Permission and Authority Revisited
towards a formalisation

Sophia Drossopoulou
Imperial College London

scd@doc.ic.ac.uk

James Noble
Victoria University Wellington

kjx@ecs.vuw.ac.nz

Mark S. Miller

Google Inc.
erights@google.com

Toby Murray

The University of Melbourne
toby.murray@unimelb.edu.au

ABSTRACT

Miller’s notions of permissions and authority are foundational to
the analysis of object-capability programming. Informal definitions
of these concepts were given in Miller’s thesis. In this paper we
propose precise definitions for permissions and authority, based on
a small object-oriented calculus. We quantify their bounds (current,
eventual, behavioural, topological), and delineate the relationships
between these definitions.

CCS Concepts

*Security and privacy — Logic and verification; *Software and
its engineering — Semantics;

Keywords

Permission; Authority; Object-Capabilities.

1. INTRODUCTION

In his doctoral dissertation [11], Mark Miller proposed the con-
cepts of permissions and authority of an object o to describe which
other objects o has access to, and which other objects it may mod-
ify. Miller also distinguished between four flavours of authority:
the current, eventual, behavioural, and topological bounds on these
permissions and authorities.

The concept of authority has been used to verify or analyse object-
capability systems [[10,[12], however, to our knowledge, there exists
no work which concentrates on the foundational formal definition
of these concepts and their flavours. Such a foundational defini-
tion is required as object-capability systems and their formalisa-
tions are increasingly of interest in the research literature [6) [2].
However, these works tend to use only one or two these concepts,
as needed for the particular study, and the particular programming
language. To our knowledge, there does not exist a study of all
flavours of permission and authority, and their relationship, in a
language-independent setting.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

FTfJP’16, July 19 2016, Rome, Italy

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4439-5/16/07. .. $15.00

DOL: http://dx.doi.org/10.1145/2955811.2955821

In this paper we propose precise definitions for all these con-
cepts, and discuss their relationships. We base the model on a small
class-based object-oriented calculus. In the process of our formal-
isation, we uncover one new category of authority, we formalise
some of the claims made in [11], and rectify some others. The def-
initions we propose are precise, but do not necessarily reflect all
aspects relevant to permissions and authority. In the last section of
our paper we discuss some aspects that we have not yet been able
to cover, and outline how the definitions could be improved.

2. FORMAL PRELIMINARIES

We assume a program P written in a memory safe OO language
with no ambient authority (i.e. no global or static variables, so that
objects can only interact with other objects which they have been
passed explicitly). We assume a small step operational semantics
of the shape

PF o,stmts ~ o', sr,
where o is the runtime state, stmt s are statements, and sr is either
statements or a result (the address of an object, null, a number etc).

Figure [T] gives an example of such a language, which however
serves illustration purposes only. Similar concepts as those we de-
fine below should be definable in any other such programming lan-
guages. The most important feature of this core language is that
fields are encapsulated: as in Smalltalk, the syntax enforces that
fields may be read or written only by the object to which they be-
long.

We have not allowed for loops and conditionals. These can easily
be encoded. We give the definition of states, o, in figure E] and
operational semantics in figure [3] The runtime states are defined
in terms of concepts are as found in many related works: the state
o consists of a sequence of stack entries, ¥s; each 1) consists of a
frame ¢, mapping from variable identifiers to addresses in the heap,
and a continuation C[o], indicating how execution will continue
when the callee has terminated.

We define liberal execution of the shape
o~ o,
which describes all possible executions within the programming
language, for all programs P and statements stmts.

DEFINITION 1. For any program P, if P F+ o,stmts ~
o', srthen o~ o'. And, if o~ o' then there exists program P
and statements stmts and result sr such that P = o, stmts ~»

/
o' sr.

That is: o~ ¢’ if we can imagine a program P and statements
stmts that somehow get us to o

http://dx.doi.org/10.1145/2955811.2955821

Program = ClassDescr*
ClassDescr ::= class Classld
{ (field Fieldld)* (methBody)* }

methBody method m (Parld*) { Stmts }
Stmts = Stmt | Stmt; Stmts
Stmt = Parld := Rhs

| this.Fieldld := Rhs

| return Rhs
Rhs n= Arg.Methld(Arg™) | Arg

| new Classld(Arg™)
Arg w= this | Parld | this. Fieldld

|

true | false | null

Classld, Parld, Methld, Varld, Fieldld € Identifier

Figure 1: Syntax

o € state = Ps- - x

s = P*

b = 6-Clo]

¢ € frame = Stackld — val

C[o] = Parld := o | this.Fieldld := o
| return o | CJ[o]; Stmts

X € heap = addr — object

v € val = { null, true, false } U addr

object = Classld x (Fieldld — val)

