is potentially located much farther away, resulting in
higher RTTs.

fic. Table 4 gives an overview of five ISPs where policing
was prevalent, selected to illustrate interesting pathologies
arising from policing.

Figures 11 and 12 show the policing and loss rates seen
when delivering video to clients in each ISP. We can clearly
distinguish the small set of policing rates used within each
ISP. The most popular choices are 1 and 2 Mbps, both of
which are below the 2.5 Mbps needed for HD quality videos.

For all ISPs except ISP B, we found the advertised band-
width of their data plans on their websites, and, in each case,
the plan rates matched the observed policing rates.9 For ISP
C, we recently observed a drastic change in the rate distri-
bution. In our earlier analysis from 2014, most traces were
policed at 4 Mbps, at that point a plan offered by the ISP.
Now we see 10 Mbps as the most prominent rate, which is
consistent with a change of data plans advertised. We do
observe two smaller bumps at roughly 3 Mbps and 4 Mbps.
These rates do not correspond to a base bandwidth of any of
their plans, but instead reflect the bandwidth given to cus-
tomers once they exceed their monthly data cap.
Losses on long-distance connections. Traffic policing causes
frequent loss, but losses can be particularly costly when the
packets propagate over long distances just to be dropped
close to the client. For example, for ISP A, a local cache
node in Azerbaijan serves half the video requests, whereas
the other half is served from more than 2,000 kilometers
away. We confirmed that the policer operates regardless of
content source. So the high drop rates result in a significant
fraction of bandwidth wasted along the paths carrying the
content. The same applies to many other ISPs (including C,
D, and E) where content is sometimes fetched from servers
located thousands of kilometers away from the client.
Policing in wireless environments. We observe policing
in many areas across the globe, even in developed regions.
ISP B provides mobile access across the United States while
heavily policing some of its users to enforce a data cap.
While we understand that it is necessary to regulate access
by heavy users, we find that there are many cases where the
bandwidth used by throttled connections is actually higher
than the bandwidth used by unthrottled ones carrying HD
content, since the latter do not incur costly retransmissions.
Large token buckets. ISP C sees heavy loss, with 90% of
segments seeing 10% loss or more. Yet, flows achieve good-

9Since matching policing rates to data plans is a manual process, we only
did this for the selected ISPs. However, it is unlikely that every ISP uses
policing only to enforce data plans, and we leave a thorough root cause
analysis to future work.
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Figure 11: Policing rates in policed segments for selected ISPs.
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Figure 12: Loss rates in policed segments for selected ISPs.

puts that match the policing rates (10 Mbps or more in this
case). There are three reasons for this. First, median bottle-
neck capacity is 50 Mbps on affected connections. Second,
most connections see a very small RTT. Finally, the policer
is configured to accommodate fairly large bursts, i.e., buck-
ets can accumulate a large number of tokens. This allows
the connection to “catch up” after heavy loss periods, where
progress stalls, by briefly sustaining a goodput rate exceed-
ing the policing rate by an order of magnitude. When plot-
ting the progress over time, this looks like a staircase pattern
which was discussed in more detail in §4.4.

While goodputs are not adversely affected, application per-
formance can still degrade. For example, a video player
needs to maintain a large buffer of data to bridge the time
period where progress is stalled, otherwise playback would
pause until the “catch up” phase.
Small token buckets. ISP D is at the other end of the spec-
trum, accommodating no bursts by using a very small token
bucket. The small bucket combined with the low RTT re-
sults in the doubling window pattern discussed earlier (§4.4).
The small capacity also prevents a connection from “catch-
ing up.” After spending considerable time recovering from
a loss, the policer immediately throttles transmission rates
again since there are no tokens available that could be used
to briefly exceed the policing rate. As such, the overall good-
put rate is highly influenced by delays introduced when re-
covering from packet loss.
Repressing video streaming. Finally, we note that we ob-
served configurations where a video flow is throttled to a rate
that is too small to sustain even the lowest quality. The small
number of requests coming from affected users suggests that
they stop watching videos altogether.

