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Abstract

Ad Exchange platforms connect online publishers and advertisers and facilitate selling billions
of impressions every day. We study these environments from the perspective of a publisher who
wants to find the profit maximizing exchange to sell his inventory. Ideally, the publisher would run
an auction among exchanges. However, this is not possible due to technological and other practical
considerations. The publisher needs to send each impression to one of the exchanges with an asking
price. We model the problem as a variation of multi-armed bandits where exchanges (arms) can
behave strategically in order to maximizes their own profit. We propose mechanisms that find the
best exchange with sub-linear regret and have desirable incentive properties.

1 Introduction

We investigate a setting in which running an auction would be desirable but practical business consid-
erations prevent it. Instead, we seek to simulate the auction outcome using online learning algorithms.
This problem is motivated in part by the applications in Internet advertising. Publishers sell the space
on their webpages, often called slots, to advertisers. The values of different slots varies a lot and
range from highly desirably premium inventory such as the front page of New York Times to very
specialized properties, such as small blogs. Instead of selling the rights to advertise in those slots
directly to advertisers, some publishers send their inventory (ad impressions) to advertising exchanges.
Advertisement exchanges are auction platforms that connects publishers and advertisers. Examples
of major exchanges include Google AdExchange, AppNexus, Rubicon, and Facebook Exchange. They
sell billions of impressions every day [19, 23].

From the perspective of the publisher, his ideal world would be one in which there is a single
exchange in which he has access to all advertisers interested in his impressions. This would generate a
sufficiently competitive market that would allow him to extract the fair price for his inventory. However,
unfortunately, the proliferation of advertisement exchanges has caused the market to be fragmented.
For each ad impression, the publisher needs to decide to which exchange to send this impression and
which reserve price to submit. A key question we aim to answer in this paper is the following: can a
seller emulate a competitive market through online learning?

Our Model & Results We model the publisher’s problem of finding the best exchange in a multi-
armed bandit (MAB) setting. From this point on, we refer to the publisher as the seller and to each
exchange as a buyer. The seller in each timestep chooses a buyer and offers the impression to him at
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a certain price. In MAB language, this correspond to pulling an arm that consists of a pair of a buyer
and a price. The buyer then decides whether to accept or reject the seller’s offer. If the buyer accepts
and purchases the impression, the seller receives revenue equal to the price he quoted. Otherwise, she
gets revenue zero.

So far, this is a standard multi-armed bandits problem for which standard algorithms provide
already sublinear regret. The challenging aspect is that we are deploying this algorithm in a market
setting, where buyers (arms) are strategic economic agents. Therefore, any successful algorithm must
take into account incentives of the buyers. To this aim, we consider two types of buyers: myopic and
strategic. A myopic buyer purchases an impression only when his valuation is above the current asking
price. On the other hand, a strategic buyer may use complicated strategies in order to maximize his
long-term utility. The seller does not know if a buyer is myopic or strategic. Since the ads ecosystem has
buyers with different levels of sophistication, it is important for any practical algorithm to be agnostic
to the type of the buyer. Having an algorithm that works for a mixture of myopic and strategic buyers
will ensure that we will correctly deal with incentives, but will also prevent us from relying too much
on perfect rationality of the buyers.

We observe that buyers’ strategic behavior can affect the seller’s revenue in two opposing directions.
A more familiar aspect is similar to bid shading in (first-price) auctions. A buyer may not purchase
impressions that he values above the current asking price, because he worries that the seller may learn
that the buyer has high valuations and increases the price in the future.

On the flip side, the strategic behavior of the buyer may in fact increase the revenue of the seller.
Namely, the buyer may purchase impressions at a loss in the hope of receiving more impressions in
the future. The intuition is as follows. Any learning algorithms that suffers small-regret almost always
sends impressions to a buyer from which it perceives that it can extract highest revenue (i.e., a good
arm is pulled more often). In response to this, the buyer may accept seller’s offers at a higher prices
(even if they get negative utility for those particular impressions) to incentivize the seller to send
more impressions to him in the future. At first glance, this phenomenon might appear as an artifact
that comes out of equilibrium analysis. The effect, however, is real and measurable in the advertising
exchange business. The determinant factor of a successful exchange is the ability to attract inventory.
It is easier for an exchange with a large availability of inventory to attract buyers than the other way
round. Given this fact, it is only natural that an exchange would accept higher prices for certain items
in the hope of continuing to receive inventory from that particular seller.

In our setting, the learning algorithm designed by the seller induces a game among the strategic
buyers. Our goal is to design a learning algorithm with sublinear regret for the seller when buyers play
an ǫ-approximate equilibrium of the induced game.

As previously discussed, traditional MAB algorithms identify the arms (buyer and price pair)
that generate higher revenue and pull them in most of the rounds. This corresponds to a first-price
auction behavior, which given incentives to buyers to bid less. To address this issue, we propose two
such mechanisms that combine standard MAB algorithms and the second price auction. Our first
algorithm, called Second Price Histogram, consists of two phases, exploration and exploitation. During
exploration, each arm is pulled a few times in order to estimate the distribution of the valuations of
the buyers. Then, during exploitation, the item is assigned to the buyer with an arm that generates
the highest estimated revenue. In order to induce an approximate equilibrium, we charge the buyer
a price that generates the revenue equal to the highest revenue that can be obtained from the other
buyers.

This design doesn’t address that issue that buyers might behave in a certain way during the
exploration and change their behavior during exploitation. In order to address that, we introduce the
notion of “consistency checks”. To make the algorithm robust with respect to deviations to dynamic
strategies, we check for each arm if it is behaving in a way that is consistent with a static (history-
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independent) strategy. If ever we realize that the behavior is not consistent, we never pull that arm
again. The intuition is that consistency check basically eliminates the utility that can be obtained
from deviation strategies where a buyer would pretend to have high valuations during exploration and
then reduces the purchase rate, and subsequently the generated revenue, during exploitation. The
mechanism may “mistakenly” stops allocating the items, but that happens in equilibrium with very
small probability.

We show that a simple strategy, called aggressive strategy, is an Õ(T−1/4)-dominant strategy for
the buyers, where T is the length of the time horizon. Under the aggressive strategy, a buyer accepts
all prices below his expected value, even if the current realized valuations is below the offered price. We
show that no other (possibly quite complicated) strategy can improve the expected average utility of
the buyer by more than Õ(T−1/4). Furthermore, the seller’s regret, compared with the second-highest
price benchmark, when all buyers play the aggressive strategy is at most Õ(T 3/4).

Our second mechanism is a variation of the UCB algorithm. The algorithm at each step keeps an
estimate and a confidence interval for each arm and chooses to pull an arm that maximizes the upper
confidence bound (UCB), which is the estimated expected value plus an error term. Similar to the
previous algorithm, we charge the buyer the second highest UCB. More precisely, we charge the buyer
the lowest among his prices where the UCB is still above the highest UCB of all other buyers.

We show that the mechanism induces an ǫ-approximate equilibrium for the buyers, for ǫ = Õ(T−1/6).
Under this (aggressive) strategy profile, the mechanism has regret at most Õ(T 2/3).

Related Work The literature on pricing using learning algorithms has been growing over the past few
year. [17] propose one of the first algorithm of this kind in a setting where the goal is to sell items to
customers that arrive over time using posted-prices. The algorithm is a variation of UCB algorithm [3]
where each arm corresponds to a posted-price. Under regularity assumptions, their algorithm obtains
sub-linear (optimal) regret. This result has been extended to more general settings; see [1, 4, 7, 9, 26].

