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Abstract—In-memory column-stores make interactive analysis fea-
sible for many big data scenarios. In this paper we investigate two
orthogonal approaches to optimize performance at the expense of an
acceptable loss of accuracy. Both approaches can be implemented as
outer wrappers around existing database engines and so they should
be easily applicable to other systems.

For the first optimization we show that memory is the limiting
factor in executing queries at speed and therefore explore possibilities
to improve memory efficiency. We adapt some of the theory behind
data sketches to reduce the size of particularly expensive fields in
our largest tables by a factor of 4.5 when compared to a standard
compression algorithm. This saves 37% of the overall memory in
PowerDrill and introduces a 0.4% relative error in the 90th percentile
for results of queries with the expensive fields.

We additionally evaluate the effects of using sampling on accuracy
and propose a simple heuristic for annotating individual result-values
as accurate (or not). Based on measurements of user behavior in our
real production system, we show that these estimates are essential for
interpreting intermediate results before final results are available. For
a large set of queries this effectively brings down the 95th latency
percentile from 30 to 4 seconds.

I. INTRODUCTION

In recent years with the steep rise of “big data” generated
by websites and services, the interest across the industry
to do large-scale data analysis has skyrocketed. This has
fueled the large amount of exciting research in the area
of column-stores—databases which store each column of a
table separately to enable faster analytics. In-memory column-
stores have pushed out even further the limits with regards to
speed, scalability and flexibility. However, even with today’s
affordable RAM sizes it is not always possible to fit all relevant
data into memory.

This is the situation of the data analysis tool PowerDrill [1],
available for internal users across Google since 2009. Each
month it is used by about 1800 users sending out 15 million
SQL queries. One of our top users, after a hard day’s work,
spent over 6 hours in the tool, triggering roughly 12 thousand
queries. This may amount to scanning as much as 525 trillion
cells in (hypothetical) full scans.

PowerDrill is used within Google for a large variety of
data exploration purposes, e.g. for identifying causes of alerts
and spam analysis, where newly emerging patterns need to be
identified and judged. This process is inherently iterative: An
analyst defines an initial query, looks at the results, develops
a hypothesis, then defines a new query to (in-)validate the
hypothesis and so on. Often it takes many iterations until
a conclusion is reached, so query response times directly
translate into efficiency and satisfaction of the analyst.

A. Contributions

In this paper we propose two orthogonal approaches for
reducing memory usage and user perceived query latencies.
Both performance optimizations become possible if one is
willing to sacrifice accuracy. This is motivated by the obser-
vation that for data discovery tasks often a qualitative picture
is sufficient, i.e., finding patterns, trends and correlations are
enough for making conclusive arguments. In the generic case,
no strong guarantees are provided on the preciseness of the
results. However, the methods can be employed on a large
range of SQL-like queries, whenever the analyst prefers faster
results which can be used to already validate hypotheses.

Both optimizations had to be easy to integrate in existing
systems with little overhead in complexity. The simplicity with
which our approaches can be implemented around existing
production grade systems can be seen as the main contribution
of this paper. In more detail:

• In Section II we adapt some of the theory behind data-
sketches to approximate certain types of queries with “ex-
pensive” fields by replacing their values with hashes. In
our production environment, this introduces insignificant
losses of accuracy (0.01% median relative error, 0.4% er-
ror in the 90th percentile) for these queries while leading
to huge RAM savings of 4.5x compared to an industry
standard, high performance compression algorithm. Since
memory is the limiting factor in executing queries at
speed, the 13 TB of RAM made available can be used to
improve the overall efficiency.

• In Section III we show usability related aspects of using
sampling with variable sample size (in the case of our sys-
tem, we have intermediate query results over successively
growing subsamples). We propose a heuristic to obtain
accuracy estimates at virtually no extra computational
cost. Based on measurements of user behavior, we show
that marking results as trustworthy or not is essential for
enabling users to start with the interpretation based on
intermediate results, without waiting for the final ones.
For a large set of queries this effectively brings down the
95th latency percentile from 30 to 4 seconds.

Generally, since PowerDrill operates as a (Google-internal)
service, we are able to perform many measurements and
observations on the real, operational system and real users.
These results provide insights that cannot easily be predicted
from theory, because—as in many other systems with complex
compression and memory caching taking place— performance
depends on usage patterns and statistical distributions of the
underlying data in complex ways.
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B. Query Constraints for High Accuracy Results
When high accuracy is required, the trade-off between

efficiency and results’ quality should be done in a controlled
manner. In such a case, our optimizations can be employed for
some classes of queries only. More specifically, they can be
applied on group-by queries aggregating only by sum, count
or average (the latter can be inferred from the first two). It
is also important that the query sorts in decreasing order by
either count or some other metric in the query that increases
with count (e.g., a sum of a field with positive values), for
reasons that will be detailed later. A query satisfying all these
constraints can be written in SQL as:

SELECT dimension as gby,
COUNT(*) AS metric_1,
SUM(field) as metric_2,
AVG(other_field) as metric_3,
...

FROM table
WHERE <some_conditions>
GROUP BY gby
ORDER BY <some_metric_above> DESC
LIMIT K

An arbitrary number of metrics can be used. Throughout this
paper, such a query will be referred to as a TOP-K query, and
the values of the group-by-field will be referred to as entities.
In our case, and probably in others as well, this still has wide
applicability: In PowerDrill, of the 15 million analyzed queries
in the usage logs, 66% were TOP-K.

A special note needs to be made about joins. In our
system and at our scale, for efficiency reasons data-sources
are usually pre-joined. Every record in the resulting data set is
represented by a hierarchical data structure, typically encoded
using protocol buffers ([2]). Joining at serving time is also
possible in real-time in PowerDrill but is limited in scope
and not frequently used. The next sections thus make the
assumption that data sources are pre-joined, meaning that each
query can be considered to have a single table only.

