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ABSTRACT

Speech recognition performance using deep neural network
based acoustic models is known to degrade when the acous-
tic environment and the speaker population in the target ut-
terances are significantly different from the conditions rep-
resented in the training data. To address these mismatched
scenarios, multi-style training (MTR) has been used to per-
turb utterances in an existing uncorrupted and potentially mis-
matched training speech corpus to better match target domain
utterances. This paper addresses the problem of determining
the distribution of perturbation levels for a given set of per-
turbation types that best matches the target speech utterances.
An approach is presented that, given a small set of utterances
from a target domain, automatically identifies an empirical
distribution of perturbation levels that can be applied to utter-
ances in an existing training set. Distributions are estimated
for perturbation types that include acoustic background en-
vironments, reverberant room configurations, and speaker re-
lated variation like frequency and temporal warping. The end
goal is for the resulting perturbed training set to characterize
the variability in the target domain and thereby optimize ASR
performance. An experimental study is performed to evaluate
the impact of this approach on ASR performance when the
target utterances are taken from a simulated far-field acoustic
environment.

Index Terms— data perturbation, multi-style training,
automatic speech recognition

1. INTRODUCTION

The performance of automatic speech recognition systems
when applied to a particular task domain depends on the
degree to which the acoustic models provide an accurate rep-
resentation of that domain. Training acoustic models from
utterances that match the target speaker population, speaking
style, or acoustic environment is generally considered to be
the easiest way to optimize ASR performance. However,
there are many scenarios where speech corpora of sufficient
size that characterize the sources of variability existing in a
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particular target domain are not available. For example, it
has been shown that ASR performance in mobile applica-
tions benefits from using many thousands of hours of speech
utterances collected from mobile domains for training deep
network acoustic models [1].

While it is not unusual for this number of utterances to
have been collected for mobile speech applications, these very
large corpora are not always readily available for far-field
speech recognition applications. To address these scenarios,
multi-style training (MTR) has been used to perturb the ut-
terances in existing uncorrupted and potentially mismatched
speech corpora to better match a given target domain. Data
augmentation is an extension of this notion and refers to the
practice of generating multiple versions of each utterance in a
corpus where each version corresponds to a different type or
different degree of perturbation [2, 3, 4, 5, 6].

There have been a number of studies demonstrating the ef-
fectiveness of MTR and data augmentation in reducing WER
for task domains with limited available training data [2, 3,
4, 5, 6]. However, there are several practical issues that been
noted in these studies. First, the choice of the type of data per-
turbation and the parameterization of the perturbation method
is often ad hoc. Second, it is often the case that the impact of
a given source of perturbation is significantly different from
one task domain to another. Finally, determining the impact
of a given data augmentation approach requires perturbing the
training data, training an acoustic model from the augmented
training set, and evaluating the WER using a test set from the
target domain. The goal in this work is to develop methods
for automatically selecting the set of data perturbations that
are most likely to improve ASR performance for a given task
domain.

To address the above issues, this paper proposes a method
for automatically determining the distributions associated
with perturbing utterances in MTR. A data driven scenario
is proposed where these distributions are estimated to better
match a target domain. The target domain is assumed to be
represented by one or more data sets corresponding to L ut-
terances sampled from this domain. It is assumed that these
data sets, represented here as Xta

1 , . . . , X
ta
N , each consist of

on the order of hundreds of example utterances. It is also as-
sumed that the target domain can be characterized by a finite



set of room characteristics, acoustic background conditions,
and speaker populations. Hence, the goal is not just to match
a single environment or speaker characteristic. The larger
goal is to provide a training corpus that results in improved
ASR performance across the range of expected acoustic con-
ditions and speaker populations that may be present in the
target domain.

It is also assumed that there are multiple perturbation
types representing what will be referred to here as extrin-
sic and intrinsic sources of variability. Extrinsic variability
refers to ambient noise which includes a range of noise levels
(signal-to-noise-ratios), background noise types, and room
characteristics. Intrinsic variability corresponds to speaker
and speaking style variation which is modeled in this work
by introducing simulated frequency and tempo perturbation
to the speech waveform [3, 7]. Finally, it is assumed that
each perturbation type, t, is represented by a discrete set of
M perturbation levels, At : {αt1, . . . , αtM}.