Lty € Address

Stackld = { this } U Varld U Parld

Figure 2: States

We also assume a behavioural description B of execution which

describes a set of permissible executions with the shape
Bt o,stmts ~ o', sr,

such that B, o, stmts ~» o, sr implies that 0 ~» ¢’. A behavioural
description may be anything ranging from a complete functional
specification, e.g., [8]], or low-level mechanisms such as owners-as-
dominators [1]], owners-as-modifiers [9], or partial specification of
particular policies as advocated in [3}4]. We say that a behavioural
description characterises a program if all the executions of the pro-
gram fall within the behavioural description:

DEFINITION 2. P C B iff
Vo,0', stmts, sr.
P & o,stmts~» o', sr implies B F o0,stmts~> o', sr

In other words, P C B means that P is a refinement of B.

These three semantics give rise to three definitions of possible fu-
ture worlds. The Eventual Worlds (EW) are those states o’ reach-
able from state o by a program P; the Behavioural Words (BW)
are those states reachable under a behavioural description B; and
the Maximal Worlds (MW) are those reachable via liberal execu-
tion. (MW corresponds most closely to Miller’s “Topology-based”
bounds).

DEFINITION 3.

EW(P,oc) = {0’ |3stms,sr. Pk o,stmts ~* o', sr}
BW(B,o) = {o¢'|3stms,sr. B& o,stmts~" o', sr}
MW (o) = {d']| o "0

It is easy to see that the following inclusions hold between the
current, eventual, behavioural, and maximal future worlds:

LEMMA 1. Forall programs P, behavioural description B, and
states o:

e 0 CEW(P,o) C MW(o)

e BW(B,0) C MW (o)

e [fP C Bthen EW(P,0) C BW(B,0)

Moreover, it is easy to show that with increasing stack prefixes
(i.e., increasing the method calls in the calling context of the current
configuration o), we increase the worlds:

LEMMA 2. Forall programs P, behavioural description B, states
o, and stack prefixes s

e EW(P,o) C EW(P,v¢s - 0)

e BW(B,0) C BW(B,ys o)

e MW (o) C MW (¢s- o)

3. FOUR FLAVOURS OF PERMISSIONS

Citing Lampson [[7], Miller [[11] defines permission in an object-
capability system: “A direct access right to an object gives a subject
the permission to invoke the behaviour of that object”. More pre-
cisely, we define that an object 0’s Current Permissions (C'P) in
a state o are simply all the object references to which o has direct
access in o: the contents of o’s fields £. In addition, if o is the cur-
rent receiver, then C'P includes the local variables x to which the
current method has access.

DEFINITION 4.

CP(o,0) = {o} U {d |If.o(0,f)=0"}U
{O/|O:0'(this) A dx.o X):O/}

In the above o (this) indicates the receiver of the currently execut-
ing method, i.e. o(this)=¢(this), when o = _- ¢ - x, for some
X-

Then, we can define bounds on future permissions by projecting
CP into the future worlds of o, giving precise definitions of Even-

tual Permissions (EP), Behavioural Permissions (BP) and Maximal
Permissions (MP):

DEFINITION 5.

EP(P,0,0) = U, cpw o) CP(d',0) N dom(o)
BP(B,0,0) = U, cpw(po) CP(d’,0) N dom(o)
MP(o,0) = Uyemw(po) CP(0’,0) N dom(o)

Note that each of these definitions projects the permissions back
to those objects existing in world o (N dom(o)) because knowing
that more objects will be created in some future world of the cur-
rent state o doesn’t give us any more useful information about the
objects that actually exist in the current state.

The following relations hold:

|this]s., = ¢(this) |parld]e. = ¢(parld)

[null] 4., = null [true]s. = true
(NEW_OS)

¢ s new in y

f1,...fn are the fields for CId as defined in P

PkF¢-x, new Cld(a1, ...a,)

~r X[L'—>(C[d7 lel_alJ(b,o‘.--anLdnJ(b’o—)}, L

(VARASG_OS)
P+ ¢-x, ths ~ X', val
PF 4s-¢-x, vi=rhs ~ s - ¢[v — vall-x', val

(SEQUENCE_OS)
P o, stmt ~ o, val
P o, stmt; stmts ~ o', stmts

(METHCALL_OS)
lalo-x =¢
lai] o = val; Vi€ {l.n}
M(P,x() 1,m) = method m(pari,...pary){ stms}
¢’ = this s ¢, pary + vali, ... par, — val,

|this. fldId| s = x(¢(this), fldId)

|false | 4., = false

(ARG_OS)

