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Abstract—Quickly identifying and fixing code changes that
introduce regressions is critical to keep the momentum on
software development, especially in very large scale software
repositories with rapid development cycles, such as at Google.
Identifying and fixing such regressions is one of the most
expensive, tedious, and time consuming tasks in the software
development life-cycle. Therefore, there is a high demand
for automated techniques that can help developers identify
such changes while minimizing manual human intervention.
Various techniques have recently been proposed to identify such
code changes. However, these techniques have shortcomings
that make them unsuitable for rapid development cycles as
at Google. In this paper, we propose a novel algorithm to
identify code changes that introduce regressions, and discuss
case studies performed at Google on 140 projects. Based on our
case studies, our algorithm automatically identifies the change
that introduced the regression in the top-5 among thousands of
candidates 82% of the time, and provides considerable savings
on manual work developers need to perform.

Keywords-Software debugging, Software fault diagnosis,
Software testing, Software tools, Software changes, Ranking

I. INTRODUCTION

Google’s source code is big, on the order of 2 billion
lines of code (LOC) and it evolves rapidly [1], [2]. On
average, 40000 code changes are submitted to the Google
code repository every day, and 15 million lines of code in
250000 files are modified every week [2].

To make such rapid development and evolution more
reliable, Google has adopted Continuous Integration (CI) [3],
where each code change triggers code to be compiled and
tests to be executed so that regressions can be caught earlier
in the development lifecycle [4].

Regressions have many causes, e.g. code does not com-
pile, tests fail, performance of the system drops. This paper
specifically addresses regressions where code compiles, but
there are test failures.

Figure 1 shows the code repository and development
workflow at Google. The Google code repository does not
use multiple branches, i.e. there is a single branch for the
entire codebase, called HEAD, where all developers submit
their changes in total order [2]. Developers change the
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Figure 1: Code repository and development workflow at
Google. Changes are submitted to the code repository in
atomic units called changelists (CLs). Each CL is submitted
to the same code repository branch called HEAD.

code in the repository by submitting atomic changes to the
codebase, called a changelist (CL). System version refers to
the version of HEAD as it is after a CL is submitted. So
every CL submission results in a new system version.
Each CL is validated by executing tests. Some tests
are run before the CL is submitted, while some tests are
run after the submission. When a test executed after CL
submission fails, the CL is said to have induced a regression.
When a CL introduces such a regression into HEAD that
results in test failures, it is important to identify it quickly,
so that the development velocity is not disrupted. As an
example, assume a regression is introduced to the codebase
by changelist C'L; in Figure 1, and some tests fail at all
system versions after that CL. If a developer decides to
debug the failing tests to locate their root cause, she can
use existing debugging techniques in the literature on any
failing version of the system (any version including and after
CL;). However, it is critical to identify that C'L; was the
changelist that introduced the regression, because:

o The source code modifications in C'L; might provide
clues about the root cause of the regression, as it
introduced the regression in the first place.

« Debugging the failing tests at version C'L; is more
beneficial than debugging at some later version, say
CL;k, since changes after C'L; increase/change the
code to be analyzed and the developer can be misled.

o More faults might have been introduced at later ver-
sions of the system, which makes it harder to debug
and identify root causes of a regression.

« Evidence suggests that the author of C'L; might locate
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Table I: Classification of tests at Google according to their
size

Runtime Limit Example Tests
Small 1 min Unit
Medium 5 mins Unit / Integration
Large 15 mins System / Integration / End-to-end
Enormous No limit System / Integration / End-to-end

and fix the fault easier than any other developer [5].

o Reverting the change that introduces the regression,
such as CL;, is a common practice to resolve the
regression quickly [6].

In summary, for code repositories where there is rapid
evolution as at Google, finding the system version where
a regression was first introduced is the crucial first step in
debugging failing tests. In this paper:

o We propose a novel algorithm that can automatically
identify changes that introduce regressions into the
codebase,

o We evaluate our algorithm on a case study we ran on
140 projects in Google and discuss the results.

II. CONTINUOUS INTEGRATION AT GOOGLE

As summarized in Table I, tests are classified into four
categories at Google according to their size: small, medium,
large, enormous [7]. Size refers to the execution time of
the test, excluding any overhead of setting up the test, e.g.
compilation.