The goal of this approach is to select optimum levels that,
when applied to the utterances in a potentially mismatched
training corpus, provides a “best match” to the empirical dis-
tribution of the target domain utterances. This involves solv-
ing two problems. The first is to find the perturbation level,
α̂t, that provides the best match to a set of sample utterances,
Xta
i . Section 2 provides a description of how this problem is

solved by defining a measure of similarity between perturbed
training utterances and target domain utterances.

The second problem is to find a distribution, pt(), of per-
turbation levels that provides the best match to the utterances
from the available N sets of sample utterances. Section 3
provides a description of the process of identifying a set of
distributions to be used for perturbing training utterances in
multi-style training (MTR).

Finally, an experimental study is presented in Section 4
where simulated target domains are created by introducing
multiple levels of intrinsic and extrinsic variability. It will be
shown that performing MTR with these estimated distribu-
tions results in a word error rate (WER) that approaches the
“best case” WER obtained when performing MTR with dis-
tributions that are matched to the known target domain per-
turbation distributions.

2. A DATA DRIVEN APPROACH TO MTR

This section presents a description of the automated approach
for selecting perturbation levels to match a set of utterances
sampled from the target domain. Section 2.1 describes an
approach for estimating an optimum perturbation level, asso-
ciated with a given perturbation type, to match a set of target
domain utterances. This approach is based on computing the
similarity between perturbed training utterances and a set of
target domain utterances. Section 2.2 describes the similarity
measures that were investigated for determining the optimum
perturbation levels.

2.1. Identifying perturbation levels

The underlying assumption in this work is that one can deter-
mine whether a given type and a given level of variability is
present in a set of target domain utterances by perturbing an
uncorrupted set of training utterances and measure the simi-
larity between the two data sets.

This leads to the following procedure which is summa-
rized in Figure 1. Given an uncorrupted training set, Xtr,

Fig. 1. Determining perturbation level

and utterances Xta
i representing the ith sample of utterances

from the target domain, determine the closest matching per-
turbation level, α̂t ∈ At, for perturbation type t. To do this,
a similarity measure is defined between the target utterances
and the training utterances which have been perturbed by a
given perturbation level, α.

This similarity measure is defined over phoneme poste-
rior probabilities obtained from perturbed training and target
utterances. The posteriors are modeled by the outputs of an
existing reference deep neural network (DNN), as shown in
Figure 1, whose inputs are features derived from the perturbed
training utterances. The training and architecture of this ref-
erence DNN in this work is described in Section 4. The poste-
rior probability for phone index, k, given training observation
vector, xtrl,f (α), from frame f of training utterance l when
the utterance is perturbed by perturbation level α is given by
rαl,f (k) = p(k|xtrl,f (α)). Hence, each observation frame is
represented by a K dimensional vector of posterior probabil-
ities, ~rαl,f , where K is the number of phoneme classes.

Posterior probabilities are computed for both the per-
turbed training utterances and also for the target domain
utterances. Similarity measures can be defined based on
these posteriors. Figure 1 illustrates how this is done by com-
puting statistics from posteriors derived from the perturbed
training utterances and the utterances, Xta

i , sampled from the
target domain. These are depicted in the figure as CPα and
CTi respectively. The similarity measure, Φ(CPα , C

T
i ), is then

used to find an optimum perturbation level as

α̂i = arg min
α

Φ(CPα , C
T
i ). (1)