PF¢-x,a~ x, a]go

(FIELDASG_OS)
Pt ¢-x, rhs ~ X', val

P Fs-¢-x, this.f:=rhs ~
Ps - ¢ - x'[¢(this), f — val], val

(METHRETURN_OS)

r free in ¢

¢ =olr— lalsy]

PFvYs-¢-x, Clam(a,...an)] ~
s-¢-Clo]- ¢ - x, stms

Pras-¢-Clo]-x, returna ~ s-¢ - x, C[r]

Figure 3: Operational Semantics

LEMMA 3. Forall programs P, behavioural description B, and
states o:

e CP(0,0) C EP(P,0,0) C MP(0,0)

e CP(0,0) C BP(B,0,0) C MP(o,0)

e [fP C Bthen EP(P,0,0) C BP(B,0,0)

The proof of this lemma follows from lemmam

Note the condition in the relationship between behavioural and even-
tual permissions: the eventual permissions are bounded by the be-
havioural permissions only when the behaviour of the program P
is bounded by the behavioural description B — this condition was
omitted from Miller’s original definition [11} p.60].

Based on lemma [2] we can prove that by increasing the stack
prefix, we increase the eventual, behavioural, and maximal permis-
sions, but not the current ones.

LEMMA 4. Forall programs P, behavioural description B, states

o, and stack prefixes \s:

CP(o,0) =CP(¢s- o)
EP(P,o,0) C EP(P,vs - c,0)
BP(B,o0,0) C BP(B,¢s - 0,0)
MP(o,0) C MW (¢s - 0,0)

4. FOUR FLAVOURS OF AUTHORITY

Miller [11} p.59] defines authority as “the Ability to Cause Ef-
fects”. Following the scheme established for permissions, we can
define the Current Authority (CA) of an object o in state o of pro-
gram P:

DEFINITION 6.
CA(P,0,0) = {0 |30",mo1,..0n.

o€ CP(o,0(this)) A

Vi € {1.n}.0; € CP(0,0) A

P F O'”,X.IH(Xl,...Xn) ~* 0'/,_ A

o = o[x > 0,x1 v 01,...x > 0p] A

o(d,f)#d'(d,)}

Our definition states that the current authority of o in state o in-
cludes all objects o’ which may be modified by a method call pro-
vided that the method call is possible from the current receiver (i.e.
o is reachable from the receiver — C'P(o, 0)), and that it can orig-
inate from o. A method call may originate from o if the receiver
and arguments of that method are accessible from o (i.e. are in
CP(o,0)). The concept of C'A was not proposed in Miller’s thesis
[[11]], which proposed only Eventual Authority (EA), Behavioural
Authority (BA), and Maximal Authority (MA). We define these au-
thorities in terms of CA by projecting CA into the three future
worlds, in the same way we projected permissions:

DEFINITION 7.

EA(P,0,0) = Ugyecpw(po CAlo’',0) N dom(o)
BA(B,0,0) = U,cpwpo) CAl0’,0) N dom(o)
MA(o,0) = Useruwpo) CA(c’,0) N dom(o)

The following relations hold:

LEMMA 5. Forall programs P, behavioural description B, and
states o:
o CA(o,0) C EA(P,0,0) C MA(o,0)

o C'A(o,0) C BA(B,0,0) C MA(o,o0)
e [fP C Bthen EA(P,0,0) C BA(B,o,0)

The proof of this lemma also follows from lemmam
Note again that the relationship between EA and BA depends on
the program conforming to the behavioural description.

Again, based on lemma [2] we can prove that by increasing the
stack prefix, we increase the eventual, behavioural, and maximal
authorities, but not the current ones.

LEMMA 6. Forall programs P, behavioural description B, states

o, and stack prefixes \s:

CA(o,0) = CA(ys - o)
EA(P,0,0) C EA(P,¢s-0,0)
BA(B,o,0) C BA(B, s 0,0)
MA(o,0) C MA(¢s - g,0)

MP é——> MA
/' N ~ \

BP BA
L 5
~ - -
~ EP EA -
™ A
cp CA

Figure 4: Relationships between Permissions and Authorities;
arrows indicate subsets — dotted arrows indicate conditional
subsets

S. PUTTING AUTHORITY AND PERMIS-
SION TOGETHER

We now discuss the relation between authority and permission.
Counter to initial expectation, authority does not imply permission,
nor does permission imply authority. We can see this in the example
shown in figure[3]

We see that x has authority but no permission over y (because
x can invoke a method on b that changes y, but x has no direct
reference to y) and that z has permission for x but no authority over
it (because z has a direct reference to x but cannot cause any change
to x). This is counter to Miller [[11, ch.8] where it is claimed that
eventual, behavioural, and maximal permissions are always subsets
of the corresponding authorities. This is graphically depicted in
figure[§]

On the other hand, in the maximal world, authority and permis-
sion do indeed conflate:

LEMMA 7. For all states o and objects o
e MA(o,0) = MP(o,0)

The proof follows from lemma[J] Figure] summarises these
relationships.

