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Abstract

The accuracy of an attribution model is limited
by the assumptions of the model, and the qual-
ity and completeness of the data available to the
model. Common digital attribution models on
the market make a critical, yet hidden, assump-
tion that ads only affect users by directly chang-
ing their propensity to convert. These models as-
sume that ad exposure does not change user be-
havior in other ways, such as driving additional
website visits, generating branded searches, or
creating awareness and interest in the advertiser.
In a previous paper [1], we described a Digi-
tal Advertising System Simulation (DASS) for
modeling advertising and its impact on user be-
havior. In this paper, we use this simulation
to demonstrate that current models fail to ac-
curately capture the true number of incremen-
tal conversions generated by ads that impact
user behavior, and introduce an Upstream Data-
Driven Attribution (UDDA) model to address
this shortcoming. We also demonstrate that de-
velopment beyond UDDA is still required to ad-
dress a lack of data completeness, and situations
that include highly targeting advertising.

1 Introduction

Digital attribution algorithms use observational
user-level path data to assign credit for conver-
sions to the marketing events to which a user was
exposed prior to converting. Credits for conver-
sions are typically assigned at the user-level, with

a credit value assigned to events within each con-
verting user’s path. Overall values for each mar-
keting event type are computed by aggregating
across user-level credits. Advertisers use the val-
ues assigned to each marketing type to assess the
effectiveness of their advertising and make deci-
sions regarding their media spend.

A user’s path contains all of the user’s observed
interactions with a given advertiser, ordered by
the time at which each interaction occurred. For
example, the user’s second observed interaction
with the advertiser appears at index two within
the user’s path. Figure 1 shows an example user
path. The user’s first observed touch-point with
the advertiser is a direct navigation to the adver-
tiser’s website (index 1), followed by a display ad
impression (index 2). The user later clicks on the
advertiser’s search ad (index 3), and converts af-
ter this paid click.

Position-based attribution models (PBA), also
referred to as position rule-based models, are the
simplest class of attribution algorithms. This
type of model analyzes converting paths only,
and assigns credit for conversions determinis-
tically according to the position of marketing
events preceding each conversion. The most ba-
sic PBA algorithms are “single source” models,
which assign all credit for each conversion to only
one preceding event. The most common single
source PBA attribution model is “last interac-
tion” or “last click”, which assigns full credit to
the last marketing event that was observed prior
to each conversion (the search ad click, in the
example user path shown in Figure 1). “First
interaction” assigns full credit to the first mar-
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Figure 1: Example user path, consisting of ob-
served interactions with an advertiser. This path
includes a conversion, and both paid (display ad
impression, search ad click) and organic (direct
navigation) touch-points.

keting event observed (the direct navigation, in
the example user path). “Fractional” PBA mod-
els split credit for conversion among multiple
preceding marketing events. “Linear”, for ex-
ample, divides credit equally among all market-
ing events observed prior to each conversion (13
credit each to the direct navigation, display ad
impression, and search ad click, in the example
user path).

Previous studies have shown that PBA mod-
els fail to capture the true causal value of ad-
vertising. For example, [2] demonstrated that
PBA model estimates differ significantly from
randomized controlled experimental results, and
[1] used simulation to show that these models do
not accurately estimate the true number of in-
cremental conversions generated by advertising
across several simple scenarios (see Figures 4–7
of [1]). These results are not surprising, since
PBA models are widely recognized to make un-
realistic assumptions.

Data-driven attribution (DDA) models, also re-
ferred to as algorithmic or probabilistic attribu-
tion models, assign credit for conversions in a
less prescriptive way, and are advertised as bet-
ter able to capture the value of advertising. This
type of model analyzes both converting and non-
converting user paths, and adapts the amount of
credit assigned to events preceding a conversion
based on the conversion rates observed across
these two groups of users. Both “matched-pairs”
and “discrete choice” models are types of DDA
algorithms.