In the context of online advertising, [5, 6] and [13] study multi-armed bandit settings where each
arm corresponds to an advertiser. Each advertiser knows the value they obtained from each click but
not the probability of clicks (i.e., click-through rate). Each advertiser reports his private information
(i.e., vale per click) at the very beginning to the mechanism and the MAB algorithms are used to learn
the probably of the clicks. See [8] and [15] on game-theoretic Bayesian multi-armed bandit settings.

Another line of research related to ours is reserve-price optimization in repeated auctions. [12] and
[20] look at the algorithmic aspects of optimizing reserve prices but they do not consider strategic
behavior of the buyers. With this motivation, [2, 21] study the problem of selling items to a single
strategic buyer repeatedly over time. However they assume that the buyer is impatient and has a time
discounted utility compared to the seller. In a multi-buyer setting, [16] show that if the distributions
of the valuations are correlated, then setting reserve price dynamically can in fact increase the revenue
of the seller even if the buyers are strategic and patient.

2 Preliminaries

Consider a seller, a set of buyers B, with n = |B|, and a horizon of length T .1

For each buyer b ∈ B, his valuation at each timestep t ∈ [T ], denoted by vb,t, is drawn independently
from distributionDb with support in the [0, 1] interval and mean equal to µb = E[vb,t]. The distributions
of valuations are unknown to the seller.

1To simplify the presentation, we assume that T is known in advance. This assumption can be relaxed using standard
techniques [22].
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The decision faced by the seller in each timestep t is to choose a buyer bt ∈ B and a price pt ∈ [0, 1].
After the impression is offered to buyer bt, he decides whether to accept or to reject the price. If he
accepts, the seller receives revenue pt and the buyer obtains utility vb,t − pt. To map this setting to
our motivating application, suppose exchange b allocates the impression using an auction among the
advertisers in this exchange. After receiving the publisher’s price p, exchange b collects bids from the
advertisers and runs an auction. The value vb,t of the exchange for this impression corresponds to the
revenue that the exchange can obtain from it advertisers. The exchange can decide them either to
accept or not the price, and upon accepting, the exchange pays pt to the seller.2

Let At denote the event that the buyer purchases the impression. Hence, the total revenue of the
seller is equal to:

Rev = E
[∑T

t=1 pt · 1{At}
]

The seller’s objective is maximize his total revenue. But he needs to take into account the buyers’
incentives. We now look at the buyer’s problem.

2.1 Buyer strategies, equilibria and ǫ-dominance

Let ub denote the average utility of the buyer; namely,

ub =
[
1
T

∑T
t=1(vb,t − pt) · 1{bt = b and At}

]

We consider two types of buyers, myopic and strategic. The type of the buyer in unknown to the seller.

Definition 1 (Myopic Buyers). Myopic Buyers aim to maximize their profit form each impression,
without taking into account the effects of their current action on the future allocations and prices.
Myopic buyers simply purchase an impression whenever pt ≤ vt,b.

Definition 2 (Strategic Buyers). A strategic buyer tries to find a strategy that maximizes their
long-term utility. A strategy determines buyer’s policy on whether to accept of reject the seller’s offer
in response to the seller’s mechanism and possibly other buyer’s strategies. We assume a strategic
buyer knows his distribution of valuations, Db, and hence µb.

A buyer could deploy complicated history-dependent strategies. However, buyers may prefer simple
strategies if they are near-optimal. We say that buyer b employs a static policy if his decision to
purchase depends only on the price offered and his valuation. We define a special static policy which
we call the aggressive policy, in which the buyers purchases an impression whenever pt ≤ µb.

We now define the notion of equilibrium.

Definition 3 (ǫ-equilibrium). A profile Ω of buyers’ strategies define an ǫ-equilibrium if no strategic
buyer can change his policy to any other (possibly non-static) policy and improve his average utility by
more than ǫ. More precisely, for any buyer b, we should have

ub(Ωb,Ω−b) ≥ ub(Ω
′
b,Ω−b)− ǫ,∀Ω′

b

where Ωb, Ω
′
b, and Ω−b respectively correspond to buyer b’s equilibrium strategy, any possible deviation

for buyer b, and strategies of other buyers.

2 An alternative setting would be one in which the exchange may pay the publisher any amount higher than the price
quoted; for instance, the second highest price (minus a revenue-share cut) if its higher than the price. Although we do
not formally study this alternative model, our results can be extended there. Furthermore, we point out ad auctions are
often thin and effectively have one buyer (cf., [11]); such environments fit our model well.
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In this paper we will be typically interested in o(T−α)-equilibria for α ∈ (0, 1). See [14, 24, 25] for
further discussions on approximate and asymptotic notions of equilibrium in similar settings.

A stronger notion than ǫ-equilibrium is ǫ-dominance.

Definition 4 (ǫ-dominance). We say that a strategy Ωb is ǫ-dominant for buyer b if no matter what
strategies the other buyers are employing, buyer b cannot improve his average utility by more then ǫ by
deviating to any other (possibly non-static) policy. More precisely, for any buyer b, we should have

ub(Ωb,Ω−b) ≥ ub(Ω
′
b,Ω−b)− ǫ,∀Ω′

b,∀Ω−b

where Ωb, Ω
′
b, and Ω−b respectively correspond to buyer b’s equilibrium strategy, any possible deviation

for buyer b, and strategies of other buyers.

Note that if every strategy in a profile is ǫ-dominant then this profiles forms an ǫ-equilibrium.

2.2 Revenue Benchmark

The maximum per-timestep revenue that can be extracted from a myopic buyer is ρ̄b = maxp p ·Pr[vb ≥
p]. For a strategic buyer, we will us his expected surplus per period as an upper bound ρ̄b = µb. A
natural upper bound on the total revenue is T ×maxb{ρ̄b}. It is certainly possible to achieve sublinear
regret with respect to this policy if all buyers are myopic. In the language of auction theory this
corresponds to a first-price auction type of benchmark, which is known to not be achievable in strategic
settings. Indeed, a buyer with large ρ̄b will pretend that his value is lower to prevent the seller from
extracting revenue from him, cf. [2, 16]. Inspired by the second-price auction, we choose the second-
best solution as our benchmark; namely, the second highest value in {ρ̄b}. Assuming that the buyers
are sorted such that

ρ̄1 ≥ ρ̄2 ≥ . . . ≥ ρ̄n

we denote the second highest value in {ρ̄b} by ρ̄2. Another natural benchmark would have been
the second highest vb,t which can be obtained if we could bring together all the buyers. However,
this benchmark is infeasible in our setting. The main reason is that when the publisher offers an
impression to an exchange, he cannot renege after the exchange accepts the impression and has to
allocate. Therefore, the publisher cannot observe the realizations of vb,t and has to make decisions
based on the estimated distributions or simply expected values of vb,t. In appendix A, we discuss in
detail the relation with this and other benchmarks.

Our main goal is to achieve sublinear regret with respect to this benchmark (this is often called
pseudo-regret).

Definition 5 (Regret). Given a strategy profile of the buyers, the regret is defined as:

Regret = T · ρ̄2 − E
[∑T

t=1 pt · 1{At}
]

Formally, our goal is to design a learning algorithm for which there is a profile of policies in o(T−α)-
equilibrium such that Regret ≤ o(T ).

2.3 Upper Confidence Bound (UCB) Algorithms

The algorithms we discuss in this paper are based on the concept of Upper Confidence Bound (UCB).
Given s iid drawns X1, . . . ,Xs from a random variable with mean µ and support in [0, 1], Hoeffding’s
inequality guarantees that:

Pr [|µ̂− µ| ≥ λ/
√
s] ≤ O(e−cλ2

) (HI)
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for µ̂ = 1
s

∑s
1Xs for any λ > 0. In particular, taking λ =

√
a · log T for some constant a > 0, we get

that:

Pr

[
|µ̂− µ| ≥

√
a log(T )

s

]
≤ O(T−ac).