The definition of this similarity measure is discussed in Sec-
tion 2.2

2.2. Distance Measures for Perturbation Selection

The procedure summarized in Figure 1 for identifying per-
turbation levels from an ensemble relies on a distance mea-
sure that is defined over DNN phone posteriors. An anecdotal
example of how the type and level of perturbation can im-
pact phone posteriors from a reference DNN is given in Fig-
ure 2 and serves to motivate the use of this posterior based
distance. Two segments of posteriorgrams are displayed for
a sample utterance that has been perturbed by additive back-
ground noise so the resulting signals have signal to noise ra-
tio of 10 dB and 25 dB respectively. The horizontal axis in
each posteriorgram corresponds to time in milliseconds and
the vertical axis corresponds to the indices of context indepen-
dent (CI) hidden Markov model (HMM) states. Each point in
the plots corresponds to CI posteriors computed by averag-
ing DNN activations across context dependent states with the
same center context, resulting in a total of 121 context inde-
pendent state posteriors.

Fig. 2. Impact of noise on phone posteriors for 10dB (top)
and 25dB SNR (bottom) on the same 2 sec. utterance

It is clear from Figure 2 that, for additive background
noise perturbation, there is an obvious impact on phone con-
fusability as the SNR is reduced. While this impact on phone
posteriors might not be as visually obvious for all perturbation
types, this example suggests that it may be reasonable to use
distance measures derived from these posteriors to identify
the level of perturbation associated with a given perturbation
type.

Several posterior based measures were investigated for the
similarity measure, Φ(), shown in Figure 1. A measure based
on the cosine distance between DNN phone posterior vectors

that are averaged over a set of target domain utterances and
training utterances proved to be effective. This implies that
CPα in Figure 1 is simply an average, so that

CPα =
∑
l

∑
f

~rαl,f , (2)

where the sum over l is over a block of perturbed utterances
in the training set.

Given these averaged posterior vectors, the cosine dis-
tance can be defined between the training utterance posteriors,
CPα , where the perturbation level α is known and the target
domain posteriors, CT as

Φ(CPα , C
T ) = 1− CPα C

R

||CPα || ||CT ||
. (3)

With these features accumulated for a set of utterances with
an unknown perturbation level (the target domain posteriors,
CT ), they can be compared against a set of reference utter-
ances with known perturbation levels (the training utterance
posteriors, CPα ) as shown in Equation 1.

3. INDENTIFYING PERTURBATION
DISTRIBUTIONS

This section addresses the larger goal of obtaining distribu-
tions of perturbation levels. Levels will be drawn from these
distributions when perturbing training utterances to create
a multi-style training corpus. Section 3.1 describes the ap-
proach used for finding a distribution of these levels for a
single perturbation type to model a set of available target
domains. Section 3.2 describes how this approach can be
extended to identifying distributions of perturbation levels for
multiple perturbation types.

3.1. Empirical distributions for a single perturbation
type

The procedure for estimating a distribution, pt(), over per-
turbation levels, At, for a single perturbation type, t, is sum-
marized by Algorithm 3.1. The goal is for this distribution
to assign weight to a given perturbation level based on the
frequency with which data perturbed with that level is found
to most closely match a set of utterances selected from the
target domain. Given an uncorrupted training set, Xtr, and
N sets of utterances, Xta

1 , . . . , X
ta
N , sampled from the target

domain, the procedure in Algorithm 3.1 determines a distribu-
tion of perturbation levels, pt(), that best matches all N data
sets from the target domain. Then, the multi-style training set,
XMTR, can be generated by perturbing utterances with levels
sampled from At : {αt1, . . . , αtM} according to perturbation
distribution, p̂t.

Estimation of p̂t can be described as follows. First, as
illustrated in Figure 1, DNN posteriors are derived from the



Algorithm 1 Estimating perturbation distribution
Given: Training data Xtr, data sets Xta

1 , . . . , X
ta
N sam-

pled from target domain, and perturbation levels At :
{αt1, . . . , αtM} for perturbation type t
Initialize Counts: ft(α)← 0 ∀α ∈ At
for All Xta

i ∈ {Xta
1 , . . . , X

ta
N } do

Compute target posteriors and stats (Fig 1): CTi
end for
for All α ∈ At do

Perturb training utterances: Xtr(α) = Ft(Xtr, α)
Compute training posteriors and stats (Eq. 2): CPα
for All Xta

i ∈ {Xta
1 , . . . , X

ta
N } do

Compute similarity measure (Eq. 3): Φ(CPα , C
T
i )