At Google, given the size of each test in Table I, there
are two typical development workflows regarding CLs where
tests are executed:

1) Presubmit tests: Tests are run before a CL is submit-
ted. Unless all tests pass, the CL is not allowed to be
submitted. Typical presubmit tests are small/medium
tests (although large tests are also allowed), so that
developers are not blocked for a long time to get the
results of test execution before submitting a CL [2].

2) Postsubmit tests: A CL is submitted to the repository
without waiting on the results of test execution. Tests
are executed periodically to check if any of the submit-
ted CLs caused a regression, and if so, developers are
notified of the regression after the submission. Typical
postsubmit tests are large/enormous tests, because
such tests would take too long to execute and hinder
development velocity if they were to be executed
before CL submission.

When a presubmit test fails, the CL is not allowed to be
submitted. Therefore, there is no possibility of introducing
a regression due to test failures. However, this does not hold
for postsubmit tests. Such tests do not block CL submission,
and regressions can surface after a certain time period.

Figure 2 shows an overview of how such tests can fail
after some CLs are submitted. The CI system executes tests

Figure 2: C' L denotes the version of HEAD when tests
were passing. C'Lr denotes the version of HEAD when
tests are failing. Tests have only been executed at versions
CLg and CLp, but not in between. Any CL submitted
within (CLg,CLR] can be the CL that caused the tests
to fail, called the culprit CL.

periodically (e.g. every 10 minutes or every /N CLs). In
this case, it has executed the tests at versions C'Lg (green
CL) with all tests passing and C'Lr (red CL) with some
tests failing. Given this, some culprit CL in the range
(CL¢g,CLg] must have caused a regression.

A well-known solution to finding the culprit CL for
postsubmit tests in literature is performing a search over
the CL range (C'Lg,CLR]. An example is binary search
as done in git bisect” [8], where the tests are executed at
the CL % If tests are failing at that version of the
system, the search is carried out between (C L¢, $LetCln],
Otherwise, it is carried out between (%,CLR].
This procedure continues recursively, until the culprit CL
is identified. To obtain the result faster, an n-ary search,
instead of binary, can also be used, but the idea still holds.

Searching as discussed above is a possible solution for
small/medium sized tests, as they don’t take too long to
execute (5 minutes is the upper limit). For instance, if there
are 1000 CLs in the search window, the culprit CL can
possibly be identified within 10 iterations, hence 50 minutes.

However, for large and enormous tests, this approach
quickly becomes undesirable:

o If a test takes 45 minutes to run, it would potentially
take 7.5 hours to find the culprit CL in a 1000 CL
search window,

o If code development continues in the presence of fail-
ing tests (such as at Google), other developers might
introduce more regressions along the way before the
current regression is resolved,

o Re-running tests will use a large amount of resources
that can be used for other purposes.

Therefore, identifying the culprit CL quickly, resolving
the regression, and getting back to green is important to keep
development momentum. This paper focuses on solving the
problem of finding such culprit CLs that cause regressions
for large and enormous postsubmit tests. The technique in
this paper focuses on solving this problem such that:

« Regressions are automatically detected without any
human intervention or input (e.g. creation of a bug
report),

o A list of likely culprit CLs is provided to developers
rapidly,
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Figure 3: Files and file level dependencies for a simple chat
system.

o Tests are not re-executed to conserve resources.

III. BUILD SYSTEM AT GOOGLE

In this section, we discuss the build system used at
Google, called blaze [9] (partially open sourced as bazel
[10]), and define terms used to describe our algorithm in
the next section.

At the lowest level, the build system at Google is com-
posed of files £ that can have dependencies on each other.
As an example, Figure 3 depicts files and their dependencies
for a simple chat system in Java.

Files can be grouped into logical units. For the chat
system, there are three logical groups: server side code com-
posed of ChatServer. java and ServerUtils. java,
client side code composed of ChatClient.java and
ClientUtils. java, and finally network communication
related code in TcpClient. java, TcpServer. java
and TcpSocket. java. Such logical groups are called
build targets.

Definition 1. A build target T is a logical grouping of files
(e.g. test code, source code, data) in the code repository that
explicitly lists the files it encapsulates and its dependencies.