For any given algorithm, if buyers are employing a static policy, then the event of buyer b accepting
price p is iid across timesteps. Therefore, we can build an estimate r̂b,p,t of the revenue that can be
collected from buyer b at time t. If we offered buyer b the item at price p a number of times sb,p,t
before time t and from those he accepted yb,p,t impression, we can build the estimate

r̂b,p,t = p · yb,p,t/sb,p,t

with error

σ̂b,p,t =

√
a log(T )

sb,p,t

and the confidence interval:
Ib,p,t = [r̂b,p,t − σ̂b,p,t, r̂b,p,t + σ̂b,p,t]

which holds with probability 1 − O(T−ac). We denote by Ucb(b, p, t) and Lcb(b, p, t) the upper and
lower ends of the interval Ib,p,t. We omit the index t whenever it is clear from the context. Also, given
a confidence interval I, we will often denote b(I) and p(I) for the buyer and price associated with it.

2.4 Õ-notation
In some of our results to improve readability we use the notation Õ(T β) to highlight the polynomial
dependence of a certain expression with respect to T . This notation hides constants and dependencies
poly-log terms in T . Formally, we say that f = Õ(T β) if f = O(T β logγ(T )) for some constants γ and
τ .

3 Histograms with Consistency Checks

3.1 Second Price Histogram Algorithm

We design a simple learning algorithm with incentive properties similar to those of the second price
auction. Before we describe our algorithm, consider a version of this problem where incentives are
ignored. Fix a static strategy for each buyer and a discretization parameter k. Based on k, construct
a set of prices P = { 1k , 2k , . . . , k−1

k , 1}. Now, treat the problem as a (stochastic) multi-armed bandit
problem in which each pair (b, p) with b ∈ B and p ∈ P corresponds to an arm. Also, the reward
associated with (b, p) is the revenue obtained from offering price p to buyer b.

Our first algorithm for this setting, which we call Histogram consists of two phases. In the explo-
ration phase, the algorithm pulls each arm (b, p) for h rounds. We can use the average reward obtained
in those h rounds to build an estimate r̂b,p of the reward that can be obtained from that arm. In the
exploitation phase, the algorithm pulls the arm with the best estimated reward. If hk = o(T ), there is
a single arm (b∗, p∗) that is pulled in all but sublinearly many rounds and this is the arm with largest
empirical revenue.

The seller, therefore, identifies the arm that generates largest possible revenue and pulls it for the
remainder of the algorithm. This corresponds, in auction theory language, to running a first-price
auction. Similar to bid shading in first price auctions, in our setting charging the highest possible price
would incentivize buyers to pretend to have lower valuations.
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To address this issue we borrow ideas from the second price auction, which allocates the item to
the highest bidder but charges him only the second highest bid. Making the price paid by a certain
agent not depend on his actual bid is they key to design incentive compatible mechanisms. This idea
is often called the taxation principle, where data from all buyers except b are used to determine the
price offered to b. It can be shown that a mechanism is incentive compatible if and only if it can be
described in terms of the taxation principle.

We propose a second price auction version of the Histogram algorithm: the algorithm first chooses
the buyer b∗ with largest estimated revenue, but offers him the smallest price p such that the estimated
revenue is larger than the estimated revenue of any other buyer. Therefore even though we use the
estimation of a buyer to choose the winner, we determine his price based on the estimation of the buyer
with the second highest estimation.

Second Price Histogram

1: Pull h times each arm (b, p). Let r̂b,p be the average reward obtained.
2: (b∗, p∗) = argmaxb∈B,p∈P {r̂b,p}.
3: L = maxb6=b∗,p{r̂b,p}.
4: p′ = min{p; r̂b∗,p ≥ L}.
5: Pull arm (b∗, p′) for the remaining rounds.

The second price modification clearly does not address all incentive issues. For example, why
shouldn’t buyers behave in a certain way during the exploration phase and then in a different way
during exploitation ? We will come back to this issue later. But before that, let’s assume that buyers
play a static strategy, i.e., their decisions on whether to accept the price or not depend only on the
price offered in this timestep and the value in this timestep and not on the history of the auction. Our
first instinct is to believe in such condition, myopic is an (at least approximately) optimal static policy,
i.e., no other static policy would provide significant improvement over accepting whenever pt ≤ vt.
This is however not the case.

Consider two strategic buyers where the first has uniform valuation in [0, 1] and the second one
has valuation equal to 1/3 deterministically. If both buyers respond myopically, then the algorithm
will estimate the maximum revenue from buyer 1 to be around 1/4 (when pricing at p = 1/2 and the
maximum revenue from buyer 2 to be around 1/3. It will cause the algorithm to choose buyer 2 in all
but in a sublinear number of rounds, leaving buyer 1 with average utility o(T )/T . A good strategy for
buyer 1 in this example is to accept all offers below 1/2. This will entail accepting some offers below
his value, but will cause the seller to have an estimate of 1/2 for his revenue at 1/2. Since the price
that he will be offered will be around 1/3, he will have average utility around 1/6± o(T )/T .

The aggressive policy turns out to be approximately optimal among static policies:

Theorem 1. In the Second Price Histogram algorithm, the aggressive strategy is ǫ-dominant among

static strategies for ǫ = Õ
(
hk
T + 1√

h
+ 1

k

)
. In other words, regardless of the strategies of other buyers,

no buyer can improve his average utility by more than ǫ by deviating to another static strategy.
Moroever, if all strategic buyers play aggressive strategies, the regret of the seller is bounded by

Õ
(
hk + T√

h
+ T

k

)
.

Corollary 1. For h =
√
T and k = T 1/4, then it is an Õ(T−1/4)-dominant strategy for buyers to play

the aggressive strategy and the seller’s regret is at most Õ(T 3/4).

7



3.2 Consistency Checks

The previous results show that unlike the standard Histogram algorithm, the Second Price Histogram
guarantees that the aggressive strategy is an ǫ-equilibrium with respect to static policies. This al-
gorithm, however, does not preclude buyers from pretending they can generate a high value in the
exploration phase and once the buyer is chosen as b∗ to switch to the myopic policy. If buyers were to
play such non-static policies, the seller’s regret could be arbitrarily bad. In order to address this issue,
we introduce the notion of consistency checks.3

The idea of consistency checks is to force the buyer to play a strategy resembling a static strategy.
The idea is as follows: if all buyers are playing static strategies, each arm has a well-defined average
reward r̄b,p and in each timestep t, if the arm has been pulled sb,p,t times and the price was accepted
yb,p,t times, then with very high probability the average reward is in the interval: Ib,p,t = [r̂b,p,t −
σ̂b,p,t, r̂b,p,t + σ̂b,p,t] for r̂b,p,t = pyb,p,t/sb,p,t and σ̂b,p,t =

√
a log T
sb,p,t

. Therefore, if all buyer strategies are

static, then with very high probability, the intersection of all confidence intervals for each arm ∩Tt=1Ib,p,t
is non-empty since it contains r̄b,p.

We augment the algorithm by checking in each iteration t if ∩tτ=1Ib,p,τ 6= ∅. If so, we say that arm
(b, p) is consistent at time t. If in any iteration we realize that the chosen arm (b∗, p′) is no longer
consistent, we stop allocating the item.