Perturb. level (Eq. 1): α̂i = arg minα Φ(CPα , C
T
i )

ft(α̂i) = ft(α̂i) + 1
end for

end for
for α ∈ At do

p̂t(α) = ft(α)/N
end for

data sets, Xta
i , and sequence statistics, CTi , are estimated

from the posteriors. Second, Xtr is perturbed with each
α ∈ At to produce M perturbed versions of the training
set, X(α)tr, ∀α ∈ At . The notation Ft(Xtr, α) in Al-
gorithm 3.1 signifies the process of perturbing the training
data set with a perturbation type t. Third, an optimum α̂ti is
identified for each data set sampled from the target domain.
This corresponds to the perturbation level that, when applied
to the training data, best matches the ith sample of utterances
from the target data set according to the distance measure de-
fined in Equation 1. The frequency count, ft(α̂ti), associated
with α̂ti is incremented, and the perturbation distribution is
obtained from the normalized counts, p̂t(α) = ft(α̂

t).
Having estimated the perturbation distribution from mul-

tiple subsets of the target domain, this distribution is then used
for perturbing the training utterances to create a final multi-
style training set. For each training utterance, a perturbation
level is randomly selected from the set At according to dis-
tribution p̂t. Section 4 describes how this multi-style set is
used to train a DNN acoustic model and is then evaluated on
utterances taken from the same target domains.

3.2. Extension to multiple perturbation types

The procedures outlined in Sections 2.1 and 3.1 address the
problem of identifying a distribution of perturbation levels
associated with a single perturbation type. The more gen-
eral case would be to estimate a multi-variate distribution of
perturbation levels across a set of P perturbation types. It is
possible to combine the perturbation levels from all pertur-
bation types and estimate a single multi-variate distribution.
However, in this work, multiple univariate perturbation distri-

butions are estimated, one for each perturbation type.
A sequential procedure is used for estimating distributions

of perturbation levels for multiple perturbation types. The
general outline of this procedure is summarized in Figure 3.
The process begins with sets of perturbation levels for P per-
turbation types,A1,A2, . . . ,AP . At each step of the process,
an optimum level α̂t is selected using the procedure described
in Section 2.1. Then, this α̂t is used to perturb the training ut-
terances for all succeeding steps of the process when selecting
perturbation levels for other perturbation types. For example,
if perturbation set A1 corresponds to the set of possible noise
levels and setA2 corresponds to room configurations, the first
step of the sequential process would be to estimate the opti-
mum noise level α̂1. Then the training utterances would be
corrupted using this noise level before selecting the closest
matching room configuration, α̂2, in the second step. This
process is repeated until perturbation levels for all P pertur-
bation types have been identified.

Fig. 3. Sequential estimation of perturbation levels for multi-
ple perturbation types

4. EXPERIMENTAL STUDY

This section presents an experimental study of the approaches
presented in this paper using a set of target utterances taken
from a simulated far-field acoustic environment. First, the
speech corpus, the multi-style training scenario, and the base-
line acoustic models are described in Section 4.1 Then an in-
vestigation of the approach described in Section 2 for estimat-
ing an optimum perturbation level of a given perturbation type
is presented in Section 4.2. The goal is to determine the abil-
ity of this approach to automatically identify the noise level
associated with a target data set that has been perturbed us-
ing a room simulator to have a known SNR level. Finally, an
evaluation of the approach described in Section 3 for estimat-
ing perturbation distributions to best match a set of utterances
sampled from a target domain is given in Section 4.3. The
goal of these experiments is to determine how these distribu-
tions, when applied to perturbing a training set in a multi-style
training scenario, can reduce ASR WER on a set of simulated
target domain utterances.