Cap. (KB) 8 16 32 64 128 256 512 1K 2K
Rebuf. (s) 3.5 2.0 1.5 1.6 1.6 1.6 2.4 3.1 3.1

Table 5: Impact of token bucket capacity on rebuffering time
of the same 30-second video playback. Policing rate is set to
500 kbps.
5. MITIGATING POLICER IMPACT

We now explore several solutions to mitigate the impact of
policing. Unless otherwise specified, we use the same setup
as for the PD validation (see §3).

5.1 Solutions for ISPs

5.1.1 Optimizing Policing Configurations
The selection of configuration parameters for a policer can

determine its impact. The policed rate usually depends on
objectives such as matching the goodput to the bandwidth
advertised in a user’s data plan and therefore may be inflex-
ible. However, an ISP can play with other knobs to improve
compatibility between policers and the transport layer, while
maintaining the same policing rate.

For example, we showed earlier that the staircase pattern
can arise in the presence of large token buckets. To prevent
the associated long bursty loss periods, two options come
to mind. First, the enforcing ISP could configure policers
with smaller burst sizes. This would prevent TCP’s con-
gestion window from growing too far beyond the policing
rate. For this, we again measured the performance of video
playbacks when traffic is passed through a policer. We lim-
ited the rate to 500 kbps and varied the burst size between
8 kB (the smallest configurable size) and 8 MB, using pow-
ers of two as increments. In this setting, a fairly small buffer
size of 32 kB results in the lowest rebuffering delays (Ta-
ble 5). Smaller buffers prevent the policer from absorbing
any bursty traffic. Larger buffers allow connections to tem-
porarily achieve throughput rates that are much larger than
the policing rates, which can result in long rebuffering events
if a quality level can no longer be sustained (i.e., the player
has to adjust to a lower bandwidth once traffic is policed) or
if loss recovery is delayed (i.e., we observe a staircase pat-
tern). A more thorough sensitivity analysis is left to future
work. Second, policing can be combined with shaping, as
discussed below.

5.1.2 Shaping Instead of Policing
In contrast to a policer dropping packets, a traffic shaper

enforces a rate r by buffering packets: if the shaper does
not have enough tokens available to forward a packet im-
mediately, it queues the packet until sufficient additional to-
kens accumulate. The traces of segments that pass through
a shaper resemble those of segments limited by a bottle-
neck. Shaping can provide better performance than polic-
ing. It minimizes the loss of valuable bandwidth by buffer-
ing packets that exceed the throttling rate instead of drop-
ping them immediately. However, buffering packets requires
more memory. As with policers, shapers can be configured
in different ways. A shaper can even be combined with a
policer. In that case, the shaper spreads packet bursts out
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(b) With sender-side rate limit.
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(c) With TCP pacing.
Figure 13: TCP sequence graphs for three flows passing through a policer with a token refresh rate of 1.5 Mbps and a bucket capacity
of 8KB. The rate limit in (b) is set to 95% of the policing rate (i.e., 1.425 Mbps).

evenly before they reach the policer, allowing tokens to gen-
erate and preventing bursty losses. One key configuration for
a shaper is whether to make it burst-tolerant by enabling a
“burst” phase. When enabled, the shaper temporarily allows
a goodput exceeding the configured shaping rate, similar to
Comcast’s Powerboost feature [5, 6].
Burst-tolerant Shapers. We developed a detection algo-
rithm for burst-tolerant shaping which determines whether a
given segment has been subjected to this type of shaper, and
estimates the shaping rate. It relies on the observation that
a connection achieves a steady throughput rate after an ini-
tial burst phase with higher throughput. We have omitted the
details of this algorithm for brevity. We found burst-tolerant
shaping in 1.5% of the segments in our dataset.

Given its prevalence, we ask: can burst-tolerant shaping
mitigate the adverse impact of policing? While shaping avoids
the losses that policing induces, latency can increase as shap-
ers buffer packets. To measure this effect, for each video
chunk we compare the 10th percentile latency, usually ob-
served in the burst phase, with the 90th (Figure 14). In the
median, shaped segments observe a 90th percentile latency
that is 4× larger than the 10th percentile. About 20% of
segments see a latency bloat of at least an order of mag-
nitude due to traffic shaping, whereas, among non-shaped
segments, only 1% see such disparity. Latency-aware con-
gestion control (e.g., TCP Vegas [8]) or network scheduling
algorithms (e.g., CoDel [48]) can reduce this latency bloat.