Consistent Second Price Histogram

1: Pull h times each arm (b, p). Let r̂b,p be the average reward obtained.
2: (b∗, p∗) = argmaxb,pr̂b,p.
3: L = maxb6=b∗,p r̂b,p.
4: p′ = min{p; r̂b∗,p ≥ L}.
5: While ∩tτ=1Ib∗,p′,τ 6= ∅, pull arm (b∗, p′). If the intersection ever becomes empty,

stop allocating the item altogether.

Theorem 2. In the Consistent Second Price Histogram algorithm, the aggressive strategy is ǫ-dominant

for ǫ = Õ
(
hk
T + 1√

h
+ 1

k

)
. In other words, regardless of the strategies of other buyers, no buyer can

improve his average utility by more than ǫ by deviating to another (possibly non-static) strategy.
Moreover, if all strategic buyers play aggressive strategies, the regret of the seller is bounded by

Õ
(
hk + T√

h
+ T

k

)
.

3.3 Splitting the probability space

In this section, we describe a common tool in the analysis of the stochastic bandits mechanisms proposed
in the previous section. The execution of any learning algorithm on a fixed set of buyer policies is a
random process: the randomness comes from the valuations of the buyers that are drawn randomly in
each iteration and possibly from the policies employed by the buyers which can itself be randomized.
Despite the randomness, the analysis of both regret and equilibrium will be mostly deterministic. This
is accomplished by splitting the probability space in two: one part called Nice in which the random
variables of interest respect appropriate confidence intervals and a part called Nasty which occurs
with very small probability.

3See [10] who use consistency check ideas to design bandit mechanisms that perform well both in stochastic and
adversarial settings.
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Fix a profile of static policies for the buyers and let zb,p,t be the revenue obtained by pulling arm
(b, p) at time t. For example, if buyer b is myopic, zb,p,t = p · 1{vb,t ≥ p}. If buyer b is strategic and
employing an aggressive policy, zb,p,t = p · 1{vb,t ≥ µb}. Since we assumed that the policies are static,
then for fixed (b, p), the family {zb,p,t}Tt=1 consists of iid random variables. Now we are ready to define
the average reward and estimated reward formally in terms of z.

The real average reward is given r̄b,p = E[zb,p,t]. In order to define the estimated reward, let τ jb,p
be a random variable indicating the j-th time arm (b, p) is pulled by the algorithm. Recall that sb,p,t
denotes the number of times that the arm is pulled and let s̄b,p = maxt sb,p,t be the random variable
indicating the total number of times this arm is pulled in the course of the algorithm. The estimated
reward at time t is given by:

r̂b,p,t =
1

sb,p,t

sb,p,t∑

j=1

z
b,p,τ jb,p

Now, we are ready to define the event Nice as the event such that for all (b, p) and for all s ≤ s̄b,p,
it holds that:

∣∣∣r̄b,p − 1
s

∑s
j=1 zb,p,τ jb,p

∣∣∣ ≤
√

a log T
s (N1)

and:

∣∣∣µb − 1
s

∑s
j=1 vb,τ jb,p

∣∣∣ ≤
√

a log T
s (N2)

We denote by Nasty the complement of Nice in the probability space. Notice that Nasty happens
when at least one of the confidence intervals is not satisfied. The following result follows directly from
Hoeffding’s inequality (HI) in Section 2 and the Union Bound:

Lemma 1. Pr[Nasty] ≤ O(nk/T 2) when a = 4/c, where c is the constant in inequality (HI).

A note on non-static buyers The events Nice and Nasty are defined when all buyers use static
strategies. When we analyze a situation in which not all buyers are static, we abuse notation and
still refer to Nice and Nasty meaning that inequality (N1) hold for all buyers that are using static
strategies, if any, and inequality (N2) holds for all buyers. Lemma 1 still holds in this setting.

3.4 Proof of Regret in Theorems 1 and 2

We now prove the regret part of Theorems 1 and 2. Assume that all strategic buyers are playing
aggressive strategies. First we consider the loss from discretizing the space of prices:

Loss from discretizing prices. Let ρ̃b = maxp r̄b,p. If we had infinitely many arms, one for each
price p ∈ [0, 1], ρ̃b would be equal to ρ̄b in the benchmark. Since we are only considering p ∈ P ,
we have potentially an error of at most 1/k, i.e., |ρ̄b − ρ̃n| ≤ 1/k. Re-sorting the buyers such that
ρ̃1 ≥ ρ̃2 ≥ ρ̃3 ≥ . . ., we will define the discrete-regret as the difference between T ρ̃2 and the revenue
obtained by the algorithm. The regret is at most the discrete-regret plus T/k.

Loss from exploration rounds. Since we pull every arm h times, using the trivial bound for the loss
in each iteration we have loss at most nkh across all exploration rounds.

Splitting the probability space. Now, we can bound the expectation of the discrete-regret by condi-
tioning on Nice and Nasty

E[Regret] = E[Regret|Nasty] · Pr[Nasty] + E[Regret|Nice] · Pr[Nice]
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We use the crude bound of T for E[Regret|Nasty] since Nasty happens with negligible probability.
By Lemma 1, the total contribution of Nasty to the regret is O(nk/T ) = Õ(1), for k = Õ(T ). Using
the trivial bound for Pr[Nice] we get:

E[Regret] ≤ Õ(1) + E[Regret|Nice]

Therefore, we ignore Nasty from now on and focus on bounding E[Regret|Nice].
Conditioning on Nice. Conditioned onNice, no arm ever becomes inconsistent, so the Second Price

Histogram algorithm and the Consistent Second Price Algorithm are identical. Notice that each buyer

b has an arm (b, pb) such that ρ̃b = r̄b,pb and since we are conditioning on Nice, r̂b,pb ≥ r̄b,pb−
√

a log(T )
h .

Therefore in the description of the algorithm we must have L ≥ ρ̃2 −
√

a log(T )
h .

Since the arm (b∗, p′) chosen by the algorithm has r̂b∗,p′ ≥ L at the end of the exploration round, the

average reward of this arm by the end of the algorithm must be at least L−
√

a log(T )
s̄b∗,p′

≥ L−
√

a log(T )
h

since we are conditioning on Nice. Therefore the total loss per round is at most 2

√
a log(T )

h which is a

total loss of Õ
(

T√
h

)
.

Combining all losses. Combining the loss of Õ(T/k) from discretization, the loss of nhk from the
exploration rounds and the loss of Õ(T/

√
h) from the exploration rounds we get the regret in Theorems

1 and 2.

3.5 Proof of ǫ-dominance in Theorems 1 and 2

We now show that the aggressive strategy is ǫ-dominant, i.e., regardless of the strategies employed by

other players, any given player can’t improve his average utility by more than ǫ = Õ
(
hk
T + 1√

h
+ 1

k

)
by

deviating from the aggressive strategy. First we prove this for the Consistent Second Price Histogram
(Theorem 2) and remark that Theorem 1 is a special case.

First we bound the utility that buyer b can get by playing the aggressive strategy:

Lemma 2. Fix an arbitrary strategy profile for players b′ 6= b and let θ = maxb′ 6=b,p r̂b′,p be the random

variable indicating the maximum estimated revenue for all buyers except b and let δ =

√
a log(T )

h + 1
k .

Then the average utility of buyer b by playing the aggressive strategy is at least: E [µb − θ − δ]+− 2δ−
Õ(hk/T ).