Figure 4 shows the files and the build targets that en-
capsulate them for the chat system: network, server and
client code. Targets also depend on each other based on
the required file level dependencies. As an example, the
target for ChatClient. java depends on the target for
TcpClient. java.

Build targets are defined in BUILD files. Figure 5
shows the definitions of the targets for the chat system:
network_1lib, chat_client and chat_server; and
a target that is an executable binary: chat_system. As
expected, dependencies are specified for each build target:
e.g. chat_server depends on network_1lib.

Definition 2. Build graph (or build tree) B is an acyclic
directed graph (DAG) where nodes T are build targets and
there is an edge from T; to T} if T; depends on Tj.

As shown in Figure 6, targets in the entire code repository

TcpSocket. java

TcpClient. java /

ChatClient. java

TcpServer. java

T ChatServer.java

ClientUtils.java @@ @ serverUtils. java

Figure 4: Targets and target level dependencies for the chat
system.

java library(
name = "network lib",
srcs = [
"TepClient.java”,
"TcpServer.java",

java library(
name = "chat client"
srcs = [
"ChatClient.java",
"ClientUtils.java",

"TcpSocket.java", 1.
1. deps = [
) ":network 1lib",
":chat server",
java_ library( 1, -
name = "chat server", )
srcs = [

"ChatServer.java",
"ServerUtils.java",

java_binary(
name = "chat system"
1. srcs = [
deps = [
":network lib",
1 1,
) )

":chat_client”,
":chat_server",

Figure 5: BUILD file with target definitions for the chat
system.

comprise the build graph. Below are functions that denote
relationships of files and targets.

Definition 3. ST denotes the set of targets that a file
belongs to in the build tree:
SET(f;) ={T : f; is listed as a source file in T € B}

Typically, a file is part of a single target. But it is not
uncommon to have multiple targets that include the same
file, e.g. there might be a target that exposes fewer features
than another target, and both may need the same file.

In the build tree, targets have direct and transitive depen-
dencies on each other.

Definition 4. D(T;) denotes the direct and transitive de-
pendencies of a build target in the build tree:
D(T;) ={T : there is a path from T; € B to T € B}

Definition 5. d”(T;,T;) denotes the length of the shortest
path between two build targets (0 if there is no path):
dT(T;,T;) : shortest distance from T; € B to T; € B



Figure 6: A sample build graph (or build tree) with a test
target Tyes: and other non-test targets. Ty € D(Tiest), T €
D(Ttest)’ but T3 € D(Ttest)~

IV. DEVELOPER WORKFLOW AT GOOGLE

In this section, we discuss the typical development work-
flow at Google and define some functions that relate the
workflow to the build system.

Definition 6. A changelist (CL) is an atomic change to the
code repository that can add / update / delete one or more
files upon submission.

A CL can contain any number of files, and upon submis-
sion of the CL, the code repository is updated with the files
contained in the CL using transactional semantics (i.e. all or
nothing).

Definition 7. ST (CL;) denotes the set of files contained
(added / updated / deleted) in the changelist C'L;.

Definition 8. ST (CL;) denotes the set of targets touched
by the changelist C'L;:
ST(CL;) ={T: feSF(CL)ANT € SFT(f)}

CLs are submitted to a single code repository at Google,
called HEAD [2], and there is a total order between them.

V. CULPRIT FINDER

Section II discussed the problem of finding the culprit
CL, the CL that introduced a regression into the code
repository. As in Figure 2, if the CI system determines that at
system version C'L¢ all tests were passing, while at system
version C'Lr some tests are failing, the CLs in the range
(CLg,CLE)] are suspect CLs.

In this section, we discuss our algorithm which ranks these
CLs according to their suspiciousness using a combination
of several heuristics, and notifies developers with the list of
suspect CLs ordered by suspiciousness to help them identify
the culprit CL.

A. Heuristics

1) Changelog: The first heuristic eliminates CLs that
cannot possibly be the cause of a test failure. Assume that
T}est 1s a build target that contains tests.