C. Related Work
For an introduction to OLAP and basic techniques applied

in data-warehouse applications, see Chaudhuri and Dayal [3].
For an overview of recent work on column-store architec-

tures, see the concise review [4] and references therein. The
excellent PhD thesis by Abadi [5] can serve as a more in-depth
introduction on the topic.

Recent research in this area includes, e.g., work on how
super-scalar CPU architectures affect query processing [6],
tuple reconstruction [7], compression in column-stores [8], [6],
[9], and a comparison to traditional row-wise storage [10].
Kersten et al. [11] give a more open ended outlook on
interesting future research directions.

The ever growing set of commercial column-store and open-
source systems, e.g., [12], [13], [14], [15], [8], [16] is further
indication of the effectiveness of this paradigm.

Melnik et al. [17] introduced Dremel, another data analysis
system used at Google, to a wider audience. Similar to Pow-
erDrill, Dremel’s power lies in providing interactive responses

to ad hoc SQL queries. While PowerDrill is optimized for
keeping major parts of the relevant data in memory, and
thus is only used for a few selected data sources, Dremel
is optimized for streaming over petabytes of data from disk
(stored, e.g., on GFS [18]) in a highly distributed and efficient
manner. Therefore Dremel is being used over thousands of
different datasets, but with higher latency than PowerDrill on
its supported data sets. Melnik et al. also give a nice overview
of data anlysis at Google and how interactive approaches like
Dremel’s complement the offline MapReduce [19] framework.

Returning intermediate results to the users has been ex-
plored in the literature from diverse directions, for a selection
of related papers see [20], [21], [22], [23], [24]. For more on
data sketches, see [25], [26], [27].

II. EFFICIENTLY ENCODING EXPENSIVE COLUMNS

This section is divided into five parts. In subsection II-A we
show that memory is the limiting factor in executing queries at
speed. In order to serve more from memory and thus decrease
query execution times, we aim to improve the data encoding
scheme. In II-B we identify a class of fields which fill a
significant portion of the caches and proceed by looking into
ways of reducing their size. Replacing values with IDs is one
option, discussed in II-C1. Unfortunately, due to constraints
mentioned in II-C2, this is challenging, so we propose using
hash values instead. We show in II-D1 how a data sketches
approach could be employed to reduce the effects of colli-
sions introduced by hashing. In II-D2 we describe the final
approach, which requires only half of the memory needed in
the data sketches solution, but deviates considerably from the
way sketches are normally implemented. The last subsection,
II-E, presents the results we obtained in practice, from a real
query load, both in terms of accuracy and memory savings. A
more theoretical analysis is conducted in Appendix A.

A. Memory As Performance Bottleneck

Even though PowerDrill runs distributed across thousands
of machines and uses a column-store architecture, acceptable
response times cannot be achieved if data needs to be read
from disk. Therefore in memory caching is used. Data is
kept in RAM in a compressed format, but nevertheless the
available memory is not sufficient to hold entire tables. So
while PowerDrill is not a pure in-memory tool, one does not
have to read all relevant data from disk in processing a query
either. Table I shows that under its real usage conditions, 68%
of the queries can be answered completely from memory.
For the remaining 32% some amount of data needs to be
read from disk. The latter queries are 26 times slower in
the 95th latency percentile than pure in-memory queries.
Obviously, obtaining more memory or increasing memory
efficiency directly translates into large speedups.

B. Expensive fields

Even within the same table, the amount of memory needed
to store different fields varies greatly, depending on their
number of distinct values, compressability and type. With
regards to type, one could classify fields as follows:
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TABLE I
LATENCIES FOR 15 MILLION QUERIES EXECUTED BY POWERDRILL,

TOUCHING AND NOT TOUCHING DISK. TYPICAL TABLE SIZES: RANGING
FROM 108 TO 1011 (100 BILLION) RECORDS

Query frequency latency
median 95th percentile

fully in-memory 68% 0.04 s 2.96 s
touching disk 32% 0.54 s 78.80 s

TABLE II
MEMORY (IN TB) FOR SELECTED COLUMNS, USING NO COMPRESSION

(ORIGINAL), STANDARD LEMPEL-ZIV-OBERHUMER COMPRESSION
(LZO), POWERDRILL’S PROPRIETARY FORMAT (PD), AND LZO

COMPRESSION ON THE PROPRIETARY FORMAT (PD+LZO)

Field type size in TB
original LZO PD PD+LZO

numeric
average memory (per field) 0.96 0.22 0.26 0.19
total memory (all fields) 8.64 1.97 1.83 1.67

low cardinality
average 0.94 0.23 0.14 0.05
total 33.12 7.95 4.89 1.86

high cardinality
average 3.35 1.21 1.87 0.94
total 63.69 22.91 35.54 17.85

all fields
average 1.67 0.52 0.69 0.34
total 105.45 32.83 43.66 21.38

• Numeric fields, representing metrics like cost.
• Low cardinality (string) fields. These are mostly what

would be called dimensions in OLAP, i.e., something by
which results are grouped or filtered. A typical example
is country.

• High cardinality (string) fields. A typical example is
user_query, i.e., the text a user enters in Google’s
search box. These fields take on a large number of
possible distinct values and are usually longer strings.

When a query groups by a high cardinality field, returning
all groups is infeasible in practice. In this case, meaningful
queries always order the result according to some metric and
limit it to a certain number K of rows (so called TOP-K-
queries). Example: ‘The ten most frequent user_queries’.