6. CONNECTIVITY

We can observe the maximal authorities and permissions without
executing the hypothetical program. Instead, we observe the tran-
sitive, symmetric closure of accessibility through the stack frames
as follows:

class X {
field b // initialised by new X(b)
method thumpX { return true } //does
nothing

W =

}

class B {
field y // initialised by new B(y)
method thumpY { y.thumpY; return false
}

® w9 o A

9| }

in|class Y { //mutable object

12 field t // initialised by new Y (t)

13 method thumpY { if (t) then {this.t:=
false}

14 else {this.t:=
true}

15|} return t }

17| class 72 {

18 field x // initialised by new Z (x)

19 method thumpX { x.thumpX; return false
}

20/ }

n|var y := new Y(false)

nlvar b := new B(y)

u|var x := new X (b)

»s|var z := new Z(x)

26

»|// x points to b points to y, and x can
mutate y

%l // z points to x, but z cannot mutate x

Figure 5: Example

The relation «~.,, represents an upper bound of the connectivity
that may exist after execution of any method which corresponds to
the frame ¢.

DEFINITION 8. Given a frame ¢ and a heap x we define the
relation «~ 4., C Address x Address as the smallest relation such
that

o ¢(z) o O(x') forall z,z’ € dom(p)
® 0 wpy 0 and (0, f) = 0" for some f, implies 0 ~p.5 0
® . is an equivalence relation

For example, consider a frame, ¢1 = (this — 2,x — 5) and
another frame, ¢2 = (this +— 1) and heap x1 with objects at
addresses 1, 2, 3, 4 and 5, such that x1(1, f) = 2, x1(2, ") = 4,
x1(1, f') = 3 — the remaining objects have no fields, or their fields
are set to null. The corresponding heap and the two frames are
shown diagrammaitcally in fi gurem

{ i;y/“\ﬂ X | B V/k\ﬂ ¥ V/‘\\me)
S _/ _/‘ L4 N
<
N B
| Permission, no Authority ‘ ‘ Authority, no permission ‘

Figure 6: Authority does not imply permission, nor does per-
mission imply authority

this X

TS
f __4,(3 \}
A

Figure 7: Example heap, and two frames.

Now consider what may happen if we execute a method with re-
ceiver and argument as in ¢;. We may create a link from 2 to 5, for
example, by executing the statement this.f := x. In general, exe-
cution of a method on the frame ¢, may create a new link between
any of the objects 2, 4 and 5. By application of the definition we
obtain

e .=

{(21;)5)» (2,4), (2,5), (4,2), (4,4), (4,5), (5,2), (5,4), (5,5), }.

Notice, that even though 5 is not connected with 4 in x1, the pair
(4,5) appears in the relationship, as 5 is reachable from the frame,
and 4 is reachable from 2, which again is reachable from the frame.
On the other hand, the object 1 does not appear in any pair of the
relationship, as it is not reachable from the frame ¢ .

Similarly, by application of the definition we obtain:

P2-X1

{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4),

(3,1), (3,2), (3,3), (3:4), (4,1), (4,2), (4,3), (4,4) }
Notice that 5 does not appear in the relationship, as it is not reach-
able from the frame.

We observe that the relationship «~4., represents a fully con-
nected graph.

LEMMA 8. For all frames ¢, heaps x, and objects o, o, 0",
o

® 0y 0 and 0"~y 0" implies 0 gy 0"

The proof is based on the fact that the relation 0 «¢., 0’ implies
that the objects o and o’ are reachable from the frame ¢. This can
be proven by induction on the rules from definition [§]

More importantly, we also obtain that «~, characterises M A and
MP.

LEMMA 9. For any state o
e 0€ MA(c,0") ifand only if o s 0
e o€ MP(0,0") ifand only if o o o

To prove this lemma, we assume a “maximal” program, where
each class has a method returning for each of its fields, returning
the value of this field, and another method setting the value of this
field.

A corollary of this lemma is that M/ A and M P represent an equiv-
alence relationship, and fully connected graphs.

The relation 4., gives an upper bound on permissions and au-
thority. This reflects the assertion that connectivity begets connec-
tivity [[11].

We now expand our definition of maximal connectivity to talk
about the complete state o.