Definition 9. S (T}.;, CLg, CLR) denotes the changelog
of Tiest between the system versions CLg and CLg, ie.
any CL that touched a target Tics: depends on:

SY(Tyest, CLg,CLR) = {CL : CLin (CLg,CLR] A
T € ST(CLYANT € D(Tiest)}

A CL CL; can only be a suspect CL if it is in the
changelog S*(T}est, CLg,CLR), i.e. if and only if it con-
tains at least one file (hence a target) that 73.s; depends on.
As an example, assume the build tree looks like the one in
Figure 6. A CL that modifies 77 would be in the changelog
of T}cs¢, while one that only modifies 735 would not be.

2) CL Size: The second heuristic uses the size of the
CL: given two CLs, the one that contains more files is more
suspicious. This heuristic is trivial, since it simply states that
a target is more likely to cause a test failure if it touches
more code that the failing test target depends on.

3) Target Distance: The final heuristic uses proximity
between targets in the build tree. In the build tree in Figure 6,
this heuristic proposes that when T}, fails, a CL modifying
T7 is more suspicious than one modifying 75. This is based
on two observations in the rapid development cycles at
Google: (i) A target closer to the root in the build tree,
such as T5, has more dependencies in the entire build tree,
hence, if broken, has higher risk of disrupting the devel-
opment for many developers compared to 77. Therefore, it
is potentially tested better and/or in more depth before the
CL is submitted. (ii) In the case that a CL submission that
changes 75 does cause a breakage, it is likely to be noticed
quicker than a target like 7. In the sample build tree, T}
has a single dependency, namely T}.s;. So it depends on
Tiest failing for regressions to be noticed due to any CLs
changing T3. T, on the other hand, has many dependencies
(direct and transitive). Therefore, if it causes a breakage, any
one of those dependencies will likely notice the breakage,
and pave the way for a quick fix by notifying the developer
that submitted any CLs modifying 7.

B. Suspiciousness

The heuristics discussed in the previous section are com-
bined into a suspiciousness score for a CL, given a test target
Tiest is failing.

Definition 10. d”" (T}, T;) denotes the weighted distance
between two targets T; and T; (0 if there is no path from
T; to Tj):

11

d"(T;, 1)) =
Y /A X T X ea?p(foﬁx(dTégi’Tj)*l)Q)

Weighted distance d”" (T}, T}) is based on the distance
between two targets d” (T;,7;). Keeping T; constant, the
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Figure 7: z-axis is distance d”’, y-axis is weighted dis-
tance d7"V. Value of weighted distance between two targets
quickly drops as their distance increases.

weighted distance between 7; and another target is shown
in Figure 7. When d” (T}, T;) = 1, the weighted distance
dT™W(T;,T;) ~ 1. As the distance between targets increases,
the weighted distance rapidly decreases. Using the example
in Figure 6:

AT (Tyest, T1) = 1 & d™W (Thest, T1) ~ 0.98
dT(nest,Tg) =2<& dTW(TtESt,Tg) ~ 0.95
dT(T;festa TS) =0« dTW(Ttesta T3) =0

Definition 11. r“%(T}.,;, CL;) denotes the suspiciousness
score of C'L; given test target Tycs; fails:
rCH (Tiest, CLi) = Yopesriory 4 (Trest, Th)

Higher suspiciousness scores imply higher likelihood for
a CL to have caused the test failure. The suspiciousness
function encapsulates the heuristics discussed in the previous
section:

« Changelog: In the build tree in Figure 6 T5 & D(Tjcst).
If a CL only modifies T3, it will not be in the changelog
for Ttest'

o CL size: A CL that modifies 77 and 7> together will
have a higher suspiciousness score than a CL that only
modifies T7.

« Distance: A CL that only modifies 7} will have a higher
suspiciousness score than a CL that only modifies T5.

C. Notification

As in Figure 2, given all tests pass at system version
CL¢g and some test target Ti.s; fails at system version
C LR, culprit finder calculates the suspiciousness score for
all CLs in the changelog S*(T}est, C L, CLR) and notifies
developers via email with a report that ranks CLs from more
suspicious to less suspicious.

A sample report is shown in Figure 8. A developer that
receives the email can look at the CLs in the suspect list
in the given order to identify the culprit CL (e.g. they
typically check if the failing target T};..; has any relation
to the description/files in the CL, or they run the tests at
that CL). Once the developer identifies the culprit CL from
the suspects list, she can then debug to find the root cause
of the regression in the codebase.