Proof. The total utility of buyer b is at least −1 in each of the hk exploration steps. To bound the
expected total utility of buyer b in the remaining timesteps, notice that the expected utility he can
get on Nasty is negligible (using the same argument used for regret in the previous subsection), so
we bound his expected utility conditioned on Nice. Further condition on θ. One of two things can
happen:

Case 1 Buyer b is selected as b∗. The price charged by the algorithm in exploration is therefore at
most θ + 1

k , so the total utility of the buyer per round during the exploitation phase is at least
the sum of his values during this phase minus the product of θ + 1

k and the number of rounds
in this phase. Since we are conditioning on Nice, we can use condition (N2) for arm (b∗, p′)
and s = s̄b∗,p′ the number of times arm (b∗, p′) has been pulled. This condition implies that the

average value of the buyer per round is at least µb −
√

a log(T )
h . Conditioned on this case, the

total utility is at least: −hk + T (µb −
√

a log(T )
h − (θ + 1

k )) = −hk + T (µb − θ − δ).

10



Since the buyer is selected, we must have µb ≥ θ − δ, otherwise the buyer b couldn’t have been
selected since we are conditioning on Nice. Therefore the total utility is at least −hk − 2δT .
Combining those facts we get that the total utility is at least −hk+T · [(µb− θ− δ)+− 2δ], since
when µb ≥ θ+ δ we can use the bound −hk+ T (µb− θ− δ) and when µb ≤ θ+ δ we can use the
bound −hk − 2δT .

Case 2 Buyer b is not selected as b∗. Then it must be that µb ≤ θ + δ, otherwise, since we are
conditioning on Nice, buyer b would have been selected (despite discretization and sampling
errors). Therefore, the total utility of the buyer is at least −hk and µb − θ − δ ≤ 0. So the total
utility is at least −hk = −hk + T · (µb − θ − δ)+ ≥ −hk + T · [(µb − θ − δ)+ − 2δ].

Therefore in either case, the total utility is at least −hk + T · [(µb − θ − δ)+ − 2δ]. The lemma follows
by taking expectations over θ and dividing by T to obtain the average utility.

Lemma 3. Fix an arbitrary strategy profile for players b′ 6= b and let θ and δ be as in the previous
lemma. Then the utility of the buyer by playing any (possibly non-static) strategy is at most E[(µb −
θ + δ)+ + 2δ] + Õ(hk/T ).

Proof. Fix some arbitrary, possibly non-static, strategy for buyer b. We will now upper bound his
total utility for this deviation. Again, we ignore the utility that the buyer can get at Nasty since it
is negligible, so we focus on Nice. Conditioning on θ, we have that either:

Case 1 Buyer b is selected as b∗. In such case, the estimation r̂b∗,p′ ≥ θ, so since the confidence interval

for arm (b∗, p′) must have radius

√
a log(T )

h , all the points in the confidence interval must be above

θ −
√

a log(T )
h . Let s be the number of times the arm has been pulled throughout the algorithm.

By the consistency rule, there must be x in the intersection of all of the confidence intervals
before the last time the arm was pulled. Since the confidence interval just after exploration lies

above θ −
√

a log(T )
h , then we must have x > θ −

√
a log(T )

h .

In particular x is in the confidence interval of arm (b∗, p′) just before it is pulled. Therefore, the

empirical average revenue from this arm must be at most
√

a logT
s−1 away from x. In particular in

the notation of equation (N1):
∣∣∣∣∣∣

1

s− 1

s−1∑

j=1

z
b∗,p′,τ j

b∗,p′
− x

∣∣∣∣∣∣
≤

√
a log T

s− 1

Therefore the total payment of buyer b∗ across all times arm (b∗, p′) was pulled is at least

(s − 1)(x −
√

a log T
s−1 ) ≥ (s − 1)(θ −

√
a log(T )

h −
√

a log T
s−1 ) ≥ (s − 1)(θ − 2

√
a log(T )

h ). We can

now use condition (N2) at the last time s pulled to claim that the total value obtained from the

buyer to those items is at most s

(
µb +

√
a log T

s

)
. So the total utility from pulling arm (b∗, p′)

is at most s(µb− θ)+ 3
√

a log T
h +1 ≤ T (µb− θ+3δ) + 1. The utility he can get from other arms

(b∗, p) for p 6= p′ in exploration is at most h(k − 1).

Case 2 Buyer b is not selected as b∗. He can get utility at most hk from the exploration phase, since
he won’t be selected in exploration.

11



In either case, the utility of the buyer is at most T [(µb− θ+ δ)+ +2δ] + hk. Dividing by T and taking
expectations over T we obtained the result in the lemma.

Now we are ready to prove the incentives part of Theorems 1 and 2:
Proof of ǫ-dominance in Theorems 1 and 2. By switching from the aggressive strategy to any other

strategy, the gain in utility is at most
[
E[(µb − θ + δ)+ + 2δ] + Õ(hk/T )

]
−
[
E[(µb − θ − δ)+ − 2δ] − Õ(hk/T )

]
=

Õ
(
δ + hk

T

)
= Õ

(
hk
T + 1√

h
+ 1

k

)
.

4 Second UCB Auction

In this section, we design a learning algorithm that combines the learning properties of the standard
UCB algorithm with the incentive properties of a second price auction. The algorithm maintains an
estimate and a confidence interval for each buyer-price pair. At each time step, the algorithm first
chooses buyer b∗ with the largest upper bound for any of its confidence intervals (a.k.a, upper confidence
bound, or UCB), but offers him the smallest price p such that Ucb(b∗, p) is larger than the UCB of any
other buyer. Therefore even though we use the UCB of a buyer to choose the winner, we determine
his price based on the UCB of the buyer with second highest UCB. As in a second price auction, only
offering buyers prices determined by other buyers helps to address incentive issues, while continually
updating the confidence intervals leads to lower regret than the histogram algorithm from the previous
section.

Second UCB Auction

1: k ←
(

T
n log T

)1/3
and P ←

{
1
k ,

2
k , . . . , 1

}
.

2: For each (b, p) ∈ B × P let bt = b and pt = p for T 1/3 time steps.
3: for t = nkT 1/3 + 1, . . . , T do
4: b∗ = argmaxb maxp∈P Ucb(b, p, t).
5: Lt = maxb6=b∗,p∈P Ucb(b, p, t).
6: p− = argmin {p ∈ P ;Ucb(b∗, p, t) ≥ Lt}.
7: Let bt = b∗ and pt = p−.
8: If ∩tτ=1Ib∗,p−,τ = ∅ then stop allocating the item altogether.
9: end for

Like in the Histogram algorithm, myopic strategy is not an optimal policy for strategic buyers. We
will show that the policy in which buyers apply an aggressive strategy (i.e. they accept all prices with
pt ≤ µb) is an Õ(T−1/6)-equilibrium. Before discussing incentives, we show that under this policy, the
algorithm has sublinear regret.

4.1 Regret Analysis

Theorem 3. If strategic buyers play aggressive strategies, then the Second UCB Auction algorithm
has regret bounded by Õ(T 2/3).