DEFINITION 9. Given a state o we define the relation «~,C
Address x Address as the smallest relation such that
o vy C o ifo hasthe forms- ¢ - x.
o —yx C o ifo hasthe form s - (¢ - Clo]) - s’ - ¢ - x.
e . is an equivalence relation

For example, 3 v~g,.....¢5.x1 O-
Increasing the stack prefix increases the relation :

LEMMA 10. For any state o, stack prefix s, and objects o and
/
0

o, C ps-o

7. CONCLUSION AND DISCUSSION

In this short paper we have revisited the object-capability con-
cepts of permission and authority, proposed precise foundational
definitions, and clarified the relationships between the definitions.

The distinction between permissions and authority, and their var-
ious flavours is essential for the sound analysis of threats to open
systems. The aim of vulnerability analysis is to calculate precisely
the eventual authority (F A), however this is often too difficult, and
for this we want to use safe upper bounds. Thus, in case of confor-
mance, BA is a good and often tractable approximation, and has
been used in [2}5]].

Authority of various kinds has been used to verify or analyse
object-capability systems [10l 2]. In contrast, the contribution of
this short paper is to provide crisp definitions of permission, au-
thority, and their future bounds, and the relations between them.

We consider that the definitions given in this paper constitute a
first step towards a crystallisation of the meaning of the concepts
of permission and authority. However, these definitions need to be
expanded in several ways:

First, the concept of adherence to specification (P C B) is very
strict, as it requires the executions in P and those in B to have
the same granularity. A more general approach should allow them
to run at different granularity but would require them to "agree"
at some future point in execution, e.g. P - 0, stmts ~* o', sr
implies that there exists a ¢’ such that P - o', stmts ~* ¢ sr
and B F o, stmts~> *o’', sr. However in such a case the third
inclusion property in lemma [T] will not hold. We will investigate
how to adapt the definition so as to obtain some weaker version of
this inclusion property.

Second, the definitions of possible worlds caters for the situation
where the program is either known (EW) or is unknown (M W).
However, it may be useful to refine the model to allow the current
known program P to be linked against unknown programs P’, and
thus argue that P is robust against the unknown code P’ (the adver-
sary). In further work we will investigate refinements of the future
worlds definitions to reflect this distinction.

Third, our definition of authority, Definition[6] models authority
as a sufficient cause for an effect: an object o has authority over an
object o’ if it can call methods which will modify the state of o’.
An alternative view models authority as a necessary cause for an
effect: an object o has authority over an object o if o’ cannot be
modified except via object o [[12]. We will investigate this approach
in further work.

Fourth, we plan to investigate how static or dynamic type in-
formation (e.g. ownership) should allow us to make more precise
bounds, which will be reflected in B.

Finally, and most importantly, we plan to use these definitions
to support the verification of a wide-range of properties of object-
capability systems [4].

Acknowledgments.

We thank the anonymous referees for their comments. This work
is partially supported by a James Cook Fellowship and Royal So-
ciety of New Zealand Marsden Fund, and by the EU FP7 project
Upscale.

References

[1] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In OOPSLA. ACM, 1998.

[2] D. Devriese, L. Birkedal, and F. Piessens. Reasoning about
object capabilities with logical relations and effect para-
metricity. In Euro § & P, March 2016.

[3] S. Drossopoulou and J. Noble. The need for capability poli-
cies. In FTfJP, 2013.

[4] S. Drossopoulou and J. Noble. How to break the bank: Se-
mantics of capability policies. In iFM, 2014.

[5] S. Drossopoulou, J. Noble, and M. S. Miller. Swapsies on the

(6]

[7

—

[8

—

(9]
[10]

(1]

[12]

Internet. In PLAS, 2015.

L. Jia, S. Sen, D. Garg, and A. Datta. A logic of programs
with interface-confined code. In CSF, pages 512-525, 2015.
B. W. Lampson. Protection. Operating Systems Review,
8(1):18-24, Jan. 1974.

G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, P. Miiller, J. Kiniry, and P. Chalin. JML Reference Man-
ual. Iowa State Univ. www . jmlspecs.org, February 2007.
K. R. M. Leino and P. Miiller. Object invariants in dynamic
contexts. In ECOOP, Springer, 2004.

S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted web applications. In IEEE S & P, 2010.
M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD the-
sis, Baltimore, Maryland, 2006.

T. Murray. Analysing the Security Properties of Object-
Capability Patterns. D.Phil. thesis, University of Oxford,
2010.

	Introduction
	Formal Preliminaries
	Four Flavours of Permissions
	Four Flavours of Authority
	Putting Authority and Permission together
	Connectivity
	Conclusion and Discussion