VI. CASE STUDIES

In this section, we discuss case studies conducted at
Google to answer two research questions:

Your test target T oot is failing due to a regression
introduced between CLs (1987234, 1992398].
Here are the suspects:

Rank CL Suspiciousness Feedback
1 1987236 13.456 This CL is the culprit
2 1989147 4.107 This CL is the culprit
3 1991205 0.981 This CL is the culprit

Figure 8: A notification email with suspect CLs sent to
developers. Emails contain all CLs in the changelog ST.
After identifying the culprit CL, a developer can click on the
respective 'This CL is the culprit’ link to submit feedback.

RQ1: Is CULPRIT FINDER beneficial?

RQ2: Is there any bias in the feedback developers
report?

Our case studies are based on feedback reports submitted
by Google developers using the feedback links in the noti-
fication emails shown in Figure 8. We asked developers to
investigate the suspect CLs in the list, determine the culprit
CL, and click only on the appropriate link labeled 'This CL
is the culprit’ next to the culprit CL. Once a developer clicks
the link, a feedback report is recorded with information on:

o The test target, T}.s; in Figure 8§,

¢ The CL window, i.e. start and end CLs,
(1987234, 1992398] in Figure 8,

o The total number of CLs in the suspect list, i.e.
changelog size, 3 in Figure 8,

o The rank of the culprit CL in the suspect list, e.g. 2 for
CL 1989147 in Figure 8.

Statistics on the set of feedback reports we received
are summarized in Table II. In our experiments, CULPRIT
FINDER was enabled and available for use on 297 unique
test targets. We received at least one feedback report for 140
of those targets. In total, we received 377 unique feedback
reports (if multiple reports are submitted for the same failure
by two developers, we only count the initial one submitted).
We received between 1 and 22 reports for each of the test
targets. Mean number of feedback reports for each project
was 2.69, while the median was 2.

The submission of feedback reports were completely
voluntary, and we didn’t know when developers decide
to report feedback (e.g. they may report feedback when
CULPRIT FINDER is not very successful, or they may report
when it ranks their culprit CL high, hence is helpful to a
developer).

Therefore, we did another case study by specifically ask-
ing certain developers to respond to all notification emails



Table II: Statistics on the feedback reported by developers

Total unique test targets

for which CULPRIT FINDER was available 297
Total unique test targets 140

for which any feedback was reported
Total unique developers 172

that provided feedback

Total feedback reports 377

Min # feedback reports per test target 1
Max # feedback reports per test target 22
Mean # feedback reports per test target | 2.69
Median # feedback reports per test target | 2.00

Table III: Statistics on the feedback reported by developers
separated by control and experiment groups

Control | Experiment
Total unique test targets 9 138

for which any feedback was reported
Total unique developers 9 170

that provided feedback
Total feedback reports 34 343
Min # feedback reports per test target 13 1
Max # feedback reports per test target 21 14
Mean # feedback reports per test target 17.00 2.45
Median # feedback reports per test target 17.00 2.00

for their test targets, without any selection bias. Table III
shows a separated view of the data in Table II into two
groups: Control group consists of developers that respond
to all notifications, experiment group consists of all other
developers, whose behavior we had no control over.

VII. DISCUSSION

We use several metrics to assess the quality of CULPRIT
FINDER. Table IV summarizes the mean values on several
dimensions collected in the feedback reports.

A. Benefit From Changelog: S

In this section, we discuss the benefit obtained by gener-
ating changelog S* upon a test failure.

Definition 12. ranky, denotes the mean rank of a culprit
CL in the CL window between the last green and first red
versions:

rankW(Ttest, CLg, CLR) = %

If a developer were to be given all of the CLs in the CL
window (C'Lg,CLg] with no ranking between them, she
would need to investigate, on average, half of the CLs in
the window until she finds the culprit CL. This is denoted
by ranky . For instance, in the example in Figure 8:

rankw (Tiest,1987234,1992398) = 1992398 1987234 9589

Definition 13. rankp denotes the mean rank of a culprit

CL in the changelog:

L
rankL(Ttesta CLG; CLR) = |S (T”“"’SLG’CLR”