Matched-pairs DDA algorithms are based on the
Shapley value [3], a method from game theory
to divide credit among n players in a cooper-
ative game setting [4]. These algorithms as-
sign credit to a specific marketing event within
a converting user path by comparing the con-
version rate of users with the same observed
path, to users whose paths do not contain the
specific marketing event but are otherwise the
same. More specifically, these models compare
groups of users with the same observed events
before and after the index of exposure or non-
exposure. Figure 2 provides an illustration. The
difference between the average conversion rates
of these two groups determines the preliminary
credit that the marketing event receives. The
final assignment of credit for converting paths
is determined by repeating the same process de-
scribed above for each event.

Attribution models typically require the sum of
credits within a user path to equal the total
number of conversions within that path. There-
fore, the event-level credits are normalized to
sum to the total number of conversions within
each path. By attributing to both paid and un-
paid event types, the hope is that credits to un-
paid events provide a reasonable estimate for the
number of conversions that would have occurred
in the absence of advertising.

DDA algorithms based on discrete choice use
covariates to estimate consumer choices among
a set of discrete alternatives [5], and are typ-
ically fitted using logistic or probit regression
[6]. Since DDA providers consider their algo-
rithms to be proprietary, detailed descriptions
about how these models are applied to attri-
bution are not readily available. Without this
transparency, it is impossible to evaluate their ef-
ficacy. However, based on typical discrete choice
model usage in other domains described in the
literature ([7], [8]), it is likely that the discrete
user choice of whether (or how often) to convert
is modeled as a function of the number of occur-
rences of each observable marketing event type
within a user path, and the impact of each mar-
keting event on conversion is then estimated as
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Figure 2: Illustration of typical matched-pairs DDA algorithm. Users with the same observed
sequence of events both prior to and after the index of ad exposure are aggregated. A similar
unexposed set of users is also aggregated. Credit assigned to the ad exposure using the difference
in conversion rates between the exposed and unexposed user sets. These credits are aggregated
across all unique exposed user paths.

a function of the coefficients from the regression
model.

Additional features are frequently added to the
basic DDA models described above. Typical fea-
tures described in marketing materials of attri-
bution model providers ([9], [10]) include those
designed to handle the effects of advertising re-
cency and frequency, ad serving bias, data spar-
sity, demographics, psychographics, offline fac-
tors, and baseline conversion rate impact. While
these added features are beyond the scope of this
paper, none of them address the key shortcoming
of DDA models described here.

In the following sections, we use display ad im-
pressions to illustrate attribution model perfor-
mance. Note, however, that all descriptions and
explanations that use display ads as an example
apply to any marketing event type.

2 DDA Shortcoming

2.1 Description

Common DDA models currently offered by attri-
bution providers make the same underlying as-
sumption that the only effect of ads is to directly
modify a user’s probability of conversion. More
specifically, these models assume that ads do not
change a user’s downstream browsing behavior.
For example, the models assume that ads do not
increase a user’s likelihood of visiting the adver-
tiser’s website, or performing a related branded
or generic search. Instead, if the user happens to
navigate to the advertiser’s website, their prob-
ability of conversion may be higher or lower as a
result of ad exposure.

For matched-pairs DDA models, this underly-
ing assumption is a result of matching on events
both upstream and downstream of ad exposure
(a display impression, for example) in user paths.
This matching implicitly assumes that ad expo-
sure does not affect the exposed user’s down-
stream events. Specifically, matching on down-

Google Inc. Confidential and Proprietary 3



2.2 Simulations with DDA 2 DDA SHORTCOMING

stream events assumes that all users exposed to
the ad would have had the same sequence of
downstream events if they had not been exposed.
Otherwise, the exposed and unexposed users do
not form a valid comparison group.

With discrete choice DDA models, this assump-
tion is a consequence of ad effects estimated from
(functions of) regression coefficients. Effect es-
timates from regression coefficients are condi-
tional on the remaining covariates in the model
being held fixed. Including post-exposure vari-
ables in the model (downstream events) invali-
dates the interpretation of the regression coeffi-
cient as causal, since intervention on the expo-
sure variable can also cause changes in the post-
exposure variables [11].