PowerDrill uses a proprietary, optimized format to keep data
in memory (see [1]). A direct comparison between this and
other compression algorithms is not fair because unlike the
latter, PowerDrill’s format allows indexed access to subsets of
the data without having to decompress everything. When data
is kept in memory for longer periods of time without being
accessed, it is additionally compressed using LZO. This further
reduces the size of the data structures in caches but requires
an extra decompression step at access time. The size of the
PD+LZO format determines the cache capacity and is the
relevant quantity for the purposes of this chapter, minimizing
disk access. Table II shows the memory consumption for
representative fields of different types, in PowerDrill’s most
important tables, including the PD+LZO size.1

1For practical reasons not all of the 1000’s of fields in PD were evaluated
but rather for each field type a subset of the most frequently used fields (i.e.
that appear in at least N queries, where N was arbitrarily set) was selected
for evaluation. The compiled list has 9 numeric, 35 low cardinality and 19
high cardinality string fields.

It is observed that high cardinality fields are the largest
in uncompressed format. Unfortunately, compression rates
are much worse for them, too, in all evaluated formats.
In PD+LZO-format such a field occupies on average about
18 times more memory than a low cardinality field. For the rest
of this chapter we will therefore refer to the high cardinality
fields as expensive. In absolute numbers, the size of all selected
expensive fields combined amounts to 18 TB in PD+LZO
compressed format—a disturbing number considering that they
reflect only 19 out of thousands of fields for which in total
there are only 35 TB of memory available in PowerDrill.
Optimizing the RAM consumption for these fields is therefore
key to reducing the pressure on the in-memory caches.

C. Hashing Expensive Fields

1) Mapping Strings to IDs: To reduce the memory con-
sumption of expensive fields one can replace their values with
IDs, by defining a mapping function from the set of string
values occurring in the field to the ID range.

For each expensive field, a new ID-field is added to the
table, obtained by applying the function on all the original
string values. If the expensive field is used in transformations
that require computations on the string values themselves (e.g.,
regular expressions, contains operations), then queries are
executed as received from users. From over 200,000 checked
queries, only 18% fall into this category. Otherwise, all ref-
erences to the expensive field are replaced with references to
the corresponding ID-field.

On disk, the ID column is stored in addition to the original
column, increasing the disk space. This is needed to still
support queries doing string transformations. For all the other
queries (which, as presented, are the large majority), only the
ID column needs to be fetched into RAM. Since the number of
bits required to encode IDs is much smaller than the number
of bits required for lengthy strings, less is loaded into RAM
(and thus memory is saved).

Before showing the results to the user, IDs need to be
translated back to their corresponding string values. To achieve
this, an inverse function is needed, based on a reverse dictio-
nary from all the string values that appear in the data. One
dictionary is created per (table, expensive field) and does not
need to be query specific: Indeed, just mapping all the IDs
to their corresponding strings is enough for the translation.
To allow for extensibility (i.e., supporting new fields easily),
the map is built and maintained ”on the fly”, during query
execution time, instead of being pre-processed. The first query
over a table snapshot for which the map hasn’t been updated
pays the price of updating it and will be (much) slower. All
subsequent queries don’t need to do any extra work and can
be very fast.

Access to the reverse dictionary is required only at the very
end of the query execution, and only for those values which
are actually handed to the user. Since these are bounded by
the limit in the query, only few lookups are needed, which
can be handled quickly - even from disk. For this reason, this
dictionary does not need to be stored in memory: It can be
kept in a persistent storage instead.
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2) Trade-offs in Choosing the Function: The properties of
the function used above raises different problems that need
to be addressed. For instance, an injective function greatly
simplifies the translation, since each integer has exactly one
associated string, but makes it hard to create the reverse
dictionaries. In our tables, some fields have tens of billions
of unique values. These fields are processed in parallel, from
thousands of machines. Preserving uniqueness in a distributed
setup processing such a large volume of data and making this
fast enough to work in real-time is extremely challenging: ID
consistency needs to be preserved in case of machine failures,
there is a significant overhead per value processed (i.e., for
each value there needs to be an extra communication over
network with the entity managing IDs), etc.

For these reasons, we use a function that is not injective,
i.e., a hash function. This immediately raises the problem
of handling collisions. The probability of collisions can be
decreased if large output ranges are used, but this increases
the number of bits needed to encode the values, and thus the
memory that is being used. A reasonable trade-off between
memory that is consumed and accuracy of the results produced
needs to be made, and doing this consciously first requires an
understanding of what the effects of collisions are.

3) Effects of Hash Collisions: The collisions have two
effects. First, the values of the metrics (count, sum, etc)
can “by-catch” other entities with the same hash—potentially
overestimating the correct result. Second, when translating
back a query result, it is to be expected that some hash values
cannot be translated back uniquely. In such a case, all possible
string values have to be presented to the user by concatenating
them, e.g., with OR.

Both effects make the query results approximate. In practice
collisions can not be made an extremely rare event without
using prohibitively long hashes which use too much memory.
However, there is a way to diminish effects of collisions while
still obtaining significant memory savings.

D. Multiple Hashes For Resolving Collisions

1) Data Sketches Inspired Approach: There is a relation-
ship between the mapping approach described in section II-C1
and a class of data structures called data sketches ([25],
[26], [27]). More specifically, a count-min-sketch [27] (short:
CM-sketch) is one of these data structures; it is used to
represent a multiset. The result of a TOP-k query using count
for aggregation can be stored in a CM-sketch—the entities
being the members of the set, and the counts being their
multiplicities. A CM-sketch uses one or more hash tables for
storing the multiplicities of its members. Its main advantage
is that it can cheaply be updated incrementally as elements
stream in, and that—depending which hash size one chooses—
it may require far less memory than alternative data structures.

Like the mapping approach from section II-C1, count-min-
sketches suffer from hash collisions: Each cell of each hash ta-
ble stores the sum of the multiplicities of all multiset members
mapped to the cell. This value is used as an estimator of the
multiplicity of each member mapped to the cell—potentially
overestimating it. If multiple hash tables with independent

hash functions are used, then the multiplicities are retrieved
from each hash table, and the minimum of these multiplicities
is used as the estimator—reducing the overestimation.