Proof. Let H = nkT 1/3 + 1 be the first time step of the algorithm’s for loop, and ρ̃b = maxp∈P r̄b,p,
where P is the set of prices used by the algorithm. We have

E[Regret] , E

[
T∑

t=1

(ρ̄2 − pt)1 {At}
]
≤ T |ρ̄2 − ρ̃2|+H + E

[
T∑

t=H

(ρ̃2 − pt)1 {At}
]
, (1)
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where the last sum is the algorithm’s ‘discrete regret’, which can be decomposed into two terms based
on whether the event Nice occurs:

E

[
T∑

t=H

(ρ̃2 − pt)1 {At}
]
≤ E

[
T∑

t=H

(ρ̃2 − pt)1 {At}
∣∣∣ Nice

]
Pr[Nice] + T Pr[Nasty]

≤ E

[
T∑

t=H

(ρ̃2 − pt)1 {At}
∣∣∣ Nice

]
+O(1). (2)

The first inequality used
∑T

t=H(ρ̃2−pt)1 {At} ≤ T and the second inequality follows from Pr[Nasty] ≤
O( 1

T ), which we proved in Section 3.3. Now we can bound the discrete regret of the algorithm condi-
tioned on Nice as follows:

E

[
T∑

t=H

(ρ̃2 − pt)1 {At}
∣∣∣ Nice

]
= E



∑

b,p

T∑

t=H

(ρ̃2 − p)1 {At, bt = b, pt = p}
∣∣∣ Nice




≤
∑

b,p

∆b,pE

[
T∑

t=1

1 {bt = b, pt = p}
∣∣∣ Nice

]
(3)

where the inequality follows from the definition ∆b,p , max{0, ρ̃2 − r̄b,p} and the fact that E[(ρ̃2 −
p)1 {At, bt = b, pt = p} | Nice] ≤ ρ̃2 − E[p1 {At, bt = b, pt = p} | Nice] = ρ̃2 − r̄b,p.

We will now upper bound Eq. (3). Observe that if the event Nice occurs we have

r̄b,p ≤ Ucb(b, p, t) ≤ r̄b,p + 2

√
a log(T )

sb,p,t

for all (b, p, t). This implies maxp∈P Ucb(b, p, t) ≥ maxp∈P r̄b,p , ρ̃b, and thus

Lt , max
b6=b∗,p∈P

Ucb(b, p, t) ≥ ρ̃2 (4)

for any buyer b∗. Also, if the event Nice occurs and sb,p,t > 4a log(T )/∆2
b,p then

Ucb(b, p, t) ≤ r̄b,p + 2

√
a log(T )

sb,p,t
< r̄b,p +∆b,p , ρ̃2. (5)

By the definition of the algorithm,

Ucb(bt, pt, t) ≥ Lt (6)

for each time step t. Recall that sb,p,t =
∑t

τ=1 1 {bτ = b, pτ = p}. Combining (4), (5) and (6) we have

E

[
T∑

t=1

1 {bt = b, pt = p}
∣∣∣ Nice

]
= E

[
T∑

t=1

1 {bt = b, pt = p,Ucb(b, p, t) ≥ Lt}
∣∣∣ Nice

]

≤ ℓ+ E

[
T∑

t=ℓ

1 {bt = b, pt = p,Ucb(b, p, t) ≥ Lt, sb,p,t ≥ ℓ}
∣∣∣ Nice

]
≤ 4a log T

∆2
b,p

(7)

where ℓ = 4a log(T )/∆2
b,p.
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Now let A− = {(b, p) ∈ B × P ;∆b,p < ∆} and A+ = {(b, p) ∈ B × P ;∆b,p ≥ ∆}, for a constant
∆ > 0 to be chosen later. Eq (7) implies

∑

b,p

∆b,pE

[
T∑

t=1

1 {bt = b, pt = p}
∣∣∣ Nice

]
≤

∑

(b,p)∈A−

sb,p,T∆+
∑

(b,p)∈A+

4a log T

∆
(8)

Finally, combining (1), (2), (3) and (8) we have

E[Regret] ≤ T |ρ̄2 − ρ̃2|+ nkT 1/3 + T∆+
nk4a log T

∆
+O(1)

Choosing ∆ =
√

nk log(T )/T , and observing that k =
(

T
n logT

)1/3
and |ρ̄2 − ρ̃2| ≤ 1

k , proves the

theorem.

4.2 Equilibrium Analysis

We use similar techniques as the one used in Section 3 to show that it is an ǫ-equilibrium for buyers to
play the aggressive strategy. We do so by bounding the utility a strategic buyer can obtain by playing
the aggressive strategy and then using consistency checks to argue that they can’t improve their utility
by much by deviating. The proof can be found in Appendix B.

Theorem 4. The profile of buyer policies in which all strategic buyers play an aggressive strategy is
an Õ(T−1/6)-equilibrium.

5 Discussion and Future Directions

In this paper, we showed that a UCB learning algorithm for optimizating the seller’s revenue can be
modified in such a way that simple buyer strategies will induce approximate-equilibria. An alternative
question would be to analyze the equilibria of the standard UCB or other common learning algorithms.
This would be the learning theoretic equivalent of studying the set of equilibria of first price auctions.

From a practical perspective, an important generalization would be the case where the publisher can
send the impression to another exchange, if the selected exchange rejects the offered price. Since the
publisher must display an ad in milliseconds, the publisher can try a very small number of exchanges.
We believe the ideas we developed in this paper can pave the way for more general settings.

In the following subsections we discuss in more detail an important direction for future research,
namely, characterizing the trade-off between the seller’s regret and buyers’ incentives.

Buyer-Seller Trade-offs

An important avenue of investigation is to study the trade-offs between seller’s regret and buyer’s utility.
In the previous sections, we evaluated our algorithms with respect to their regret and buyers incentives,
O(Tα)-regret and O(T β−1)-equilibrium for respectively (α, β) = (3/4, 3/4) and (α, β) = (2/3, 5/6). A
major open problem is to characterize the pairs (α, β) for which learning algorithms exist with the
desired regret and incentive properties.

In this section, we discuss an additional formulation in terms of buyer’s penalty : we establish a
benchmark for buyer’s utility and measure the loss that each learning algorithm induces for each buyer
according to this benchmark. We establish a trade-off between those quantities:
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Definition 6 (Buyer Penalty). Given buyer b with highest µb playing a fixed policy, let p∗ denote the
price at which the buyer generate the second-highest revenue benchmark: E

[
p∗ · 1{At} | bt = b

]
= ρ̄2.

We define the buyer penalty, with respect to a seller mechanism M that pulls the arms (bt, pt) at
iteration t, to be

E
[ T∑

t=1

(vb,t − p∗)−
T∑

t=1

(vb,t − pb,t) · 1{bt = b ∧At}
]
.

In other words, this is the difference between the utility gained by the buyer that is asked to generate the
second-highest revenue benchmark on every round in expectation and the utility gained in the presence
of the seller mechanism M .

The following theorem can be used to show a trade-off between seller regret and buyer penalty.
The main idea of the proof (found in the appendix) is to use an anti-concentration bound for the
binomial distribution to show that at least a certain number of samples from the second highest buyer
are necessary to build a good estimate of the benchmark ρ2.

Theorem 5. Let B be a set that contains a mixture of myopic buyers and strategic buyers with value
distributions that have support over [0, 1]. Then for any seller mechanism, there exists a setting where
at least one of the following holds for any 0 < α ≤ 1/3 with probability at least δ:

1. The seller incurs a regret of Ω(T 1−α).

2. The top buyer suffers a buyer penalty of Ω(log(1/δ)T 2α).

3. At least one buyer is not playing an aggressive strategy.

The main implication of this theorem is that if all strategic buyers are playing the aggressive policy
at an approximate equilibrium, then it cannot be the case that both seller regret and buyer penalty
are small. In particular, if the seller mechanism incurs a regret of at most o(T 1−α) and strategic
buyers play the aggressive strategy at equilibrium, it must be the case that a winning strategic buyer
is willing to accept a buyer penalty of at least Ω(T 2α). Conversely, if a strategic buyer allows for no
more than o(T 2α) buyer penalty before deviating when playing the aggressive policy, then the seller
must necessarily suffer Ω(T 1−α) regret if the mechanism wishes to induce an approximate equilibirum
where strategic buyers use the aggressive policy.
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A Comparison to Other Revenue Benchmarks

A typical benchmark in Online Learning is to compare against the optimal arm, i.e., ρ̄1. Such bench-
mark, however, is not achievable in a strategic setting. Even when all buyers have deterministic
valuations vb,t = µb, if µ1 ≫ µ2, then buyer 1 can act as if his value were µ2 + ǫ and any algorithm
with sublinear regret must allocate to buyer 1 all but a sublinear number of times charging him at
most µ2 + ǫ.

