

Sparse Non-negative Matrix Language Modeling

Joris Pelemans

joris@pelemans.be

Noam Shazeer

noam@google.com

Ciprian Chelba

ciprianchelba@google.com

- Motivation
- Sparse Non-negative Matrix Language Model
- Skip-grams
- Experiments, investigating:
 - Modeling Power (sentence level)
 - Computational Complexity
 - Cross-sentence Modeling
 - MaxEnt Comparison
 - Lattice Rescoring
- Conclusion & Future work

- Motivation
- Sparse Non-negative Matrix Language Model
- Skip-grams
- Experiments, investigating:
 - Modeling Power (sentence level)
 - Computational Complexity
 - Cross-sentence Modeling
 - MaxEnt Comparison
 - Lattice Rescoring
- Conclusion & Future work

Motivation

- (Gated) Recurrent Neural Networks:
 - Current state of the art
 - Do not scale well to large data => slow to train/evaluate
- Maximum Entropy:
 - Can mix arbitrary features, extracted from large context windows
 - Log-linear model => suffers from same normalization issue as RNNLM
 - o Gradient descent training for large, distributed models gets expensive
- Goal: build computationally efficient model that can mix arbitrary features (a la MaxEnt)
 - computationally efficient: O(counting relative frequencies)

- Motivation
- Sparse Non-negative Matrix Language Model
- Skip-grams
- Experiments, investigating:
 - Modeling Power (sentence level)
 - Computational Complexity
 - Cross-sentence Modeling
 - MaxEnt Comparison
 - Lattice Rescoring
- Conclusion & Future work

Sparse Non-Negative Language Model

• Linear Model:

$$P(y|x) = \frac{\sum_{t} f_t(x, y)}{\sum_{t} \sum_{y'} f_t(x, y')}$$

• Initialize features with relative frequency:

- $f_t^i(x,y) = count_t(x,y)/count_t(x)$
- Adjust using exponential function of meta-features: $f_t(x,y) = f_t^i(x,y)e^{\sum_m meta_m(t,x,y)}$
 - Meta-features: template t, context x, target word y, feature $count_t(x, y)$, context count $count_t(x)$, etc + exponential/quadratic expansion
 - Hashed into 100K-100M parameter range
 - Pre-compute row sums => efficient model evaluation at inference time, proportional to number of active templates

Adjustment Model meta-features

- Features: can be anything extracted from (context, predicted word)
 - o [the quick brown fox]
- Adjustment model uses *meta-features* to share weights e.g.
 - Context feature identity: [the quick brown]
 - Feature template type: 3-gram
 - Context feature count
 - Target word identity: [fox]
 - Target word count
 - Joins, e.g. context feature and target word count
- Model defined by the meta-feature weights and the feature-target relative frequency:

$$f_t(x,y) = f_t^i(x,y)e^{\sum_m meta_m(t,x,y)}$$

Parameter Estimation

- Stochastic Gradient Ascent on subset of training data
- Adagrad adaptive learning rate
- Gradient sums over entire vocabulary => use |V| binary predictors
- Overfitting: adjustment model should be trained on data disjoint with the data used for counting the relative frequencies
 - leave-one-out (here)
 - small held-out data (100k words) to estimate the adjustment model using multinomial loss
 - model adaptation to held-out data, see [Chelba and Pereira, 2016]
- More optimizations:
 - see paper for details, in particular efficient leave-one-out implementation

- Motivation
- Sparse Non-negative Matrix Language Model
- Skip-grams
- Experiments, investigating:
 - Modeling Power (sentence level)
 - Computational Complexity
 - Cross-sentence Modeling
 - MaxEnt Comparison
 - Lattice Rescoring
- Conclusion & Future work

Skip-grams

- Have been shown to compete with RNNLMs
- Characterized by tuple (r,s,a):
 - r denotes the number of remote context words
 - s denotes the number of skipped words
 - o a denotes the number of adjacent context words
- Optional tying of features with different values of s
- Additional skip-</s> features for cross-sentence experiments

Model	n	r	s	a	tied
SNM5-skip	15	13	13	14	no
		12	4*	14	yes
SNM10-skip	110	1(5-a)	1	1(5-r)	no
		1	110	13	yes

- Motivation
- Sparse Non-negative Matrix Language Model
- Skip-grams
- Experiments, investigating:
 - Modeling Power (sentence level)
 - Computational Complexity
 - Cross-sentence Modeling
 - MaxEnt Comparison
 - Lattice Rescoring
- Conclusion & Future Work

Experiment 1: One Billion Word Benchmark

- Train data: ca. 0.8 billion tokens
- Test data: 159658 tokens
- Vocabulary: 793471 words
- OOV rate on test data: 0.28%
- OOV words mapped to <unk>, also part of vocabulary
- Sentence order randomized
- More details in [Chelba et al., 2014]