2.2 Simulations with DDA

We demonstrate how DDA models fail to cap-
ture the value of ads if they change user behav-
ior by evaluating the performance of an exam-
ple matched-pairs DDA algorithm with a set of
simulations generated using the Digital Advertis-
ing System Simulation (DASS) [1]. DASS simu-
lates online user browsing behavior, ad serving,
and the impact of ad exposure on user behavior.
DASS simulates user browsing behavior through
an extended, non-stationary Markov model con-
sisting of three components. First, a user activ-
ity path model characterizes user browsing be-
havior in the absence of advertising. Second, an
ad serving model describes the process by which
users are exposed to advertising events. Third,
an ad impact model specifies how exposure to
ads impacts downstream user behavior.

DASS has a wide range of capabilities; the most
relevant to this paper is its ability to vary the
behavioral impact of advertising on users. For
example, ads may be configured in the simulator
to impact the downstream browsing behavior of
exposed users (e.g., ad exposure can increase the
likelihood that a user will do a branded search),
or may alternatively be configured to only im-

pact the user’s likelihood of conversion condi-
tional on site visit, without changing the proba-
bility of site visit.

We provide two simulation scenarios to illustrate
DDA model performance, which highlight this
common ad impact assumption. Both scenar-
ios include a single display ad type, with a small
click-through rate. A complete description of the
simulation parameters used is provided in Ap-
pendix A.

The true number of incremental conversions gen-
erated from display ads is calculated by running
a “virtual experiment” for each simulation, in
which we generate an additional simulated data
set with display ads turned off (all other simu-
lation parameters remain the same), and count
the number of conversions lost by turning off the
display ads (see Section 3 of [1] for more de-
tails). The DDA results are generated by apply-
ing the DDA algorithm to user paths of observ-
able events types (display ad impressions, con-
versions, direct navigations, and paid and or-
ganic clicks to the advertiser’s website) from each
simulation. We then compare the conversions at-
tributed to display ads by the DDA algorithm to
the true number of incremental conversions de-
termined by running the virtual experiment.

In the first scenario, display ads impact user be-
havior by increasing the user’s likelihood of per-
forming a related branded or generic search, or
visiting the advertiser’s website. The ad impact
parameterization is provided in Appendix A.1.
Figure 3(a) shows the true number of incremen-
tal conversions from display ads, compared to
the number of conversions attributed to display
ads by a DDA algorithm, across different lev-
els of display ad effectiveness. If display ads are
completely ineffective, the DDA algorithm suc-
ceeds in assigning minimal credit to these ads.
However, when display ads change user browsing
behavior, which also leads to additional conver-
sions, DDA fails to capture that value.

In the second scenario, display ads impact user
behavior by directly increasing the user’s proba-
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(a) Simulations with varying levels of display ad effective-
ness in changing user browsing behavior, by increasing the
likelihood of performing a related search, or visiting the
advertiser’s website. DDA algorithms fail to capture the
value of ads that change user behavior in this way.
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(b) Simulations with varying level of display ad effective-
ness in directly changing user conversion rate. The num-
ber of credits attributed by DDA to display ads is close to
the true number of incremental conversions from display
ads.

Figure 3: Scenarios differentiating DDA model performance depending on how ads impact user
behavior.

bility of conversion, but only if the user happens
to visit the advertiser’s website. The ads do not
change the user’s downstream browsing behavior
in any other way. The ad impact parameteriza-
tion is provided in Appendix A.2. While this
mechanism of ad impact may be less applicable
for digital advertising, it illustrates the assump-
tion required for DDA models to perform well.
The results are shown in Figure 3(b). DDA ac-
curately captures the value of advertising if ads
only directly impact a user’s likelihood of con-
version, and do not change browsing behavior in
any other way.

3 Upstream DDA

3.1 Algorithm Description

As demonstrated in the previous section, DDA
algorithms fail to capture the full impact of ad-
vertising if it affects user behavior in ways be-
yond a direct change in conversion rate. This
deficiency is caused by matching user activi-
ties downstream from the point of ad expo-
sure, which may have been affected by the ad
exposure. To address this problem, this sec-
tion describes the Upstream DDA (UDDA) al-
gorithm, developed based on the Rubin causal
model framework [12]. UDDA estimates ad im-
pact by comparing the conversion rates of user
paths with the same sequence of events upstream
from the index of exposure to the ad, to the con-
version rate of unexposed paths that have the
same upstream sequence of events, but no ad ex-
posure at the exposure index. Note that this
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modified matching procedure is similar to the
way in which an experiment would operate, since
it is only possible and legitimate to control for
pre-exposure variables.