Another benchmark is the revenue that is obtained by the second-price auction if we could bring
together all the buyers, which is T · E[SMaxbvb], where SMax corresponds to the second maximum
valuation. Such a benchmark could be too strong in our setting (in particular when the number of the
buyers is large). The main reason that such benchmark is infeasible is that after the publisher offers
an impression to an exchange and exchanges accepts, the publisher cannot reneg and not allocate.
Therefore, the seller cannot observe the realization of vb,t but has to make decisions based on the
estimated distribution or simply expected value of E[vb,t]. : consider for example n buyers with uniform
valuations over [0, 1]. The expected revenue of a the second price auction is E[SMaxbvb] = 1−O(1/n).
In our setting, however, since the seller chooses the buyers to offer the good before observing valuations
(which are drawn independently of the seller’s decision), the overall revenue from any algorithm can
be at most the sum of the valuations of the selected buyers, which is T · E[vb,t] = 1

2 · T .
If all buyers are strategic, our benchmark becomes T ·SMaxE[vb]. This benchmark is incomparable

to the second price auction benchmark T ·E[SMaxvb]. The previous paragraph shows an example where
E[SMaxvb] ≥ SMaxE[vb]. For an example where the opposite inequality holds, consider two buyers
with iid valuations v = 1 with probability p and v = p with probability 1 − p. Then: SMaxE[vb] =
p+ (1− p)p ≥ p2 + (1− p2)p = E[SMaxvb] for any 0 < p < 1.

B Proof of Theorem 4

Proof of Theorem 4. Consider a strategy profile Ω = (Ωb,Ω−b) in which all strategic buyers other than
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b play the aggressive strategy and buyer b plays an arbitrary (and possibly non-static) strategy. Define

Ub,p ,

T∑

t=1

(vb,t − p) · 1 {bt = b, pt = p,At}

to be the utility that buyer b accrues from timesteps in which the algorithm offers price p to buyer b.
We will begin by proving an upper bound on E[Ub,p], for each (b, p) ∈ B × P .

Define ρ̃b = maxp∈P r̄b,p for any buyer b ∈ B. For each (b, p) ∈ B × P choose the largest xb,p ∈
∩Tt=1Ib,p,t, and define the event

Near(b, p) , {xb,p + 2δ ≥ ρ̃2},
where δ > 0 is a constant that will be chosen later. Also, let Far(b, p) be the complement of Near(b, p).

We can decompose the expected utility E[Ub,p] as follows:

E[Ub,p] ≤ E[Ub,p | Nice,Near(b, p)] + E[Ub,p | Nice,Far(b, p)]

+ E[Ub,p | Nasty] Pr[Nasty]

≤ E[Ub,p | Nice,Near(b, p)] + E[Ub,p | Nice,Far(b, p)] +O(1) (9)

where the inequality used Ub,p ≤ T and Pr[Nasty] ≤ O( 1
T ), which we proved in Section 3.3. We will

first upper bound E[Ub,p | Nice,Near(b, p)], and then upper bound E[Ub,p | Nice,Far(b, p)].
We have

Ub,p =

T∑

t=1

vb,t1 {bt = b, pt = p} −
T∑

t=1

p · 1 {bt = b, pt = p,At}

= sb,p,T v̂b,p,T − sb,p,T r̂b,p,T (10)

Now we will upper bound sb,p,T v̂b,p,T and lower bound sb,p,T r̂b,p,T , conditioned on Near(b, p) and Nice

occuring.
If Nice occurs then v̂b,p,T ≤ µb + σb,p,T , which implies

sb,p,T v̂b,p,T ≤ sb,p,T (µb + σb,p,T ) (11)

Both r̂b,p,t ∈ Ib,p,t and xb,p ∈ Ib,p,t, by definition. Recalling that |Ib,p,t| = 2σb,p,t, this implies r̂b,p,t ≥
xb,p − 2σb,p,t. Thus

sb,p,T r̂b,p,T ≥ sb,p,T (xb,p − 2σb,p,T ) ≥ sb,p,T (ρ̃2 − 2δ − 2σb,p,T ) (12)

where the last inequality follows if Near(b, p) occurs.

Combining Eq. (10), (11) and (12), and recalling that σb,p,T =
√

a logT
sb,p,T

, we have

E [Ub,p | Nice,Near(b, p)]

≤ E
[
sb,p,T (µb − ρ̃2) + 3

√
asb,p,T log T + 2sb,p,T δ | Nice,Near(b, p)

]
(13)

Now to upper bound E[Ub,p | Nice,Far(b, p)]. We know that if Nice occurs then r̄b,p ∈ Ib,p,t, which
implies by the choice of xb,p that r̄b,p ≤ xb,p. Moreover, if Far(b, p) occurs then xb,p + 2δ < ρ̃2, which
implies that ∆b,p > 2δ. By Eq. (7) of Theorem 3 we have

E[Ub,p | Nice,Far(b, p)] ≤ E

[
T∑

t=1

1 {bt = b, pt = p}
∣∣∣ Nice,Far(b, p)

]
≤ 4a log T

δ2
(14)
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Combining Eq. (9), (13) and (14), and setting δ =
√

a logT
T 4/9 , we have

E[Ub,p] ≤ E
[
max

{
Õ(T 4/9), s̄b,p(µb − ρ̃2 + Õ(T−2/9) + Õ(

√
s̄b,p)

}]

Summing this bound over all p ∈ P , and using the fact that |P | = k and
∑

p s̄b,p ≤ T , we have that

E[ub] ,
1
T

∑
p∈P E[Ub,p] satisfies

E[ub] ≤ (µb − ρ̃2) + Õ(T−1/6) (15)

From Eq.(15), no buyer b > 1 have a deviation that improves his average utility by more than
Õ(T−1/6). We are left to prove that the first buyer (assuming he is strategic) has no deviation improving
his utility by more than Õ(T−1/6).

If we show that the average utility of buyer 1, assuming he is strategic, under the equilibrium
strategy is at least µ1− ρ̃2−Õ(T−1/6) then we are done. Consider two cases: in the first case µ1− ρ̃2 ≤
Õ(T−1/6). In such case, the utility of buyer 1 for any strategy must be at most Õ(T−1/6) by Eq. (15),
so in particular, it must be also so for the aggressive strategy. In the second case, µ1− ρ̃2 ≥ Õ(T−1/6).
So conditioned on Nice all arms have confidence intervals of length Õ(T−1/6), so an arm of buyer 1 will
be always picked. Moreover, buyer 1 has a price p with ρ̃2+Õ(T−1/6) ≤ p ≤ ρ̃2+Õ(T−1/6)+1/k ≤ µ1.
By the definition of the Second UCB Auction, either this arm or an arm with lower price will be chosen,
generating average utility at least µ1 − ρ̃2 − Õ(T−1/6).

C Proofs Omitted From Section 5

The following lemma, which will be used in the trade-off analysis, establishes a lower bound needed on
the number of samples needed to accurately estimate the mean of certain binomial random variables.
The proof, which borrows heavily from Proposition 7.3.2 of [18], can be found in the appendix.