It is easy to see that a CM-sketch with only one hash table
delivers the same results and thus the same estimation errors
as the mapping approach. For the CM-sketch there is a well
known error bound [27], which can be rewritten as:

err ≥ 0 (with certainty), and

P

(
err ≥ k · N

2b

)
≤
(
1

k

)d

∀k > 0 (1)

where err is the returned minus the correct result, N is the
cardinality2 of the multiset, d is the number of hash tables
used, and 2b is the size of each of the hash tables.

One can transfer the method of using multiple independent
hashing functions to the mapping approach by adding multiple
ID-fields based on different hashing functions for a single
expensive field. Query results are then computed for each
of the ID-fields, and then for each entity in the result set
the minimum of the counts of all corresponding ID-fields is
returned as the result.

For CM-sketches the optimal tradeoff between b and d for
achieving a given accuracy, that is between fewer larger hash
tables and more smaller ones, is well known as a result of
equation 1. These results are not applicable to the mapping
approach, however: In a CM-sketch, the hash values are used
as an index into a hash table for which memory has to be
allocated, and the total required memory scales with d · 2b.
In the mapping approach from section II-C1, the hash values
are stored in a database field. The required disk space (which
also determines the memory required for caching this field in
memory)3 scales with d · b (but with a large constant factor
of N ), so the price for increasing b is much lower than in a
CM-sketch.

It is easy to show that for the mapping approach the
optimal tradeoff between b and d is always using only one
hash table: One can rewrite equation 1 to bound for a given
amount of available memory m and a given desired accuracy
h the probability with which this accuracy is exceeded—as a
function of the number d of hash tables between which the
available memory is split. Denoting the available memory in
bits by m := N · d · b, and h := k · N

2b
equation 1 becomes:

P (err ≥ h) ≤
(
N

h

)d

· 2−m/N ∀h > 0

Since h << N for all meaningful levels of accuracy h, it is
obvious that for all values of h and m the bound is tightest
for d = 1 (d being a natural number).

2) Multiple Partitioned Hashes: The idea from count-min-
sketches of using multiple hash functions can be adapted in our
case, in a way that does not increase the memory requirements
while making it possible to better resolve collisions. To achieve

2i.e., the sum of the multiplicities of all members
3The memory required for storing intermediate results when processing a

query on such a field might scale differently, depending on the query. However,
we are only interested in queries with low limits, where there is a low cap on
the required intermediate.
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Fig. 1. Distributing 10 shards of data to 4 servers. The white shards, assigned
to servers 1 and 3, are encoded with the first hash, and the grey ones, assigned
to servers 2 and 4, are encoded with the second. Since there is an equal number
of shards of each color and since the shards are of the the same size, each
hash encodes exactly half of the data.

TABLE III
POSSIBLE RESULTS AFTER TRANSLATING IDS FOR BOTH HASH

FUNCTIONS AND HOW THEY CAN BE MERGED TOGETHER. I.E., THE FIRST
ROW FOR h1 CAN BE COMBINED WITH THE SECOND ROW FOR h2, BY

KEEPING THE COMMON ENTITY AND ADDING UP THE COUNTS

Results for h1 Results for h2 Combined results

user query # user query # user query #
fuzzy OR Sport 5 Shopping 6 Shopping 10
Shopping 4 Sport OR isotope 3 Sport 8
Computer 1 abc OR Computer 2 Computer 3

this, a hash function h1 can be used to encode a random
partition containing half of the data, and a different hash
function h2 can be used on the partition containing the other
half. This sounds difficult but can be easily achieved in a
distributed system. Typically in such a system, records of
the data are randomly and evenly split into shards, which are
then distributed to servers for processing, usually in a round-
robin fashion. In this setup, half of the servers can always
(independently of the query they are computing) encode their
assigned shards with h1, and the other half with h2. If there
is an even number of shards of equal size, then each hash
encodes exactly half of the records. The process is illustrated
in Figure 1.

Each server fetches into memory only (its local part of)
one ID column, and is responsible for updating only one of
the reverse dictionaries, corresponding to its assigned hash
function. In total, this consumes exactly the same amount of
memory as when using a single function. Results encoded with
h1 are mixed (combined) separately than the ones encoded
with h2: Two intermediate results are obtained, corresponding
to running the same computation on half of the data, in
which the group-by keys are values of different hash functions.
To further merge the two intermediate results into a final
one, the group-by keys are translated to strings, using the
corresponding reverse dictionary. The translation might not
be unique, so a list of string values can be obtained for
each group-by entry in each of the results. Collisions can
be resolved by intersecting the lists of strings on each side
and aggregating the metrics for the keys where an intersection
occurs (i.e., adding up corresponding values). An example is
shown in Table III.

Having 50% samples on each side helps by ensuring the
”real” result appears on both sides, such that intersections can
be done. When this is not the case, i.e., for very infrequent
entities, colliding strings can still be concatenated with OR.

Some theoretical problems that might arise, like two lists
having more than one string in the intersection, or a list on
one side intersecting with more than one list on the other,
have such low probability that they can be safely ignored in
practice.

E. Experimental Validation

1) Setup: To validate the effectiveness of our approach
in practice, in cases where high result accuracy is required,
we selected real queries with expensive fields from a few
days of PowerDrill’s logs. The selected queries additionally
satisfy the constraints presented in Section I-B. Since applying
a function on the hashes instead of on the original values
gives meaningless results, we further excluded queries in
which the expensive field is used in any transformations.
The final remaining set contained 160,000 queries. Each of
them was then executed twice: Once in the version using
the original expensive field, and once with the expensive
field replaced by its “partitioned hashes”. For both versions,
memory consumption was recorded. Additionally, after both
queries finished, results were compared in order to determine
the errors introduced by hashing.