Figure 4 shows how UDDA compares similar user
paths in its calculations to estimate causal ad
impact. Users with an identically ordered set of
events prior to the index of ad exposure are ag-
gregated, with no matching on events that occur
after the index of ad exposure. The average con-
version rate of these paths is compared to the
average conversion rate of a second set of paths
that are unexposed to the ad, but have the same
set of upstream events prior to the index of ex-
posure. Credit is assigned to the ad exposure
using the difference in conversion rates between
the exposed and unexposed user paths. These
credits are aggregated across all unique exposed
user upstream paths.

More formally, let user i have an ordered path
of observed events denoted by the vector Xi =
(Xi

1, . . . , X
i
L(i)), with length L(i). Let A de-

note an ad impression exposure of the type cur-
rently being analyzed, and let C denote a con-
version event. For the index m, let U im =
(Xi

1, . . . , X
i
m−1) denote the upstream path that

includes the first m − 1 events in a user path,
i.e. the sequence of events that occurred prior to
index m in the path. The UDDA algorithm then
operates as follows:

1. Classify all user paths as either containing
or not containing an ad impression exposure
A:

(a) For all exposed paths, i.e. ∃A ∈ Xi,
set exposure indicator Ti = 1.

(b) For all other paths, which are unex-
posed, set Ti = 0.

2. For each user path i with Ti = 1:

(a) Let mi denote the index of the first oc-
currence of A in the path. That is,
Xmi = A, and no previous event in the
path equals A.

(b) Record the upstream path of user i as
the sequence of events prior to this ex-
posure index: U imi

.

(c) Calculate the number of downstream
conversions that occur after index mi

as: Ci =

L(i)∑
j=mi+1

I(Xi
j = C).

3. For each unique upstream path uj from
Step 2b:

(a) Let nj(T = 1) denote the number of
users in the exposed group with up-
stream path uj . Calculate the average
conversion rate among these users as:

c̄j(T = 1) =
1

nj(T = 1)

nj(T=1)∑
i=1

Ci.

(b) Find all unexposed users i with up-
stream path uj from index mj , i.e.
U imj

= uj . Calculate the number of
downstream conversions Ci after index
mj for each of these users analogous to
Step 2c. Calculate the average conver-
sion rate c̄j(T = 0) among these users
analogous to Step 3a.

(c) Estimate the incremental conversion
rate among these users as the differ-
ence in conversion rate among exposed
versus unexposed users: r̂j = c̄j(T =
1)− c̄j(T = 0).

(d) Estimate the number of incremental
conversions among these users as: r̂j ·
nj(T = 1).

4. Aggregate the estimated incremental num-
ber of conversions among all exposed user
paths by aggregating over all unique up-

stream paths: θ̂ =
∑
uj

r̂j · nj(T = 1).

3.2 Simulations with UDDA

We now show results applying the UDDA algo-
rithm to the same sets of simulation scenarios
from Section 2. The scenario, in which display
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Figure 4: Illustration of UDDA algorithm. Users with the same observed sequence of events prior
to the index of ad exposure are aggregated. A similar unexposed set of users is also aggregated.
Credit is assigned to the ad exposure using the difference in conversion rates between the exposed
and unexposed user sets. These credits are aggregated across all unique exposed user paths. We
emphasize that the UDDA algorithm does not perform any matching on events that occur after
the index of ad exposure.

ads impact user behavior by increasing the user’s
likelihood of performing a related branded or
generic search, or directly navigating to the ad-
vertisers website, is shown in Figure 5(a). The
UDDA algorithm better captures the shape of
the impact of ads that modify user behavior in
this way, and is able to detect an increasing de-
gree of impact from more effective ads. How-
ever, note that UDDA misestimates the true in-
cremental conversions by a fixed amount across
all levels of effectiveness.