If a developer were to be given all of the CLs in the
changelog with no ranking between them, she would need

Table IV: Statistics on CULPRIT FINDER feedback reports

Mean CL window size | 12183.94
Median CL window size 3457.00
Mean changelog size 38.81
Median changelog size 14.00
Mean ranky 6091.97

Mean ranky, 19.40

Mean rankc g 5.56

Mean bgr 0.99

Mean b.cL 0.36

to investigate, on average, half of the CLs in the changelog
until she finds the culprit CL. This is denoted by rankr.
For instance, in the example in Figure 8:

ranky (Tiest, 1987234,1992398) = 2 = 1.5

Definition 14. bgr € [0, 1) denotes the benefit provided by

the changelog heuristic S :

_ranky (T,CLg,CLR)—ranky (T,CLg,CLR)
bsr (T,CLa,CLRr)= ranky (1,CLg,CLR)

The benefit function bgr € [0,1). If it is 0, no benefit
was provided. Otherwise, some benefit was provided to the
developers. Higher bg: indicates more benefit.

In our case studies, summarized in Table IV:

¢ The mean window size is 12183.94,

o The mean changelog size ’SL| is 38.81,

e The mean ranky, is 6091.97,

e The mean rank; is 19.40.

o The mean bgr is 0.99.

Therefore, automatically eliminating CLs based on the
changelog S* dramatically narrows down the list of suspect
CLs and benefits developers.

B. Benefit From Suspiciousness: ¢

In this section, we discuss the benefit obtained by ranking
suspect CLs using the suspiciousness function r©~.

Definition 15. rankcr denotes the rank of the culprit
CL in the changelog reported by CULPRIT FINDER in the
notification email.

rankcp is reported by developers as feedback.

Definition 16. b,.c. € [—1,1) denotes the benefit provided

by the suspiciousness scoring function ¢ :

__rankp (T,CLg,CLR)—rankgp(T,CLg,CLR)
b,crL(T,CLg,CLr)= : ra’nkL(T‘CLG,CLR)' :

The benefit function b,cz € [—1,1) is the measure of the
amount of manual work a developer is saved due to 7. If
b,.cr = 0, no benefit was obtained. If b,.cz < 0, a developer
was harmed because she ended up looking through more CLs
than she would need to if 7“* was not used. If b,.cr > 0, the
developer benefited from using 7 heuristic. Higher b,.c
indicates more benefit.

In our case studies, summarized in Table IV:

e The mean rankj, is 19.40,

e The mean rankcp is 5.56,

e The mean b,cr is 0.36.
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Figure 10: Cumulative benefit values b,.c. in reported feed-
back. 21.75% of the time, suspiciousness heuristic provided
a negative benefit, while in 78.25% of the time, it provided
zero or positive benefit.

As a result, suspiciousness heuristic 7% provides non-
negligible benefit on top of changelog S* generation for
developers.

C. Detailed Analysis Of Feedback Reports

In addition to the statistics in Table IV, in this section,
we provide more detailed insight into the feedback reports.

Figure 9 shows the percentage of feedback reports with
a cumulative distribution of rankcr. The chart on the left
shows that in 51.99% of the feedback reports, culprit CL
was ranked as #1 in the suspect list, and 82.23% of the
time, it was in top 5. The chart on the right provides higher
resolution data for all rankcp values.

Figure 10 shows the cumulative distribution of benefit
brcr in the feedback reports. In 78.25% of the feedback,
rCL provided a positive benefit by decreasing the manual
work to be performed by developers.

Finally, Figure 11 displays the benefit for each individual
feedback report. In each chart:

o The x-axis is the size of changelog: S* = ranky, x 2,

o The y-axis is ranky — rankcr = b,cr X rankp, a

function positively correlated with benefit,

o The continuous line is where:

ranky = rankcp = by.cL = 0.

