
The Elements of Decision Alignment
Mark S. Miller

1
and Bill Tulloh

2

1 erights@google.com

2 btulloh@gmail.com

Abstract
When one object makes a request of another, why do we expect that the second object’s behavior
correctly satisfies the first object’s wishes? The need to cope with such principal-agent problems
shapes programming practice as much as it shapes human organizations and economies. However,
the literature about such plan coordination issues among humans is almost disjoint from the
literature about these issues among objects. Even the terms used are unrelated.

These fields have much to learn from each other—both from their similarities and from the
causes of their di�erences. We propose a framework for thinking about decision alignment as a
bridge between these disciplines.

1998 ACM Subject Classification D.2 Software Engineering, F.3 Logics and Meanings of Pro-
grams

Keywords and phrases economics, law, contracts, principal-agent problem, incentive alignment,
least authority, verification

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Extended Abstract

Many complex systems can be described as networks of principal-agent relationships, in
which a requesting entity, the principal, sends a request to another entity, the agent, who is
expected to perform the actions the principal intends. Of course, an agent may decide to do
something else instead. Thus, these requests usually occur within a framework in which the
principal uses various techniques to try to align the decision of the agents with the interests
of the principal.

Economics, organizational theory and political science study principal-agent relationships
among humans. Language designers, programmers, and software engineers deal with principal-
agent relationships among computational objects. When both principal and agent are
humans, the hazards and techniques are examined in terms of divergent interests, asymmetric
information, contracts, and incentives[1, 4]. When both principal and agent are objects, the
hazards and techniques are examined in terms of abstraction mechanisms, object design
patterns, expressiveness, and reliability engineering. In the human case, agents are assumed
to have their own interests, and must therefore be coaxed into performing what the principal
wants. In the object case, the agent’s intentions are generally assumed benign1, so the goal
is to minimize unintentional misbehavior.

A human principal makes requests of a software agent via a user interface. In HCI, the
study of human-computer interaction, the agent is generally assumed benign and bug-free.
The focus is on request expressiveness and user confusion. The hazard is that the agent does

1 except computer security, which does consider intentional misbehavior

© Mark S. Miller and Bill Tulloh;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 The Elements of Decision Alignment

Table 1 The Elements of Decision Alignment

Human to Human Human to Object Object to Object

Explanation Language User interface Abstraction

Rights Law, Contracts App permissions Security
Powerbox Protection patterns

“Incentives” Economics Objective functions Machine learning
Agorics

Static Inspection Accounting controls Trusted path Types, Verification
URL bar Open source eyeballs

Dynamic Monitoring Reviews, Complaints Bug reports Contracts, Testing
and Feedback Word of mouth Backprop

Trust and Trademark App stores Trusted developer
Reputation Chain of custody White and black lists Same origin

what the user asks for rather than what the user wants. HCI examines how to design an
agent’s interface to shape user behavior so that users ask for what they want.

Mixed cases are important. Humans increasingly use user-interfaces to express intent and
interact with other humans. Indeed, human-to-human intentions are increasingly expressed,
constrained, and transformed through software intermediaries, whether email, social networks,
or ride sharing.

A unified view, that looks at the di�erent techniques used to deal with each of these three
cases, can provide important insights. We identify six broad categories of techniques principals
use to align agent decisions with the principal’s intent. A common theme throughout is that
the principal and agent know di�erent things. By virtue of specialization, they each embody
information inaccessible to the other.

Explanation The principal must express its intent as a request that the agent can understand.
Only the principal has detailed knowledge of why they make this request. Only the
agent has detailed knowledge of how to fulfill the request. The request conveys what
the principal needs in terms of concepts they share[5, 10]. A good abstraction boundary
composes their separate knowledge to achieve a greater result[2, 8].

Rights All actions that the agent performs, whether it serves the principal’s interests or not,
must be among the actions that are possible for the agent to take. If the agent’s range of
possible actions is narrow, this limits its abilities to misbehave in ways that harm the
principal. But if too narrow, then the agent cannot do what the principal asks[9]. We
return to this issue below.

“Incentives” Some agents change their behavior in order to optimize some externally provided
metric. These can be humans responding to prices, or machine learning systems optimizing
an objective function. In both cases, the metric might be a proxy measure for a complex
composition of goals. By constructing or influencing this metric, principals shape the



M. S. Miller and B. Tulloh 23:3

a) principal benefit

c) principal harm

b) agent benefit

d) agent benefit

Figure 1 Incentive landscape

behavior of such agents to serve goals that the principal cannot otherwise articulate[3].
Static Inspection Some agents are internally constructed to be unable to attempt certain

behaviors. A business keeps front-o�ce and back-o�ce separate so that it cannot
misbehave in certain ways without a conspiracy of two2. Within a statically type-safe
language, a principal knows that an agent cannot violate its own interface type. Static
verification of complex behavioral constraints is already practical and rapidly improving[7].