For the experiments, for all expensive fields a hash length
of 31 bits was used. This length was a natural choice, since
it entirely fits in a primitive type (e.g., an int), for which,
as opposed to variable-length values, PowerDrill’s dictionaries
offer builtin support. Even more, alongside the hash value, an
extra bit can be enconded in an int, to discriminate between
h1 and h2. Because the value spaces of the two functions
are now non-intersecting, the implementation is simplified—
results from individual servers can be merged together. Also,
we empirically validated that chosing this length provides
significant memory savings, while still producing results with
small relative errors.

2) Memory Savings: Table IV shows the memory benefits
of using the “partitioned hashing-approach” on the expensive
fields identified in Section II-B. One can see that memory
consumption is reduced massively, on average over all expen-
sive fields by a factor of 3.5. When comparing to using the
standard, production grade compression algorithm LZO, we
have saved an impressive factor of 4.5.

In absolute numbers, the total memory needed for the
considered expensive fields reduced from 18 TB to 5 TB.
Since they only represent a fraction of the expensive fields
and since only 35 TB of RAM are available to PowerDrill,
this is a massive improvement. It is also worth mentioning that
these memory savings are achieved with almost no additional
cost on the execution speed of the queries—the 95th latency
percentile for the queries increases from 6.5 to 6.6 seconds
when using the hashed encoding.

3) Accuracy: For accuracy measurements, results of real
queries in our production environment were compared, in the
“partitioned hashes” approach and in the version using the
original expensive fields. Errors were computed for all numeric
columns of these results. The standard definition of the relative
error |v′−v|/|v| with respect to the L2 norm was used, where
v′ is a column from a result using the former approach and v
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TABLE IV
MEMORY FOR STORING THE REPRESENTATIVE SET OF EXPENSIVE FIELDS

INTRODUCED AT THE BEGINNING OF THE SECTION, ALSO ADDING THE
MEMORY REQUIRED FOR PARTITIONED HASHES ENCODED WITH PD+LZO

size in TB
original LZO PD+LZO hash+PD+LZO

average 3.35 1.21 0.94 0.27
total 63.69 22.91 17.85 5.05

the corresponding column from a result using the latter. The
median error for all the columns was less than 0.01%, the 90th
percentile of the error was 0.4%.

We observed that except for very rare items, the merging
strategy proposed in Section II-D2 resolves collisions uniquely
and correctly: When ignoring rows having a count smaller than
5, the relative error for columns goes down from 0.4% to 0.3%
in the 90th percentile. Also, in more than 90% of queries, all
the entities with a count greater than 5 were resolved correctly.

For very infrequent items, it can happen that all the rows
that contribute to the aggregated result end up in only one of
the two random partitions. In such situations, all contributing
strings are concatenated (with a separator, such as OR) and
displayed to the user. We call this a loose match. The errors
for infrequent items are totally tolerable, especially in data
discovery tasks, which require more a qualitative picture rather
than a fine grained, exact view of very rare events. However,
it is worth mentioning that even when collisions for the rare
events cannot be resolved programatically, most of the time
they might still convey some information to the analyst. As
shown in Table V, in some cases the string to choose can be
selected based on the context.

TABLE V
A RESULT FOR WHICH THE BOTTOM ENTRIES ARE LOOSE MATCHES. AN

ANALYST CAN GUESS THE CHOICE BASED ON THE CONTEXT (THE TOP
ENTRIES). THE EXAMPLE HERE IS JUST FOR ILLUSTRATION PURPOSES

AND DOES NOT REFLECT A REAL RESULT.

user query Count
hotel in Paris 15411
Paris trip 9806
Eiffel tower tickets 3009
Paris must see 4 kids OR top sci-fi books 4
volatile Java OR honeymoon in Paris worth it 3

Overall, our method saves an important 37% of all the mem-
ory available in PowerDril (13 out 35 TB), while preserving
high result accuracy (only 0.4% relative errors in the 90th
percentile). The gains in terms of resources achieved by using
the partitioned hashes approach open new possibilities in the
future, by allowing us to both serve more data sets and improve
the query execution speed for the existing ones.

III. SAMPLING

In the last section we saw how a data-sketches inspired
approach can be used to achieve tremendous memory savings
for certain types of queries. Overall, in our production environ-
ment (in Sept 2014) we still observed a 95th latency percentile
of about 30 seconds for queries classified as “normal”. (About

42% of all queries are in this class; it is important for many
in-depth investigations.)

Prendse and Creeth in their first OLAP-report [28] pos-
tulated an average latency of 5 seconds and “very few”
queries taking more than 20 for interactive data analysis—
a definition which has been widely accepted since and also
matches qualitative feedback which we received from our
users. Latencies of 30 seconds are therefore far beyond our
target.

In order to speed up these “normal” queries (and other still
unsatisfactory cases), we had a closer look at a completely
orthogonal approach: sampling. By simply using a subsample
of the data and scaling up the result values appropriately,
one can trivially reduce both latencies and memory usage
by arbitrary factors. This is easy to do for queries using
COUNT, SUM, or AVG as aggregators—the same type of
queries as considered in chapter II, but this time without
limiting ourselves to queries containing expensive fields or not
containing certain types of WHERE-conditions (covers > 98%
of all queries).

Initial experiments with providing 3% subsamples to our
users showed very little adoption. The sampling feature—
which was easy to switch on for any dataset—was only used
for 0.6% of all UI queries. Talking to our users it turned out
that they often end up slicing data down to very small subsets
where the sample gave bad estimates. Users that ran into such
cases quickly got frustrated and stopped using the subsample
entirely.

A. Sampling made practical

In this section we describe a novel approach which tries
to overcome these problems which prevented standard sam-
pling from being useful in PowerDrill’s usage scenario. The
approach enhances standard sampling with the following key
elements:

Intermediate results as data is being processed. Esti-
mates continuously keep updating with increasing sampling
rate. Thus the first estimate will appear quickly and keep
improving—all automatically. At any time the user can start
the next query (cancelling the remains of the old query) if the
results are already sufficiently clear—or otherwise wait for
more accurate results to appear.