Lemma 4. Let ǫ ∈ [0, 18 ] and 0 ≤ ν ≤ ǫ. Then for a binomial variable X ∼ B(n, 12 − ν) the following
inequality holds:

Pr
(
X ≥ (1/2− ν)n+ ǫn

)
≥ 1

20
e−36nǫ2 .

Now we ready for the main result of the section. The implication of this theorem are discussed
further after the proof.

Proof. We first let t = ǫn (for simplicity of presentation assume t and n/2 are integers) and expand
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the expression

Pr
(
X ≥ (1/2 − ν)n+ ǫn

)
≥ Pr

(
X ≥ n

2
+ t

)

=

n∑

i=n
2
+t

(
n

i

)
(
1

2
− ν)i(

1

2
+ ν)n−i

=
1

2n

n∑

i=n
2
+t

(
n

i

)
(1− 2ν)i(1 + 2ν)n−i

≥ 1

2n

n
2
+2t∑

i=n
2
+t

(
n

i

)
(1− 2ν)i(1 + 2ν)n−i

≥ min
j∈[t,2t]

{
(1− 2ν)n/2+j(1 + 2ν)n/2−j

} 1

2n

n
2
+2t∑

i=n
2
+t

(
n

i

)
.

The min term can be further bound

min
j∈[t,2t]

{
(1− 2ν)n/2+j(1 + 2ν)n/2−j

}
= (1− 2ν)n/2+2t(1 + 2ν)n/2−2t

= (1− 4ν2)n/2−2t(1− 2ν)4t

≥ e−8ν2(n/2−2t)e−16νt ≥ e−4ν2n−16νt ,

where the penultimate inequality follows from 1− x ≥ e−2x for 0 ≤ x ≤ 1/2.
The sum term can be bound as follows

n
2
+2t∑

i=n
2
+t

(
n

i

)
≥ t

(
n

n
2 + 2t

)

= t

(
n
n
2

)
n/2− 2t+ 1

n/2 + 1
· n/2− 2t+ 2

n/2 + 2
. . .

n/2

n/2 + 2t

≥ 2nt√
2n

2t∏

i=1

(
1− 2t

n/2 + i

)

≥ 2nt√
2n

(
1− 2t

n/2

)2t
≥ 2nt√

2n
e−16t2/n ,

where the inequality
(
n
n
2

)
≥ 2n√

2n
follows from Stirling’s approximation and the final inequality again

follows from 1− x ≥ e−2x for 0 ≤ x ≤ 1/2.
Combining these intermediate results we have

Pr
(
X ≥ (1/2 − ν)n+ ǫn

)
≥ t√

2n
e−4ν2n−16(t2/n+νt)

= ǫ

√
n

2
e−4ν2n−16n(ǫ2+νǫ)

≥ ǫ

√
n

2
e−36ǫ2n ≥





1
12e

−36ǫ2n, if ǫ > 1
12

√
2
n

1
12e

−1/2, if 0 ≤ ǫ ≤ 1
12

√
2
n

.
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Note that 1
12e

−1/2 ≥ 1
20 and so for all ǫ ∈ [0, 18 ] we have Pr

(
X ≥ (1/2− ν)n+ ǫn

)
≥ 1

20e
−36nǫ2 , which

completes the lemma.

Proof of Theorem 5. Let rb,p denote the expected revenue generated by buyer b at price p. Now,
consider a set of two buyers B = {b, b′}. Let b be a strategic buyer that statically follows the aggressive
policy and has µb = 1. Note, if the buyer deviates from the aggressive policy, then outcome (3) holds
and we are done. Let b′ be a myopic buyer with a Bernoulli value distribution with parameter βb′ .

Let us consider two possible scenarios differentiated by the setting of the myopic buyer’s parameter
βb′ :

Scenario A βb′ =
1
2 , which implies

max
p

rb′,p = max
p

p Pr
v∼Db′

(p ≤ v) = max
p

pβb′ =
1

2
< 1 = rb,1 = max

p
rb,p ,

as well as rb, 1
2

= 1
2 = rb′,1 = maxp rb′,p.

Scenario B βb′ =
1
2 − 1

Tα , which implies

max
p

rb′,p = max
p

p Pr
v∼Db′

(p ≤ v) = max
p

pβb′ =
1

2
− 1

Tα
< 1 = rb,1 = max

p
rb,p ,

as well as rb, 1
2
− 1

Tα
= 1

2 − 1
Tα = rb′,1 = maxp rb′,p.

Thus, in both scenarios buyer, b is able to generate the highest revenue and buyer b′ sets the second-
highest revenue benchmark. Also, in both cases, there is a price (p = βb′) at which the first buyer can
generate exactly this benchmark revenue.

Let Tb,p denote the set of iterations where buyer b is offered price p and let r̂b,p = 1
|Tb,p|

∑
t∈Tb,p

p ·
1{At} denote the empirical estimate of rb,p. Then, note that Lemma 4 implies that in Scenario A

Pr
(
rb′,p − r̂b′,p ≥

1

Tα

)
= Pr

(
Pr(p ≤ v)− 1

|Tb′,p|
∑

t∈Tb′,p

1{p ≤ vb,t} ≥
1

pTα

)

= Pr
X∼B(|Tb′,p|, 12 )

(1
2
− 1

|Tb′,p|
X ≥ 1

pTα

)

= Pr
X∼B(|Tb′,p|, 12 )

(
X ≤ (

1

2
− 1

pTα
)|Tb′,p|

)

= Pr
X∼B(|Tb′,p|, 12 )

(
X ≥ (

1

2
+

1

pTα
)|Tb′,p|

)

≥ 1

20
exp

(
− 36|Tb′,p|

p2T 2α

)
,

where we’ve used ǫ = 1
pTα , ν = 0, and n = |Tb′,p|. Similarly in Scenario B we have

Pr
(
r̂b′,p − rb′,p ≥

1

Tα

)
= Pr

X∼B(|Tb′,p|, 12−
1

Tα )

(
X ≥ (

1

2
− 1

Tα
+

1

pTα
)|Tb′,p|

)

≥ 1

20
exp

(
− 36|Tb′,p|

p2T 2α

)
,
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where again we have applied Lemma 4, with ǫ = 1
pTα , ν = 1

Tα , and n = |Tb′,p|.
Note, in either scenario, if for all prices p we have |Tb′,p| < Ω(log(1/δ)T 2α), then with probability

at least δ we cannot correctly determine whether βb′ = 1
2 or βb′ = 1

2 + 1
Tα . In other words, with

probability at least δ such a seller mechanism cannot distinguish between Scenario A and Scenario B
and will behave the same (in expectation) in both scenarios. Now, let p̂ be the average price offered
to buyer b on the more than T − T 2α = Ω(T ) rounds that the seller mechanism offers a price buyer
b. If p̂ ≤ 1

2 − 1
2Tα , then in Scenario A the buyer suffers regret more than Ω(T ) · 1

2Tα = Ω(T 1−α) and
outcome (1) is achieved. Similarly, if p̂ > 1

2 − 1
2Tα , then in Scenario B the top buyer suffers a penalty

of Ω(T 1−α) ≥ Ω(T 2α) (for 0 < α ≤ 1/3) and outcome (2) is achieved.
Finally, consider a seller mechanism that selects a price p such that |Tb′,p| ≥ Ω(log(1/δ)T 2α). Then

the first buyer b suffers a buyer penalty of at least Ω(log(1/δ)T 2α) since it makes no utility on these
rounds and. Therefore, outcome (2) is achieved and we are done.
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