Dynamic Monitoring and Feedback The techniques above apply before the agent starts to
act. Afterwards, the principal may look at what the agent is actually doing or has done.
Depending on its judgement, the principal may change how it continues to employ the
agent. The principal may send the judgement as feedback so the agent can learn or be
fixed. It may share this feedback with other potential principals.

Trust and Reputation Even with all the safeguards, it can still be risky for the principal
to rely on the agent’s good behavior. Principals attempt to reduce this risk by putting
their trust in the identity of the agent or the agent’s origin. Companies trust their own
developers. Consumers trust known brands. Feedback from past performance a�ects
reputation, impacting future decisions to take such risks.

While each category provides useful lessons, the real payo� comes from how they interact
and reinforce one another. For example, the co-design of an agent’s rights and incentives can
lead to better results than focusing on each individually.

Figure 1 illustrates a classic principal-agent dilemma. The space represents possible agent
behaviors. Circle (a) contains agent behaviors that would benefit the principal. Circle (b)
contains agent behaviors that the principal knows how to ask for and reward, benefiting the
agent as well. Circle (c) contains agent behaviors that would harm the principal. Circle (d)
is the region of greatest hazard, where the principal’s harm coincides with the agent’s benefit.
Often, an incentive-only approach cannot eliminate this area at reasonable cost.

Figure 2 illustrates how practicing POLA, the principle of least authority3, can improve

2 Barings learned this the hard way when it gave Nick Leeson both front-o�ce and back-o�ce privileges.
3 The principle of least authority refines the principle of least privilege[9] to clarify what kinds of rights

we need to minimize[6].

CVIT 2016



23:4 The Elements of Decision Alignment

a) principal benefit

c) principal harm

b) agent benefit

d) agent benefit

Too much authority

perfect POLA

Practical POLA

Figure 2 Co-design of incentives and rights

the situation. POLA says that, ideally, a principal should grant the agent the narrowest
rights that the agent needs to fulfill the principal’s request.

The outer “too much authority” box represents the rights given to the agent in common
practice, such as when programs and imported libraries run with the full privileges of their
user. By taking “least” literally, the POLA alternative is often misunderstood as requiring
the tiny box labeled “perfect POLA” tightly surrounding circle (b). This requirement is
correctly dismissed as too hard to achieve in practice. The perfect is the enemy of the
practical.

The box labeled “practical POLA” is large enough to achieve with reasonable e�ort. It
does include agent behaviors that would harm the principal. However, it excludes the region
of greatest hazard, where principal harm coincides with agent benefit. When thinking about
incentives by themselves, we miss the option to avoid this region by restricting the agent’s
rights. When thinking about computer security by itself, we miss the di�erences among agent
actions that cause harm to the principal. By thinking about both together, we can co-design
principal-agent arrangements in which each technique fills in for weaknesses in the other.

Other surprising opportunities are found examining combinations of the other techniques.
By reasoning across both rows and columns, we can help achieve a more cooperative world
among diverse human and software, composed together in ever denser networks of principal-
agent relationships.

Acknowledgements. We thank Terry A. Stanley and K. Eric Drexler.

References

1 Kathleen M. Eisenhardt. Agency theory: An assessment and review. The Academy of
Management Review, 14(1):57–74, 1989. URL: http://www.jstor.org/stable/258191.

http://www.jstor.org/stable/258191


M. S. Miller and B. Tulloh 23:5

2 Friedrich A. Hayek. The use of knowledge in society. The American economic review, pages
519–530, 1945.

3 Friedrich A. Hayek. Competition as a discovery procedure. New Studies in Philosophy,
Politics, Economics and the History of Ideas, 1978.

4 La�ont Jean-Jacques and David Martimort. The theory of incentives. the principal–agent
model. Princeton, NJ: Princeton Univ, 2001.

5 Ludwig M. Lachmann. Capital and its Structure. Ludwig von Mises Institute, 1956.
6 Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control

and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

7 Toby S. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean
Seefried, Carmen Lewis, Xin Gao, and Gary Klein. sel4: from general purpose to a proof
of information flow enforcement. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 415–429. IEEE, 2013.

8 David L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

9 Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

10 Bill Tulloh and Mark S. Miller. Institutions as abstraction boundaries. Social Learning:
Essays in Honor of Don Lavoie, 2002.

CVIT 2016


	Extended Abstract