Accuracy of intermediate results. The accuracy is difficult
to judge intuitively, because it depends not only on the sam-
pling rate, but also, e.g., on the selectiveness of the query or
the statistical properties of the underlying data. It is therefore
important to clearly mark the accuracy of intermediate results.

Display accuracy per shown value. The results of a query
typically consists of a table with multiple rows and columns,
and the accuracy of an estimated number varies from row to
row depending on the amount of data backing it, and from
column to column depending on the statistical properties of
the underlying field. Usually the user does not need to wait
for all the numbers to become accurate: Often the rows with
more data are the important ones for the analysis and there
is no need to wait for the less accurate results in rows with
very little data, because it is sufficient to know that these rows
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correspond to little data. It is therefore essential to mark the
accuracy of each displayed value, so users can proceed before
everything has become accurate.
We visualize this by showing numbers with accuracy below
a predefined threshold greyed out and sufficiently accurate
numbers in regular black.

While sampling is generally well understood and straight-
forward to implement, the challenge in our case was imple-
menting continuous updates and accuracy estimates on top of
the existing complex distributed system. We eventually arrived
at a very simple solution which in our eyes is compelling and
elegant. With few changes to the existing system it achieves
surprising productivity gains by giving very clear accuracy
indications and without compromising on the accuracy of
the final result. The changes do not add the extra load
and complexity on the system that common approaches of
computing confidence intervals would.

For a brief explanation of how relational data / joins are
handled in our setup, please see B.

B. Accuracy Estimation

It is well understood how to estimate the accuracy of
estimates computed from samples under various circumstances
(consult [29] for an overview): Typically for the types of
queries we are considering, as defined in Section I-B, the
accuracy of an aggregated number in a result set is estimated
based on the variance of the underlying variable and on
the size of the sample, i.e., the number of records that was
aggregated into the number. Both the variance and the number
of records are query specific: They need to be computed only
on the subset of rows satisfying the WHERE and GROUP BY
clauses. Based on PowerDrill’s logs we verified that for the
real query mix, the variance varies greatly from field to field as
well as from query to query. This means that precomputations
are not possible. Instead, the variance would need to be
computed along with the (sampled) query. Unfortunately, this
is prohibitively expensive, leading to additional full-scans of
the data and extra calculations that are not “materialized” in
the table itself. Because of this, a different approach had to
be taken.

An heuristic was developed with the goal of providing as
tight as possible probabilistic error guarantees for the sampled
estimates, under the condition that their computation must not
add significant computation time or memory consumption. We
took a large representative set of queries from PowerDrill’s
query logs and compared sampled and exact results. Empiri-
cally we found that more than 90% of all those values that had
been estimated based on more than 100 records in the sample,
had a relative error of less than 10%. This held for values
computed by COUNT-, SUM- and AVG-aggregation alike.

So according to the heuristic, in a result set we mark a
number as reliable if and only if it was aggregated over a
group of more than 100 data set rows. This criterion can be
evaluated at basically no extra cost.

The correctness of this heuristic criterion depends on the
query mix issued by users and on the statistical properties
of the data—in particular on the variance of the expressions

over which aggregations are computed. These could change
over time. Therefore, we constantly monitor the quality of the
estimates displayed as reliable (i.e., displayed in black). We do
this by always computing the exact result in the background
for queries that are not canceled. More on this in Section III-D
below.

C. Implementation

In this section we briefly describe how the system is
extended to show intermediate result estimates including ac-
curacy annotations (i.e., which values are to be marked black
for being trustworthy).

It is obviously quite easy to automatically extend user
queries to contain the “cheap heuristic” for accuracy esti-
mation per result value. Similarly the appropriate scaling of
results over sampled data is straightforward. The more inter-
esting question may be how to efficiently obtain intermediate
results over increasingly larger subsamples. The answer is
that this comes for free by the highly distributed design of
PowerDrill.

Queries are computed in parallel by a large number of
servers, currently 2000 machines. The data is partitioned
across these machines with each of these partitions being a
random subsample, cf. [1]. Since the machines are shared by
many (arbitrary) other services, the load on the individual
machines varies heavily. As is common in such distributed
systems, the response times of individual servers therefore
varies tremendously (the execution times on the fastest and the
slowest machines can differ by even an order of magnitude).
As soon as at least one of the servers has finished, we have
results for a subsample of the data. The size of the subsample
keeps growing with every additional finishing server. These
intermediate results over growing subsamples can be scaled
appropriately and shared with the user. Other approaches
for computing intermediate results have been studied in the
literature, see, e.g., [20], [21], [22], [23], [24].

In some cases, waiting even only for the first of the 2000
servers to finish may be inconveniently slow. To have a very
quick first intermediate answer, we additionally compute the
same query over a small (currently 3%) subsample of the
entire data which is distributed across all machines as any
other dataset would be.

D. Validation and Monitoring Setup, Metrics

As mentioned in Section III-B, we eventually always com-
pute the final, fully accurate result for queries that were not
canceled. Note that this is important since users often drill
into small subsets of the data where subsamples may perform
poorly. Below in Section III-E we will show numbers which
verify this with our live query-load.

Since we have the luxury of obtaining the final result for
each completed query, we can nicely validate our “cheap
heuristic” for accuracy estimation and the general quality
of the intermediate results in our production environment.
This can be used to fine-tune and monitor the approach and
thresholds chosen. Please note that for cases where the user
cancels running queries (e.g., to move on quickly before
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everything has been computed), we do not obtain the final
result. I.e., for these cases we cannot validate the “cheap
heuristic”. As per Sept 2015 about 30% of all queries are
canceled and we therefore obtain final results in about 70%
of all cases.