The second scenario, in which display ads impact
user behavior by directly increasing the user’s
probability of conversion if the user happens to
visit the advertiser’s website, are shown in Fig-
ure 5(b). In this case, the UDDA algorithm also
follows the shape of the true incremental impact
from these ads. As in the previous scenario,
UDDA misestimates the true incremental con-
versions by a fixed amount across all levels of
effectiveness. Further, the amount of misestima-
tion is the same as in the first scenario. This
fixed amount of misestimation is caused by the
systematic censoring of users who have no ob-

served interactions with the advertiser. We dis-
cuss this issue further in Section 4.1.

4 Ongoing Challenges

This section identifies three remaining challenges
for attribution algorithms: systematically cen-
sored users, user browsing dissimilarity, and ad
targeting. We illustrate how these issues cause
problems for the UDDA algorithm, but note that
these problems apply to common DDA models,
as well.

4.1 Systematically Censored Users

In Section 3.2, we highlighted the observation
that the UDDA algorithm misestimates true in-
cremental conversions by a fixed amount for both
simulation scenarios and across all levels of ad
effectiveness. This misestimation is caused by
the systematic censoring of users who have no
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(a) Simulations that vary the level of display ad effec-
tiveness in changing user browsing behavior. UDDA bet-
ter captures the impact of advertising that changes user
downstream browsing behavior, but misestimates by the
same fixed amount across all effectiveness levels.
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(b) Simulations that vary the level of display ad effec-
tiveness in directly changing user conversion rate. UDDA
follows the same shape as the ground truth, but misesti-
mates by the same fixed amount across all effectiveness
levels.

Figure 5: Comparison of UDDA and DDA performance with the same scenarios shown in Figure 3.

observed interactions with the advertiser. Since
conversion events are always preceded by an ob-
served website visit event, the censoring is not
at random, but is instead systematically related
to the conversion outcome. This type of missing-
ness is referred to in the literature as missing not
at random (MNAR) or nonignorable missingness
[13], and introduces estimation bias [14].

Without accounting for these censored users, the
UDDA algorithm is unable to accurately esti-
mate the mean conversion rate of all unexposed
users. Specifically, recall that the UDDA algo-
rithm estimates ad impact by comparing the con-
version rates among all user paths with the same
sequence of events upstream from the index of
ad exposure, versus paths that have the same
upstream sequence of events, but no exposure at
the exposure index. When the index of expo-
sure is one (that is, ad exposure is the first ob-
served event in the path), there is no upstream
sequence of events on which to match, so the cor-
responding unexposed user set should consist of

all unexposed users. However, we do not have
visibility to the users who have no observed in-
teraction with the advertiser, so we are missing
the information needed to estimate the conver-
sion rate of all unexposed users (also called the
“baseline conversion rate”)1. Note that this is-
sue only impacts our ability to estimate our ad
impact estimates for exposed paths with an ex-
posure index of one. That is, when the exposure
index is two or higher, there is necessarily one or
more upstream events on which to match, and so
we always observe the required set of unexposed
users.

To illustrate how lack of visibility to these unob-
served users impacts the performance of UDDA,
we apply UDDA to the same sets of simulation
scenarios presented previously in Section 2 and

1In Figure 5(a) and Figure 5(b), we handled this miss-
ingness by assigning all credit for conversions in paths
beginning with a display ad to the display ads, which
is why UDDA overestimates the number of incremental
conversions.
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(a) Simulations that vary the level of display ad effec-
tiveness in changing user browsing behavior. UDDA with
visibility to censored users recovers true incremental con-
versions.
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(b) Simulations that vary the level of display ad effec-
tiveness in directly changing user conversion rate. UDDA
with visibility to censored users recovers true incremental
conversions.

Figure 6: Comparison of UDDA with and without visibility to censored users on the same scenarios
shown in Figure 5.

Section 3, except now with visibility to censored
users2. The first simulation scenario, in which
display ads impact user browsing behavior, are
shown in Figure 6(a), and the second simulation
scenario, in which display ads directly impact
user conversion probability, are shown in Fig-
ure 6(b). In both sets of scenarios, UDDA with
visibility to censored users does well in estimat-
ing the true number of incremental conversions.

Note that visibility to censored users is not pos-
sible in practice. However, these results demon-
strate the need to account for these users in some
way in order to accurately estimate the baseline
conversion rate among all users unexposed to the
ad type of interest.