In these charts, if a data point is above the continuous
line, that means r“” provided a benefit to the developer.
The top-left chart shows the data points for all feedback
reports, while the subsequent charts show a zoomed in view

Table V: Statistics on CULPRIT FINDER feedback reports
separated by control and experiment groups

Control | Experiment

Mean CL window size | 3267.59 13067.78
Median CL window size | 1789.00 3960.00
Mean changelog size 26.97 39.97
Median changelog size 18.50 13.00
Mean ranky, | 1633.79 6533.89

Mean ranky, 13.49 19.99

Mean rankcp 3.74 5.74

Mean bgr ~ 1.00 0.99

Mean b,.cL 0.44 0.35

of the same data cut at certain thresholds to remove outliers.
Overall, in 78.25% of the reports, r“* provides a positive
benefit to developers.

D. Comparing Control vs Experiment

In this section, we discuss the results obtained from the
two sets of feedback reported: control and experiment. As
discussed in the previous section: control group consists
of developers that respond to all notifications, experiment
group consists of all other developers, whose behavior we
had no control over.

Table V lists the statistics in each set of feedback reports.
Based on the numbers:

o Control group had smaller CL window sizes,

o Control group had a smaller mean changelog size,
o Control group had a larger median changelog size,
o Control group had lower ranks,

« Both groups had similar bgz benefit,

« Control group had higher b,.c. benefit.

Since the number of total feedback reports is quite limited
in both control and experiment groups, we don’t strongly
conclude any bias. However, in the experiment group, we
observed higher mean rankcr along with lower median
changelog size, and lower benefit b,.cz, which suggests some
developer bias where developers tend to report feedback
when CULPRIT FINDER is not as successful as they expect
and ranks the culprit CL low.

E. CULPRIT FINDER Runtime

In general, there are several factors that affect the runtime
of CULPRIT FINDER. CULPRIT FINDER will take longer
when: (i) the CL window is large, since it calculates the
changelog from the CL window, (ii) the test target is lower
in the build tree, since it will potentially have more depen-
dencies, hence more targets to analyze, (iii) the changelog is
large, since it calculates the weighted distance for each CL
in the changelog, (iv) the CLs in the changelog are large,
since it calculates weighted distance for each CL and this
includes finding the targets for each file in a CL.

Therefore, it is possible to get different CULPRIT FINDER
runtimes for different test targets. Table VI lists several
sample runtimes of CULPRIT FINDER for different test
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Figure 11: Charts that show rank; — rankcp against |SL| = ranky x 2. In each chart, the continuous line is 0, i.e.
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to developers. Anything below the line was harmful. Top left chart displays the results for all feedback, while other charts
show zoomed in portions of the data for better viewability.



Table VI: Sample runtimes for CULPRIT FINDER

Target | CL Window Size | Changelog Size |  Runtime
Tx 839571 2498 17 hours
Ty 182445 857 | 24 minutes
T, 13675 60 | 30 minutes
Ty 4154 26 | 13 minutes
Ty 651 5 | 14 minutes

targets and CL window sizes we have collected manually
looking at CULPRIT FINDER execution logs. These times are
the elapsed time from the moment a test target is identified
to be broken to the time the CULPRIT FINDER notification
is received by developers, which includes setup costs of
CULPRIT FINDER (downloading the binary, extracting it and
starting the process on the Google cloud).

The largest test target failure for which CULPRIT FINDER
ran had a CL window size of 839571 and it took 17 hours
to run. However, such large CL windows are not typical
at Google. The median CL window size in our case study
was 3457. Table VI lists a runtime of 13 minutes for a
CL window size of 4154, and similar runtimes for sample
smaller and larger CL windows.

Based on interviews with developers, these runtimes are
within reasonable bounds as they can get a notification
email and start investigating the test failure within the same
day. Unfortunately, in our case studies, we did not record
the runtime information for each CULPRIT FINDER run.
Therefore, we don’t have any aggregate metrics, and only
provide the sample runtimes in Table VI.

FE. Threats To Validity

There are several threats to the validity of our results.
Number of feedback reports: Over the span of the study,
we received 377 feedback reports. This is a small fraction
of the notification emails sent to developers. Additionally,
we received more feedback for some test targets than others.
Therefore, we don’t claim that received feedback are a good
representation of all results.

Number of test targets: Over the span of the study, we
received feedback for 140 different test targets, although
there were 297 of them for which CULPRIT FINDER was
available. So we don’t claim that the results generalize to
the remaining test targets or any targets for which CULPRIT
FINDER was not available for.