4.1. Simulated datasets and baseline models

MTR experiments were carried out by creating a corpus of ut-
terances corrupted using a set of simulated perturbation types.
These perturbations represent a range of room characteristics
and acoustic background conditions, along with a range of
speaker characteristics introduced by warping the time and
frequency scales of the utterances. The simulated distor-
tions were applied to a large set of anonymized American
English voice search utterances. The training set consists of
200 hours of spontaneous speech consisting of 300,000 utter-
ances. While this training set is smaller than would normally
be used for acoustic model training, the limited size was
necessary to allow MTR experiments to be performed with
reasonable turn-around time. The test set contains 20 hours of
spontaneous speech consisting of 30,000 anonymized Amer-
ican English voice search utterances. The utterances in these
data sets were chosen to have relatively high SNR in order to
approximate as close as possible a scenario where perturba-
tion types are applied to clean utterances.

In these experiments, a set of P = 4 perturbation types
were used to perturb both the training and target datasets. This
implies that the types of perturbations that might be expected
in a target domain are assumed to be known in the experi-
mental study. Of course, this is not in general a practical as-
sumption. As a result, it is important to note that the results
reported here reflect the ability of this approach to match the
given simulated domain, and there is no guarantee that this
simulated domain is a completely accurate model of utter-
ances arising from an actual far field acoustic environment
or speaker population. However, it also assumed that the ab-
sence of a given source of perturbation is automatically de-
termined by allowing the automated procedure to select a “no
perturbation” level. For example, selecting a high SNR level
implies the absence of additive noise, or selecting frequency
or time warping equal to unity implies that speaker variation
has minimal effect.

The implementation of these perturbation types and the
size, M , of the perturbation sets are given as follows. The
first is the signal-to-noise ratio associated with additive back-
ground noise. There are M = 13 levels ranging from 0 dB to
24 dB with approximately 60% of the target utterances cor-
rupted with SNR levels above 15 dB. The second perturba-
tion type is the room impulse response produced by a room
simulation package. A total of 11 rooms are simulated, with
reverberation coefficients uniformly selected from values 0,
0.6, 0.77, 0.84, 0.88. The simulated distances between source
and microphone ranged from approximately 0.3 meters to 2
meters.

The third perturbation type was frequency warping to ap-
proximate physiological differences within the speaker pop-
ulation. A total of 11 values were used, uniformly sampled
over the range from 0.9 to 1.1. Finally, warping of the time
axis was used to approximate speaking rate variation. Here,

11 values where used, uniformly sampled over the range from
0.9 to 1.1. For the frequency and time warping perturbations,
waveform similarity overlap-add algorithm was used1 [3, 7].

The acoustic models used for determining perturbation
levels as depicted in Figure 1 are hybrid feed-forward DNNs.
The input features to the network consist of 26 stacked frames
of 40 dimensional Mel-scale log-filter bank energies. The net-
work has 4 hidden layers with 1280 nodes per layer and a
4000 node output layer where the output nodes correspond to
context dependent (CD) HMM states. The posterior vectors,
~rαl,f , used in Equation 2 correspond to K = 121 dimensional
CI phone posteriors obtained by summing over these CD state
activations with the same center phone context. The DNNs
used in Figure 1 are trained with the cross-entropy (CE) cri-
terion from the uncorrupted 300k training utterances.

The acoustic models used to evaluate ASR performance
for multi-style training have the same form as those described
above. After perturbing the training data using one of the
MTR scenarios described in Section 4.3, the perturbed train-
ing utterances are used for training the DNN. In the MTR
training scenario, this DNN, after being initially trained from
clean data using CE training, is sequence trained with the state
level minimum Bayes-risk (sMBR) criterion [8] from the per-
turbed training set. The first two rows of Table 1 presents the
WER for the cases where the DNN is sequence trained from
uncorrupted (clean) data and evaluated on clean and noisy
data respectively. Here, the noisy evaluation data is created by
perturbing the 30,000 utterance test set with perturbation lev-
els sampled from the above perturbation sets. It is clear from
the table that the error rate more than doubles when DNN
models trained from uncorrupted data are used for recogni-
tion on noisy test utterances.