For the latter we measure 1) the latencies of all intermediate
and final results, 2) the percentage of result values / cells
which are determined to be trustworthy (i.e., marked black),
3) the per-column relative error of all result values, and 4)
the per-column relative error restricting only to trustworthy
/ black values. For the computation of the relative error
we treat individual columns of the result as vectors. Note
that each column of the result represents a single aggregator
across multiple group-by values. As for our data-sketches
related optimization, we compare intermediate vector v′ with
the final vector v using the standard definition of relative
error |v′ − v|/|v| with respect to the L2 norm. This nicely
captures the way users interact with the data, viewing a column
as a whole (e.g., trying to figure out which groups / rows
accumulate high costs), rather than caring in detail about each
individual value.

The collected data also is the basis for the experimental
results / measurements which we show in the following
section.

E. Measurements on Production Data

We can show that the approach gives an enormous pro-
ductivity gain to our users on actual queries. For the first
intermediate result users wait only 4 seconds. This compares to
30 seconds for the final result.4 Note that this is measured over
all queries which are eligible for these intermediate estimates,
no matter how restrictive. In this first intermediate result on
average 62% of the values are marked black (i.e., trustworthy);
and indeed when considering these values only, the relative
error compared to the final result is quite low with only 9%.

TABLE VI
95TH LATENCIES PERCENTILES OF THE FIRST INTERMEDIATE AND THE

FINAL RESULT, THE PERCENTAGE OF “BLACK”, I.E., TRUSTWORTHY
RESULT VALUES (ON AVERAGE) AND THEIR RELATIVE ERROR (MEDIAN

AND 90TH PERCENTILE).

relative error black
latency % black median 90th percentile

First result 3.89 secs 62% 0.17% 8.99%
Final result 30.3 secs 100% 0% 0%

We summarize the key results in Table VI. The measure-
ments are based on about 60’000 live queries. This shows an
impressive 7.7x speedup (30.3 vs. 3.89 secs) for cases where
users can deduce useful insights from the “black cells” only.

Next we were interested to see how important for actual live
queries it is to estimate the accuracy and annotate result values
as trustworthy or not. Figure 2 shows the relative error of
both all result values and of black result values in comparison
for intermediate results (in both cases we look at the 90th
percentile of the errors). On the x-axis we plot the relative

4As mentioned, all latencies are given with respect to the 95th percentile.

Fig. 2. The relative error of all result values compared to the relative error
of values which are marked “black” for trustworth. The 90th percentiles are
plotted over all intermediate results and with respect to the relative latency,
i.e., intermediate latency / total latency.

latency when the intermediate result arrived, i.e., the latency
of the intermediate result divided by the latency of the final
result.

The chart shows that 1) the relative error of the “black
values” is consistently low, independent of how large the
subsample is backing the computation: up to a relative latency
of 0.6 the relative error is between 9% and 13%. From a
relative latency of 0.7 on the error decreases to 0 gradually
(note that over time the number of black values obviously
increases). In other words, the “cheap heuristic” to estimate
the accuracy is doing a consistenly good job independent of
the sample size. The other equally important insight here is
that 2) the error of all values (= all result cells, including the
ones which are not marked as trustworthy) is very bad for low
relative latencies: Up to a relative latency of 0.4 the relative
error for all values is larger than 90%. Put simply, the initial
results are unusable without proper annotation.

We believe that these numbers nicely show that a suprisingly
simple extension of an existing column-store can give users
large speedups, even though results over the full dataset are
still computed in about 70% of the cases. In our production
environment this pushes the large set of “normal” queries from
being “borderline interactive” down to a latency of below
5 seconds in the 95th latency percentile which has been
accepted as being reasonable for OLAP type investigations
(originally proposed in [28]). It also becomes clear that the
intermediate results are only useful when annotated in some
manner to hint their accuracy.

Obviously, it is of large interest whether these advancements
actually enabled users to interact more quickly with their data.
To quantify this, we looked at the number of UI interactions
per user & hour. The sooner users see useful results, the
quicker they can react and continue with their analysis. I.e.,
more interactions per hour translate into a more interactive
and productive experience—the goal of trading off accuracy
for speed in the first place.
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Fig. 3. The average number of UI interactions per user & hour over 1.5 years
(from Jan 2014 to Sep 2015). Each iteraction (e.g., restricting the WHERE
statement) triggers the computation of one or many queries. Being able to
do more iteractions per hour speaks for a more interactive and productive
experience.

A first version of the sampling-based approach was launched
in September 2014. Figure 3 shows that the average number of
UI interactions per user & hour doubled between August 2014
and September 2015. We believe that showing trustworthy
estimates early on has significantly contributed to users over
time becoming more comfortable with moving on a lot more
quickly with their analyses.

IV. CONCLUSIONS

In this paper we examined ways to improve performance,
both in terms of compute resources and execution speed, to
allow for interactive analysis over very large datasets when
perfect accuracy is not a strict requirement. We observed that
for data discovery work, for which PowerDrill is being used,
the qualitative picture is mostly sufficient, and showed that
by sacrificing a little accuracy in a controlled manner, high
performance gains could be achieved.

Using an approach inspired by data sketches, we achieved a
decrease in the memory usage of queries with expensive, high
cardinality fields, by a factor of 4.5, which saves a significant
amount of PowerDrill’s available resources. However, our
approach required us to deviate considerably from the way
data-sketches are normally implemented, to benefit from better
reuse of the data structures across a variety of free-form
queries.