2DASS simulates activity streams for all users. These
streams are then filtered into paths of observable events
within the example data scope (Table 3). Visibility to
users who are censored due to the data scope is possible
in the simulation, since we know the number of users lost
during the filtering step.

4.2 User Browsing Dissimilarity

Even in the idealized situation in which we have
visibility to censored users, two additional chal-
lenges remain which limit our ability to accu-
rately estimate the true incremental conversions
generated from advertising. The first challenge is
caused by the dissimilarity between the browsing
behavior of exposed versus unexposed users. In
particular, all users exposed to advertising vis-
ited at least one website on which that ad type
is eligible to be served. For example, users ex-
posed to a search ad are known to have visited a
search engine website. We have no similar knowl-
edge among the unexposed user set. Specifically,
among the unexposed users, we cannot identify
which ones visited a website on which the ad
type was eligible to be served. In general, not
all unexposed users will have had the opportu-
nity to be served the ad type because they never
engaged in the relevant activity (performing a
search, in the case of search ads).
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We illustrate how user browsing dissimilarity cre-
ates estimation problems by modifying the first
simulation scenario. The original version of this
simulation specified the initial activity state of
all users to be a third-party site visit. Since dis-
play ads are also served on this activity state, we
ensured that all users had the opportunity to be
served this ad type. In the modified version of
this simulation, we split the initial activity state
among users between search and third-party site
visits, with equal probability of starting on either
state. Note that search is a more engaged activ-
ity than third-party site visit, so the probability
of visiting the advertiser’s website is higher when
starting with a search activity. The parameter
modification is provided in Appendix A.3.

Since users who start out with a search activity
may never visit a third-party site, the modified
simulation includes users who never had the op-
portunity to be served a display ad. Figure 7
shows the results of this browsing dissimilarity
simulation scenario. Even with visibility to cen-
sored users, UDDA is unable to accurately es-
timate the true number of incremental conver-
sions. In this scenario, UDDA underestimates
the impact of display ads, since the unexposed
user set includes users who were more engaged,
and hence more likely to convert, but never had
the opportunity to be served a display ad. The
conclusion is that even idealistic matching on up-
stream paths is not enough to ensure that two
groups of users are comparable to one another.

4.3 Ad Targeting

The second additional estimation issue is caused
by targeted advertising. Specifically, ads tar-
geted towards users who behave differently than
untargeted users. This type of targeting intro-
duces challenges because attribution models es-
timate ad impact by comparing conversion rates
between exposed versus unexposed users. The
rationale is similar to the browsing dissimilar-
ity issue described in Section 4.2. All users ex-
posed to advertising met the ad’s targeting cri-
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Figure 7: Simulations that vary the level of dis-
play ad effectiveness in changing user browsing
behavior, modified to include user browsing dis-
similarity. Some unexposed users never had op-
portunity to be served a display ad. UDDA with
visibility to censored users is unable to recover
true incremental conversions.

teria. However, we have no similar knowledge
among the unexposed user set. That is, we can-
not identify which unexposed users met the ad’s
targeting criteria. In general, not all unexposed
users meet the ad’s targeting criteria.

Another modification to the first simulation sce-
nario illustrates the problem caused by ad target-
ing. Note that we resume use of the original ini-
tial activity state of all users. That is, we remove
browsing dissimilarity by having all users begin
their browsing with a third-party site visit, which
ensures that all users have the opportunity to
be served a display ad. The modification intro-
duced here is the specification of a heterogenous
set of users. Specifically, we specify two types of
users. The first user type has a higher conver-
sion rate than the second user type, and ads are
targeted primarily to the first user type. A full
specification of this modification is described in
Appendix A.4. Figure 8 shows the results of this

10 Google Inc. Confidential and Proprietary
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Figure 8: Simulations that vary the level of dis-
play ad effectiveness in changing user browsing
behavior, modified to include ad targeting. Some
unexposed users do not meet the ad’s targeting
criteria. UDDA with visibility to censored users
is unable to recover true incremental conversions.

simulation scenario with ad targeting. As in the
browsing dissimilarity case, even with visibility
to censored users, UDDA is unable to accurately
estimate the true number of incremental conver-
sions. In this scenario, UDDA overestimates the
impact of display ads, since the unexposed user
set includes users who were less likely to convert,
but were not targeted by the ad.