Confirmation of feedback reports: The feedback reports
were manually reported by developers and are not confirmed,
i.e. we didn’t do any validation on the culprit CLs and
assumed they are correctly reported.

Control vs experiment groups: We used only 2 test targets
and 2 developers in our control group. So we don’t claim
that the results of control vs experiment groups generalize
to all test targets or all feedback received from developers.
Potential multiple culprits in changelog: In our case
studies, we assumed there is a single culprit CL for a test

failure and used the first feedback report if more than one
are submitted for the same failure. However, this may not be
true, i.e. there can be multiple culprit CLs in the changelog.
CULPRIT FINDER runtime: In our feedback reports, we did
not automatically record the total time it takes for CULPRIT
FINDER to run. Therefore we did not make a systematic
study on runtimes. The runtime data provided in Table VI
are obtained manually after the fact. As a result, we don’t
claim any guarantees or generalizations on the runtime.
Flaky Tests: Flaky tests are tests that exhibit both a passing
and a failing result with no code or environment changes
[11]. In Google, there are tools to prevent CULPRIT FINDER
from running for flaky tests. However, in our case studies,
we do not know if/which developers used this tool and/or if
any of the reported feedback is for flaky test failures.

VIII. RELATED WORK

There are several research areas that are relevant, but not
directly comparable, to the work in this paper.

Change impact analysis aims to identify program edits on
the codebase and which of those edits might have induced
test failures, to help developers during debugging [12], [13].
These techniques focus on finer-grained edits than what is
described as a changelist in this paper.

Fault localization aids developers to find the root cause
of a failing test in the source/test code [14]. Existing
techniques, such as Tarantula [15], focus on locating the
faults in the code at a specific version of the system, whereas
the work in this paper focuses on identifying the change that
introduced the fault in the first place before it can be located
in code.

There are also existing techniques that are directly com-
parable to the work in this paper.

There are machine learning (ML) based models that use
information in changes such as author, modified files and
size of change. Several ’just-in-time’ techniques can predict
a change to be risky to cause regressions before it is submit-
ted to the repository [16], [17]. Other ML based techniques
identify regression introducing changes postsubmit [18],
[19]. However, unlike the work in this paper, these ML based
techniques require training data, and the ML model needs
to be maintained/updated over time.

A recent technique, called Locus, uses information re-
trieval to match a bug report description to a change using
change hunks, i.e. code that is modified by a change [5].
Unlike the work in this paper, Locus needs a textual bug
report that describes the regression, which requires a devel-
oper to manually acknowledge and describe the regression
in a bug report, and may not be available immediately.

Finally, the ’git bisect’ tool [8] helps perform a manual
binary search in the CL window to help a developer find the
culprit CL. This is a manual task, and requires re-running
tests.



IX. CONCLUSION

Identifying changes that introduce regressions to a code-
base is critical to keep the momentum on software devel-
opment, especially in very large scale software repositories
with rapid development cycles, such as at Google. Therefore,
there is a high demand for automated techniques that can
help developers locate the change that introduced a regres-
sion while minimizing manual human intervention.

In this paper, we introduce a novel technique to identify
changes that induce failures for large/enormous tests, called
CULPRIT FINDER. Our technique uses heuristics to auto-
matically filter and rank CLs that might have introduced the
regression to help developers identify the root cause.

We evaluate our technique on case studies we ran on 140
projects in Google. Results of our case studies show that
each heuristic in our algorithm provides benefit to developers
on identifying the change that induces test failures.

Our case studies also suggest some bias in developer be-
havior, where they report feedback when CULPRIT FINDER
is not as successful as they expect.

A. Future Work

Future work consists of augmenting our work with more
heuristics, such as logs analysis, where failure logs and stack
traces can be compared to the code changes in a CL to
check for overlaps. Existing ML based models can also be
combined with our technique to improve results.

Another important avenue is testing CULPRIT FINDER on
small/medium tests with a more systematic evaluation. Such
tests can be re-executed to pinpoint the culprit change and
CULPRIT FINDER can be evaluated automatically. There is
ongoing work on this at Google.

Finally, another avenue to explore is helping large source
code repositories, such as github [20], adopt our algorithm
(similar to git bisect [8]) and reproduce our results.
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