We also explored how we can gain significant speedups by
using sampling. Our initial implementation based on sampled
data sets had a very low adoption, due to the fact that
results were often innacurate for investigations over very
small subsets of data. We solved this by having continuous
estimates based on automatically increasing sampling rates,
in conjunction with displaying the level of accuracy of these
estimates for each individual number. This made possible to
achieve a 7.7x speedup while still showing insightful results. It
also saves users from having to deal explicitly with sampling

rates and yet allows them to skip waiting for more precise
estimates with confidence, when the current estimates are
already sufficient for a clear picture. Over the course of a
year, this led to an impressive doubling of the number of UI
interactions per user & hour.

PowerDrill has been developed and improved over many
years, and as a result the underlying code is quite complex,
incorporating multiple optimizations such as compression,
parallelization and multiple layers of caching. Therefore large
deep-down changes are expensive and risky. One of the main
contributions of this paper is presenting approaches that can
be implemented as an outer wrapper around the core software,
without interfering with its internal affairs. This should make
them easily applicable to other systems.

Implementing changes on a live system heavily used for
business critical operations raised many restrictions, but on
the other hand it gave us the opportunity to run experiments
on realistic input data and examine usage patterns and user
behavior. Our observations and findings in a real environment
are the other main contribution of this paper, and we believe
they can be applied to other data discovery systems as well.
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APPENDIX A
THEORETICAL ACCURACY BOUNDS FOR THE MULTIPLE

PARTITIONED HASHES METHOD

As discussed in Section II-D1, when using a single non-
partitioned hash, the known accuracy bounds of count-min
sketches [27] can also be used to bound the numerical errors
caused by hash collisions in our approach, for queries using
count-aggregation. The core idea behind Cormode’s derivation
of the bound can be generalized to our multiple partitioned
hashes approach, presented in Section II-D2, not only for
queries aggregating by count but also for ones using sum,
as we will show here. Note that we are only looking at the
numerical errors caused by by-catching other entities because
of hash-collisions—not at potential errors in translating hashes
back to the original strings.

In the multiple partitioned hashes approach, a query like:
SELECT SUM(X) AS m FROM table GROUP BY G
is computed by executing
SELECT SUM(X) as m
FROM partition_1 GROUP BY h1(G)
on one half of the data and an analogous query using h2
on the other half. The result for a specific entity, e.g. for
G=’computer’ is then computed by adding the values of the

metric from the group h1(’computer’) from the result set of the
first and from group h2(’computer’) from that of the second
query. In order to derive an error bound, we use the following
identifiers:
e0, ..., en−1: List of all distinct entities occurring in field G
e0: Entity we are interested in (e.g. ’computer’).5

rj : SUM(X) over all lines in the first partition where G = ej
sj : SUM(X) over all lines in the second partition where
G = ej
err: Difference between the correct and returned value of m
for the group containing e0 (correct: r0 + s0).
We assume that both hash functions h1 and h2 have an output
range size of 2b and are uniform, i.e. that for h1 and h2 each
entity other than e0 has a probability of 2−b of colliding with
e0. The expected error from these by-catches is therefore

E(err) =

n−1∑
i=1

(
rj2
−b + sj2

−b) ≤ n−1∑
i=0

(rj + sj)2
−b =

n

2b
X̃

where X̃ := 1
n

∑n−1
i=0 (rj + sj) is the average over all entities

of SUM(X) over both partitions.
Let’s assume for the moment that all values of X are

non-negative. Applying Markov’s inequality to E(err) then
yields the desired error bound:

P (err ≥ k) ≤ n

2b · k
X̃ ∀k > 0 (2)

and on the other hand obviously err ≥ 0 with certainty.
If X is a signed field then it is clear that |err| can not be

larger than the error on the modified query where X has been
replaced with Y := abs(X). Therefore equation 2 applied to
abs(X) instead of X can be used as an upper bound for |err|.

A bound for queries aggregating by count instead of sum
can be easily derived as a special case, because counting lines
is equal to summing 1’s. The result is identical to the bound
for a single non-partitioned hash in equation 1 (with d = 1).

The above probabilistic error bounds refer to the absolute
error and are identical for all groups of the result set (i.e.
are identical for ’computer’ and ’phone’). This means that the
relative error of the query result is lowest for those entities
with the largest correct values. Fortunately, TOP-k-queries
return just the entities with the highest counts, which typically
will have large sums associated with them as well.

A relative error bound for averages can be derived from
the bounds for sum and count (which is probably significantly
larger in theory, the errors of sum and count will reinforce
each other).

We are showing these error bounds mainly to illustrate
that the multiple partitioned hashes approach used on TOP-
k-queries using count, sum or avg is similarly sound as the
non-partitioned version on count-queries which is equivalent
to count-min-sketches in terms of approximation accuracy. At
the moment, we are not using these results for optimizing
the memory-accuracy tradeoff, and rely on the experimental
validation instead.

5without loss of generality
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APPENDIX B
DEALING WITH RELATIONAL DATA FOR SAMPLING

In general, dealing with relational database operators like
joins is one of the more difficult aspects of sampling. However,
in our use case the situation is quite specific: The structure
of the data sets on which PowerDrill is used, is basically
fixed, and there is only one meaningful way of joining the
underlying tables. All datasets are dominated by one big table
with billions of rows, one row representing, e.g., one user
query. There are other tables representing sub-entities to user-
queries like clicks, but the number of clicks per user query is
limited and at most in the hundreds.

In the given case, the total size of all sub-entities associated
with one user query is small. It is therefore sufficient to sample
on the level of user queries only, and then select all sub-entities
of the sampled user queries into the sample as well.

This means that on the level of sub-entities, rows are
not sampled independently at random, but rather all rows
corresponding to the same main entity are either in or out. This
dependency between the sampled rows potentially increases
the variance of estimates computed on sub-entity fields but
introduces no bias. (Having more rows of the sub-entity than
of the main entity would normally lead to estimates for sub-
entity fields having higher accuracy than for main entity fields
due to a higher sample size. This advantage is neutralized by
the dependency, but the accuracy is not lower than for main
entity fields.)