5 Concluding Remarks

In this paper, we use simulation to demonstrate
that DDA models rely on an implicit assumption
that ads do not change the browsing behavior
of exposed users, and instead only directly af-
fect users’ conversion probability. We introduce
the UDDA algorithm, which does not control for
post-exposure user activities, and showed it is
better able to capture the impact of advertising.
Finally, we identified three additional issues: sys-

tematic user censoring, user activity dissimilar-
ity, and ad targeting; that limit the performance
of attribution models, including UDDA.

We are actively researching ways to address these
issues. One approach is the use of additional
modeling. For example, modeling the conversion
rate among exposed users, and using this model
to predict the conversion rate among unexposed
users.

Another strategy is to incorporate new data
sources. Some ad systems record data which
allow us to identify instances in which a user
was both active and targeted by an ad, but un-
exposed. For example, certain auctions log bid
results, consisting of the losing participants of
each cookie auction. By making this type of data
available to an attribution model, a more com-
parable set of unexposed users can be identified.

In forthcoming papers, we will describe how
both additional modeling and the incorporation
of new data sources improves attribution model
performance.
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Appendix A Simulator Param-
eterization

The simulations in this paper used a simplified
version of the parameters as those described in
[1]. In particular, we used a simplified set of ac-
tivity states and only one ad type. For complete-
ness, this appendix fully specifies all simulation
parameters used to generate the results in this
paper.

Google Inc. Confidential and Proprietary 11
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Activity
State

Description

s search

vp visit to a website that the advertiser
owns via a click on a paid ad

vup visit to a website that the advertiser
owns via any non-paid click activity

tpw third party website visit (website
not belonging to the advertiser)

c conversion

eos end of session

Table 1: Description of activity states used in
simulations.

The total number of users is set to K =
10, 000, 000. The set of activity states is

a1, . . . , an = {s, vp, vup, tpw, c, eos}

where the definition of each state is provided in
Table 1.

We set the initial activity state distribution so
that all users begin with a third party website
visit, the activity tpw. That is, we set πai = 1
for ai = twp, and πai = 0 for ai 6= tpw.

The transition matrix M , consisting of probabil-
ities pai,aj is specified as:

M =



s vp vup tpw c eos
s .08 0 .03 .33 0 .56
vp .08 0 .03 .33 .03 .53
vup .08 0 .03 .33 .03 .53
tpw .08 0 .01 .33 0 .58
c .08 0 .03 .33 0 .56
eos 0 0 0 0 0 1


We use one display ad type in the simulations:

b1, . . . , bm = {b1} = {dsp} = display ads

The associated ad serving parameters for the dis-
play ad type b1 is shown in Table 2.

Each user’s impressibility to the display ads is
determined by random draw from the following

Ad
Type

Serving
States

Impress
Thresh

Share
of Voice

Freq
Cap

bj sbj dbj vbj fbj
dsp tpw 0.8 0.4 100

Table 2: Ad serving parameters used in simula-
tions.

truncated normal distribution:

qkb1 ∼ Tr[0, 1]N(µ = 0.8, σ = 0.1)

The example data scope of observable event
types is shown in Table 3.

Observable Event Description

organic search click unpaid visit to the ad-
vertiser’s website is im-
mediately preceded by a
search activity state

display ad impres-
sion

display ad impression is
served

other non-ad visit unpaid visit to the ad-
vertiser’s website is im-
mediately preceded by a
non-search activity

conversion conversion activity state
is reached

Table 3: Summary of observable events within
our example data scope.

To parameterize display ad response, we use two
functions which apply different time horizon ef-
fects. The two timeframe effect functions are:
temporary impression rdspti and persistent im-

pression rdsppi . Specification of these functions
differs depending on how the ads impact user
behavior. Appendix A.1 describes the function
specification when the ads change user down-
stream browsing behavior. Appendix A.2 de-
scribes the function specification when the ads
directly impact user conversion probability.