Burst-tolerant shaping can also induce unnecessary rebuffer-
ing delays at the client. When shaping forces a video server
to switch from the burst rate to the actual shaping rate, the
content provider may reduce the quality delivered to the client
based on the new bandwidth constraint. Now, the older high
quality chunk takes too long to be delivered to the client,
whereas the new low quality chunk does not reach before
the client-side application buffer has already drained.
Shapers without burst tolerance. The alternative is shapers
that enforce the shaping rate from the start. In theory, such
shaping should not induce significant delays (unlike their
burst-tolerant counterparts), nor drop packets like policers.

Our dataset almost certainly includes flows shaped in this
way, but detecting them is hard: connections affected by
shaping produce the same traffic patterns as when a TCP
flow hits a bottleneck at the same rate. Significant cross traf-

 0
 0.2
 0.4
 0.6
 0.8

 1

 1  10  100

C
D

F

90th / 10th percentile RTT Ratio

Shaped
Global

Figure 14: Per-segment ratio between 90th and 10th percentile
latencies for shaped segments (red solid line) and all video seg-
ments globally (blue dashed line).

Cap. Join Time (s) Rebuffer Time (s)
(Policed) (Shaped) Diff. (Policed) (Shaped) Diff.

8 kB 14.0 12.0 –16% 2.8 1.7 –39%
100 kB 11.1 13.3 +20% 1.6 1.3 –19%
2 MB 0.3 12.6 +4200% 4.2 1.5 –64%

Table 6: Avg. join/rebuffer times for first 30 s of a video with the
downlink throttled to 0.5 Mbps by either a policer or shaper.
Capacity (cap.) is the token bucket size (for policer) and the
queue size (for shaper).

fic sharing such a bottleneck may cause throughput variance.
It may be possible to identify (burst-intolerant) shapers by
looking for low variance. However, since our passive mea-
surements cannot detect when cross traffic is present, we
cannot infer these shapers with any reasonable accuracy.

We evaluate the efficacy of shapers in the lab by fetch-
ing the same video playback repeatedly from YouTube and
passing it through a policer or shaper (experimenting with
different bandwidth limits and queue sizes) before the traf-
fic reaches the client. Then, we calculated quality metrics
using YouTube’s QoE API [65]. Table 6 summarizes the
impact on QoE, averaged over 50 trials per configuration.10

Join times are generally lower when policing is used, since
data can initially pass through the policer without any rate
limit if enough tokens are buffered. With sufficiently large
token buckets (e.g., the 2 MB configuration in Table 6) a
video playback can start almost immediately. However, this
comes at the cost of much higher rebuffering times. The sud-
den enforcement of a policing rate causes the video player
buffer to drain, causing high rebuffering rates. Shaping on
the other hand enforces a rate at all times without allowing
bursts. This reduces rebuffering by up to 64% compared to

10We show the results for a single throttling rate here, with other rates yield-
ing similar trends.



the policed counterparts. Since prior work found that a low
rebuffering time increases user engagement [18], reducing
rebuffering time might be more beneficial than optimizing
join times. Interestingly, shaping performs well even when
the buffer size is kept at a minimum (here, at 8 kB) which
only allows the absorption of small bursts.
Configuring shapers. While policer configurations should
strive to minimize burst losses, there is no straightforward
solution for shapers. Shaping comes at a higher memory
cost than policing due to the buffer required to store pack-
ets. However, it also introduces queuing latency which can
negatively affect latency-sensitive services [39]. Thus, ISPs
that employ shaping have to trade off between minimizing
loss rates through larger buffers that introduce higher mem-
ory costs, and minimizing latency through small buffers. In
comparison to the cheaper policing option, a small buffer
might still be affordable, and the additional hardware cost
might be lower than the cost resulting from a policer that
drops large amounts of traffic (e.g., additional transit cost).