4.2. Robust Estimation of Perturbation Levels

An empirical study was conducted to determine the minimum
number of utterances in the data sets,Xta

i in Figure 1, that are
needed to obtain a robust estimate of the perturbation levels.
The target set is perturbed by a fixed SNR level, α = 10dB,
in this experiment. The training set utterances are perturbed
with a set of perturbation levels corresponding to SNR values
ranging from 0 dB to 20 dB at 2 dB intervals. Then the statis-
tics, CPα and CT , for both sets are accumulated with varying
numbers of utterances sampled from both the target and train-
ing data. The procedure in Section 2.1 is then used to estimate
the SNR level in the data set sampled from the target domain.
Figure 4 shows the classification accuracies where blue bars
are the classification accuracies when the target is the exact
10 dB value and the red bars are the classification accuracies
when the target is a window of 8 dB to 12 dB. The plot sug-
gests that 300 utterances are enough to have a robust estimate
of the statistics. There are clearly many approaches for SNR

1SoundTouch Audio Processing Library http://www.surina.
net/soundtouch



estimation; however, similar behavior was observed for the
other perturbation types listed in Section 4.1. Hence, the per-
turbation level classification accuracy illustrated in Figure 4.3
suggests that, with enough data, this can serve as a general
approach for estimating perturbation levels.
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Fig. 4. Perturbation level classification accuracy over a range
of data set sample sizes
4.3. Optimized Perturbation Distribution

The performance of the approach for estimating perturbation
distributions was evaluated using the following steps. First,
the sequential procedure described in Section 3.2 is used to
find the perturbation distributions for all four perturbation
types in the order of background noise level, room impulse
response, frequency warping, and time warping. For each
perturbation type, the procedure outlined in Algorithm 3.1 is
used to estimate distributions over perturbation levels. Sec-
ond, these estimated distributions were used to select pertur-
bation levels from the four perturbation types for perturbing
the utterances of the training set described in Section 4.1.
Finally, this training set was used for sequence training of
the DNN model described in Section 4.1, and this model was
used for decoding on the simulated target domain test set.

The WER obtained for this model on the noisy test set
is shown in the third row of Table 1. The WER obtained
for the estimated perturbation distributions is almost 20 ab-
solute percentage points lower than the WER obtained using
the DNN trained from the uncorrupted training set. However,
the impact of using these estimated perturbation distributions
for perturbing the data set relative to other perhaps more ad-
hoc approaches is not clear from this comparison. To pro-
vide a better comparison, two additional MTR scenarios are
considered. The first is a “best case” scenario corresponding
to perturbing the training set by selecting perturbation levels
from perturbation distributions that match the target domain
test data. The second, “worst case” scenario, corresponds to
using training utterances that are perturbed using uniform ran-
dom perturbation distributions. In both of these scenarios, the
DNN models are sequence trained using the perturbed train-
ing sets and decoding is performed on the target domain test
data. The WERs for these “best case” and “worst case” MTR
scenarios are shown in rows four and five respectively of Ta-
ble 1. It is clear that the WER obtained for the estimated per-
turbation distributions is over four absolute percentage points

lower than the worst case scenario and begins to approach the
best case WER.

Table 1. ASR WER using MTR training scenarios
Training Set Test Set WER%

Clean Clean 24.7
Clean Noisy 55.1

Estimated perturbation Noisy 35.2
Oracle perturbation (best case) Noisy 33.5

Uniform perturbation (worst case) Noisy 39.3

5. CONCLUSION

The goal of the work presented in this paper is to capture the
right sample of representative variations in the data during
training in order to generalize to similar variations in a tar-
get domain. A multi-style training set was generated for a
far-field speech simulated target domain by automatic opti-
mization of perturbation distributions. The training set re-
sulting from performing MTR training using these estimated
distributions was evaluated by measuring WER on a simu-
lated far-field test set. It was found that the WER obtained
using these distributions approaches that obtained for the best
case scenario corresponding to a perturbation distribution that
matches the target domain, and is considerably lower than the
WER obtained for the worst case where distributions are ran-
domly chosen.
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