The function f̂(nb1k ) appears as part of the tem-
porary and persistent impression effect func-
tions. This function serves to modify the impact

12 Google Inc. Confidential and Proprietary
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of an ad based on the number of times nb1k a user
was exposed to the ad. Specifically, columns that
are scaled up increase in effect over the first sev-
eral impressions (burn-in), and then decline in ef-
fect after additional impressions (fatigue). The
following ad burn-in / fatigue correction func-
tion is used to modify the magnitude of changes
to the user’s transition matrix due to the nb1k -th
display ad exposure:

f̂(nb1k ) =


n
b1
k
n0

nb1k ≤ n0
2− n

b1
k
n0

n0 < nb1k < 2n0

0 nb1k ≥ 2n0

In this hat function, n0 specifies the ad exposure
that results in the maximum ad impact. For the
example simulations presented in this paper, we
set n0 = 2.

A.1 Display Ads Impact Browsing

When display ads impact the downstream brows-
ing behavior of users, the temporary impression
effect function is given by:

rti(δb) = hnrm ◦ hs,vup,1.2δbf̂(nk)
sc ◦ hvp,0.001spk (M)

The function sets transition probabilities of the
vp column to 0.001 (to model the possibility of
a paid ad click), scales the transition probabil-
ities in the columns s and vup by a factor of
1.2δbf̂(nb1k ) (increasing the likelihood of a visit
to the advertiser’s website, or performing a re-
lated search), and then re-normalizes the transi-
tion matrix.

The persistent impression effect function for dis-
play ads is given by:

rpi(δb) = hcnrm ◦ hs,vup,1.2δbf̂(nk)
sc (M)

This function scales the transition probabili-
ties in the columns s and vup by a factor
of 1.2δbf̂(nb1k ), and then re-normalizes the ma-
trix. The re-normalization is performed using
all columns except the conversion column c, in
order to keep the conversion rate given site visit
constant.

A.2 Display Ads Impact Conversion

When display ads directly impact user conver-
sion probability, the temporary impression effect
function is given by:

rti(δc) = hnrm ◦ hvp,0.001spk (M)

The function sets transition probabilities of the
vp column to 0.001, and then re-normalizes the
transition matrix.

The persistent impression effect function for dis-
play ads is given by:

rpi(δc) = hc,1.2δcf̂(nk)
sc (M)

This function scales the transition probabilities
in the columns c by a factor of 1.2δcf̂(nb1k ) (di-
rectly increasing the likelihood of conversion).

A.3 Browsing Dissimilarity Modifica-
tion

User browsing dissimilarity is added by a mod-
ification of the initial activity state distribution
so that users have an equal probability of be-
ginning with either a third party website visit
(tpw) or a search (s). That is, we set πai = 0.5
for ai ∈ {twp, s}, and πai = 0 for ai 6∈ {tpw, s}.

A.4 Ad Targeting Modification

We introduce ad targeting through specification
of a heterogenous set of users. Specifically, we
model two different types of users, with an equal
number of users of each type. The first user type
is specified with the same transition matrix and
impressibility to display ads as described previ-
ously in Appendix A, and repeated here for con-
venience:
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MA =



s vp vup tpw c eos
s .08 0 .03 .33 0 .56
vp .08 0 .03 .33 .03 .53
vup .08 0 .03 .33 .03 .53
tpw .08 0 .01 .33 0 .58
c .08 0 .03 .33 0 .56
eos 0 0 0 0 0 1



qkAb1 ∼ Tr[0, 1]N(µ = 0.8, σ = 0.1)

The second user type has a lower inherent con-
version rate, and impressibility drawn from a dis-
tribution with a lower mean:

MB =



s vp vup tpw c eos
s .08 0 .03 .33 0 .56
vp .08 0 .03 .33 .01 .55
vup .08 0 .03 .33 .01 .55
tpw .08 0 .01 .33 0 .58
c .08 0 .03 .33 0 .56
eos 0 0 0 0 0 1



qkBb1 ∼ Tr[0, 1]N(µ = 0.6, σ = 0.1)

Ad serving parameters remain the same. Specifi-
cally, the impressibility threshold for display ads
remains 0.8. As a result, ads are targeted pri-
marily towards the first user type.
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