5.2 Solutions for Content Providers

5.2.1 Limiting the Server’s Sending Rate
A sender can potentially mitigate the impact of a policer

by rate-limiting its transmissions, to avoid pushing the po-
licer into a state where it starts to drop packets. Optimally,
the sender limits outgoing packets to the same rate enforced
by the policer. We experimentally verified the benefits of
sender-side rate limiting in a lab environment. We also con-
firmed the result in the wild, by temporarily configuring one
of Google’s CDN server to rate limit to a known carrier-
enforced policing rate, then connecting to that server via the
public Internet from one of our mobile devices that we know
to be subject to that carrier’s policing rate. In both experi-
ments, loss rates dropped from 8% or more to ∼0%.

Additionally, if the policer uses a small bucket, rate lim-
iting at the sender side can even improve goodput. We veri-
fied this by configuring a policer to a rate of 1.5 Mbps with
a capacity of only 8 KB. In one trial we transmit traffic un-
throttled, and in a second trial we limit outgoing packets to
a rate of 1.425 Mbps (95% of the policing rate). Figures 13a
and 13b show the sequence graphs for the first few seconds
in both trials. The rate-limited flow clearly performs better
in comparison, achieving a goodput of 1.38 Mbps compared
to 452 kbps. The flow without rate limiting at the server
side only gets a fraction of the goodput that the policer actu-
ally allows. The reason is that the small token bucket drops
packets from larger bursts, resulting in low goodput.

Finally, we measured the benefits of rate limiting video
through lab trials. We fetched videos from a YouTube Web
server, with traffic passing through our lab policier. For
some trials, we inserted a shaper between the server and the
policer, to rate limit the transfer. Non-rate-limited playbacks
observed an average rebuffering ratio of 1%, whereas the
rate-limited flows did not see a single rebuffering event.

5.2.2 Avoiding Bursty Transmissions
Rate limiting in practice may be difficult, as the sender

Server Loss (median) Loss (95th pct.)
(base) (paced) (rec. fixed) (base) (paced) (rec. fixed)

US 7.5% 6.7% 6.4% 34.8% 26.7% 32.2%
India 9.9% 7.8% 8.4% 52.1% 35.8% 34.6%

Table 7: Observed median and 95th percentile loss rates on
policed connections served by two selected CDN servers.

needs to estimate the throttling rate in near real-time at scale.
We explored two viable alternatives to decrease loss by re-
ducing the burstiness of transmissions, giving the policer an
opportunity to generate tokens between packets.

We start by trying TCP Pacing [3]. Whereas a traditional
TCP sender relies solely on ACK clocking to determine when
to transmit new data, pacing spreads new packets across an
RTT and avoids bursty traffic. Figure 13c shows the effect
of pacing in the lab setup used in §5.2.1, but with a pacer in
place of the shaper. Overall, the flow achieves a goodput of
1.23 Mbps which is worse than rate-limiting (1.38 Mbps) but
a significant improvement over the unmodified flow (452 kbps).
Packet loss is reduced from 5.2% to 1.3%.

In addition, we confirmed the benefits of pacing by turn-
ing it on/off on multiple CDN servers serving real clients.
Enabling pacing consistently caused loss rates to drop by 10
– 20%. Table 7 shows the results for two of the CDN servers
(“base” and “paced” columns).

Even when transmissions are not bursty, heavy losses can
still occur when the sender consistently sends at a rate larger
than the policing rate. In Linux, loss recovery can trigger
periods of slow start [19], in which the server sends two
packets for every ACKed packet. This results in sending
at twice the policed rate during recovery and hence 50% of
the retransmissions are dropped by the policer. To avoid this
behavior, we modified the loss recovery to use packet con-
servation (for every ACKed packet, only one new packet is
sent) initially and only use slow start if the retransmissions
are delivered. Keeping slow start enables us to quickly re-
cover from multiple losses within a window in a non-policed
connection. Otherwise it will take N round trips to recover
N packet losses.