Model	Params	PPL
KN5	1.76 B	67.6
SNM5 (proposed)	1.74 B	70.8
SNM5-skip (proposed)	62 B	54.2
SNM10-skip (proposed)	33 B	52.9
RNNME-256	20 B	58.2
RNNME-512	20 B	54.6
RNNME-1024	20 B	51.3
SNM10-skip+RNNME-1024		41.3
ALL		41.0

TABLE 2: Comparison with all models in Chelba et al., 2014

Computational Complexity

- Complexity analysis: see paper
- Runtime comparison (in machine hours):

Model	Runtime	
KN5	28h	
SNM5	115h	
SNM10-skip	487h	
RNNME-1024	5760h	

TABLE 3: Runtimes per model

Experiment 2: 44M Word Corpus

- Train data: 44M tokens
- Check data: 1.7M tokens
- Test data: 13.7M tokens
- Vocabulary: 56k words
- OOV rate:
 - check data: 0.89%
 - test data: 1.98% (out of domain, as it turns out)
- OOV words mapped to <unk>, also part of vocabulary
- Sentence order NOT randomized => allows cross-sentence experiments
- More details in [Tan et al., 2012]

Model	Check	Test
KN5	104.7	229.0
SNM5 (proposed)	108.3	232.3
SLM	-	279
n-gram/SLM	-	243
n-gram/PLSA	-	196
n-gram/SLM/PLSA	-	176
SNM5-skip (proposed)	89.5	198.4
SNM10-skip (proposed)	87.5	195.3
SNM5-skip- (proposed)	79.5	176.0
SNM10-skip- (proposed)	78.4	174.0
RNNME-512	70.8	136.7
RNNME-1024	68.0	133.3

TABLE 4: Comparison with models in [Tan et al., 2012]

Experiment 3: MaxEnt Comparison (Thanks Diamantino Caseiro!)

- Maximum Entropy implementation that uses hierarchical clustering of the vocabulary (HMaxEnt)
- Same hierarchical clustering used for SNM (HSNM)
 - Slightly higher number of params due to storing the normalization constant
- One Billion Word benchmark:
 - HSNM perplexity is slightly better than HMaxEnt counterpart
- ASR exps on two production systems (Italian and Hebrew):
 - about same for dictation and voice search (+/- 0.1% abs WER)
 - SNM uses 4000X fewer resources for training (1 worker x 1h vs 500 workers x 8h)

Model	# params	PPL
SNM 5G	1.7B	70.8
KN 5G	1.7B	67.6
HMaxEnt 5G	2.1B	78.1
HSNM 5G	2.6B	67.4
HMaxEnt	5.4B	65.5
HSNM	6.4B	61.4

- Motivation
- Sparse Non-negative Matrix Language Model
- Skip-grams
- Experiments, investigating:
 - Modeling Power (sentence level)
 - Computational Complexity
 - Cross-sentence Modeling
 - MaxEnt Comparison
 - Lattice Rescoring
- Conclusion & Future Work

Conclusions & Future Work

- Arbitrary categorical features
 - same expressive power as Maximum Entropy
- Computationally cheap:
 - O(counting relative frequencies)
 - ~10x faster (machine hours) than specialized RNN LM implementation
 - easily parallelizable, resulting in much faster wall time
- Competitive and complementary with RNN LMs

Conclusions & Future Work

Lots of unexplored potential:

- Estimation:
 - replace the empty context (unigram) row of the model matrix with context-specific RNN/LSTM probabilities; adjust SNM on top of that
 - adjustment model is invariant to a constant shift: regularize
- Speech/voice search:
 - mix various data sources (corpus tag for skip-/n-gram features)
 - previous queries in session, geo-location, [Chelba and Shazeer, 2015]
 - discriminative LM: train adjustment model under N-best re-ranking loss
- Machine translation:
 - language model using window around a given position in the source sentence to extract conditional features f(target, source)

References

- Chelba, Mikolov, Schuster, Ge, Brants, Koehn and Robinson. One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling. In *Proc. Interspeech*, pp. 2635-2639, 2014.
- Chelba and Shazeer. Sparse Non-negative Matrix Language Modeling for Geo-annotated Query Session Data. In *Proc. ASRU*, pp. 8-14, 2015.
- Chelba and Pereira. Multinomial Loss on Held-out Data for the Sparse Non-negative Matrix Language Model. arXiv:1511.01574, 2016.
- Tan, Zhou, Zheng and Wang. A Scalable Distributed Syntactic, Semantic, and Lexical Language Model. Computational Linguistics, 38(3), pp. 631-671, 2012.