As with pacing, we experimentally deployed this change
which caused loss rates to drop by 10 to 20% as well (“base”
and “rec. fixed” columns in Table 7). After testing, we also
upstreamed the recovery patch to the Linux 4.2 kernel [14].

5.3 Summary of Recommendations
While extensive additional experimentation is necessary,

we make the following initial suggestions to mitigate the ad-
verse effects of policers:

1. ISPs can configure policers with smaller burst sizes.
This prevents TCP’s congestion window from growing
too far beyond the policing rate when the token bucket
fills up thereby resulting in fewer bursty losses.

2. ISPs can deploy shapers with small buffers instead of
policers. Shaping avoids the heavy losses usually seen
when employing policing, while using only small buf-
fers prevents excessive queueing delays.

3. Content providers can rate-limit their traffic, especially
when streaming large content. This can reduce the gap



between the sending rate and the policing rate resulting
in fewer bursty losses.

4. Content providers can employ TCP pacing on their ser-
vers to reduce the burstiness of their traffic.

Our initial results show that these strategies can minimize
or eliminate packet loss, and improve playback quality.

6. RELATED WORK
To our knowledge, no prior work has explored the preva-

lence and impact of policers at a global scale. Others ex-
plored policing for differentiated services [54], fair band-
width allocation [36], or throughput guarantees [21,64]. One
study explored the relationship between TCP performance
and token bucket policers in a lab setting and proposed a
TCP-friendly version achieving per-flow goodputs close to
the policed rate regardless of the policer configuration [60].
Finally, a concurrently published study investigated the im-
pact of traffic policing applied by T-Mobile to content de-
livery. This behavior was recently introduced as part of the
carrier’s “BingeOn” program, where traffic can be zero-rated
(i.e., results in no charges to customers) while it is at the
same time policed to a rate of 1.5 Mbps [31].

Our work is inspired by and builds upon the large number
of existing TCP trace analysis tools [10,12,45,49,51,56,61,
63]. On top of these tools, we are able to annotate higher-
level properties of packets and flows that simplify analysis
of packet captures at the scale of a large content provider.

A few threads of work are complementary to ours. One
is the rather large body of work that has explored ways to
understand and improve Web transfer performance (e.g., la-
tency, throughput) and, more generally, content delivery, es-
pecially at the tail [9, 11, 22, 25, 29, 30, 37, 41–43, 68]. None
of these has considered the deleterious effects of policers.

Prior work has also explored the relationship between play-
back quality and user engagement [18]. Our work explores
the relationship of network effects (pathological losses due
to policers) and playback quality, and, using results from
this prior work, we are able to establish that policing can
adversely affect user satisfaction.

A line of research explores methods to detect service dif-
ferentiation [4,17,33,57,67]. They all exploit differences in
flow performance characteristics, like goodput or loss rate,
to identify differentiated traffic classes. However, they do
not attempt to understand the underlying mechanisms (polic-
ing or shaping) used to achieve traffic discrimination. Prior
work has explored detecting traffic shaping using active meth-
ods [34]; in contrast, we detect burst-tolerant shaping purely
passively.

Finally, some network operators were already aware of
policing’s disadvantages, presenting anecdotal evidence of
bad performance [15, 59, 62]. We reinforce this message,
quantifying the impact at scale for the first time.

7. CONCLUSION
Policing high-volume content such as video and cloud stor-

age can be detrimental for content providers, ISPs and end-
users alike. Using traces from Google, we found a non-
trivial prevalence of traffic policing in almost every part of
the globe: between 2% and 7% of lossy video traffic world-
wide is subject to policing, often at throughput rates below
what would be necessary for HD video delivery. Policers
drop packets, and this results in policer-induced packet loss
rates of 21% on average, 6× that of non-policed traffic. As
a result of these loss rates, the playback quality of policed
traffic is distributionally worse than that of non-policed traf-
fic, a significant issue from a content provider perspective
since it can affect user engagement in the content. We have
identified benign traffic management alternatives that avoid
adverse impacts of policing while still permitting ISPs to
exercise their right to control their infrastructure: content
providers can pace traffic, and ISPs can shape traffic using
small buffers.
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