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Abstract. Most of today’s Internet applications generate vast amounts
of data (typically, in the form of event logs) that needs to be processed
and analyzed for detailed reporting, enhancing user experience and in-
creasing monetization. In this paper, we describe the architecture of
Ubiq, a geographically distributed framework for processing continuously
growing log files in real time with high scalability, high availability and
low latency. The Ubiq framework fully tolerates infrastructure degrada-
tion and data center-level outages without any manual intervention. It
also guarantees exactly-once semantics for application pipelines to pro-
cess logs as a collection of multiple events. Ubiq has been in production
for Google’s advertising system for many years and has served as a criti-
cal log processing framework for several dozen pipelines. Our production
deployment demonstrates linear scalability with machine resources, ex-
tremely high availability even with underlying infrastructure failures, and
an end-to-end latency of under a minute.
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1 Introduction

Most of today’s Internet applications are data-centric: they are driven by back-
end database infrastructure to deliver the product to their users. At the same
time, users interacting with these applications generate vast amounts of data
that need to be processed and analyzed for detailed reporting, enhancing the
user experience and increasing monetization. In addition, most of these applica-
tions are network-enabled, accessed by users anywhere in the world at any time.
The consequence of this ubiquity of access is that user-generated data flows con-
tinuously, referred to as a data stream. In the context of an application, the data
stream is a sequence of events that effectively represents the history of users’
interactions with the application. The data is stored as a large number of files,
collectively referred to as an input log (or multiple input logs if the application
demands it, e.g., separate query and click logs for a search application). The log
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captures a wealth of information that can be subsequently analyzed for obtaining
higher-level metrics as well as deep insights into the operational characteristics of
the application. In general, this analysis typically relies on complex application
logic that necessitates joining [3], aggregation and summarization of fine-grained
information. Most contemporary Internet-based applications must have backend
infrastructure to deal with a constant ingestion of new data that is added to the
input logs. Furthermore, this processing should be scalable, resilient to failures,
and should provide well-defined consistency semantics.

The goal of Ubiq is to provide application developers a log processing frame-
work that can be easily integrated in the context of their application without
worrying about infrastructure issues related to scalability, fault tolerance, latency
and consistency guarantees. Ubiq expects that the input log is made available re-
dundantly at multiple data centers distributed globally across multiple regions.
The availability of identical and immutable input logs enables the system to
withstand complete data center outages, planned or unplanned. Ubiq processes
the input log at multiple data centers, and is thus multi-homed [13]: process-
ing pipelines are run in multiple data centers in parallel, to produce a globally
synchronous output stream with multiple replicas.

Although it is often argued that data center failures are rare and dealing
with them at the architectural level is overkill, at the scale at which Google
operates such failures do occur. We experience data center disruptions for two
reasons: (i) partial or full outages due to external factors such as power failures
and fiber cuts; and (ii) shutdowns for planned maintenance. It can be argued
that planned outages can be managed by migrating operational systems from
one data center to another on the fly. In practice, however, we have found that
such a migration is extremely difficult, primarily due to the large footprint of
such operational systems; precisely checkpointing the state of such systems and
restoring it without user downtime is a significant undertaking. During the past
decade, we have explored numerous approaches to the operational challenge of
recovering or migrating processing pipelines from an unhealthy data center to
another data center. Our current conclusion is that the best recourse is to ensure
that such systems are multi-homed [13].

Over the last decade, many stream processing systems have been built
[1, 4, 6, 9, 10, 14, 17]. We are unaware of any published system other than
Google’s Photon [3] that uses geo-replication and multi-homing to provide high
availability and full consistency even in the presence of data center failures. Pho-
ton is designed for applications that need state to be tracked at the event level,
such as joining different log sources. However, this is a very resource-intensive
solution for other data transformation applications such as aggregation and for-
mat conversion, where it is sufficient to track state at the granularity of event
bundles, that is, multiple events as a single work unit. Event bundling demands
far fewer machine resources, and entails different design/performance considera-
tions and failure semantics from those of Photon. Ubiq uses different mechanisms
for backup workers, work allocation, and has different latency and resource uti-
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lization characteristics. See section 7 for a detailed comparison of the differences
between Photon and Ubiq.

1.1 System Challenges

We next describe the challenges that must be overcome to make the Ubiq archi-
tecture generic enough to be deployed in a variety of application contexts.

– Consistency semantics: Log processing systems consume a continuous
stream of data events from an input log and produce output results, in an
incremental fashion. A critical design challenge is to specify and implement
the consistency semantics of incremental processing of input events. Given the
mission-critical nature of the applications that Ubiq supports, such as billing,
it needs to be able to assure exactly-once semantics.

– Scalability: The next challenge is scalability. Ubiq needs to support applica-
tions with varying amounts of traffic on its input log. Furthermore, Ubiq needs
to be dynamically scalable to deal with varying traffic conditions for a single
application. Finally, Ubiq must be able to handle ever-increasing amounts of
traffic. Currently, it processes millions of events per second; this is bound to
increase in the future.

– Reliability: As mentioned earlier, Ubiq needs to automatically handle not
only component failures within a data center but also planned and unplanned
outages of an entire data center.

– Latency: The output of Ubiq is used for several business-critical applica-
tions such as analyzing advertising performance and increasing monetization.
Keeping the infrastructure latency overhead to under a minute assures the
effectiveness of these business processes.

– Extensibility: To support multiple use cases and deployments, Ubiq needs
to be generic enough to be used by different applications, and to be easily
integrated in a variety of application contexts.

1.2 Key Technical Insights

Here are some of the main design ideas that help Ubiq address the system chal-
lenges mentioned above:

– All framework components are stateless, except for a small amount of globally
replicated state, which is implemented using Paxos [15]. In order to amor-
tize the synchronization overhead of updating the global state, Ubiq batches
multiple updates as a single transaction. For scalability, the global state is
partitioned across different machines.

– From an application developer’s perspective, Ubiq simplifies the problem of
continuous distributed data processing by transforming it into processing dis-
crete chunks of log records locally.

– Ubiq detects data center failures by introducing the notion of ETAs, which
capture the expected response time of work units, so appropriate avoidance
measures can be taken in the presence of failures.
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The paper is organized as follows. In section 2, we start by presenting the
overall architecture of Ubiq followed by some of the implementation details of its
key components. In section 3, we describe the key features of Ubiq’s design that
deliver exactly-once processing, fault tolerance and scalability, in both single and
multiple data centers. In section 4, we demonstrate how Ubiq can be deployed
in the context of a data transformation and aggregation application. Section 5
summarizes the production metrics and performance data for a log processing
pipeline based on Ubiq. In section 6, we report our experiences and lessons
learned in using Ubiq for several dozens of production deployments. Section 7
presents related work and section 8 concludes the paper.

2 The Ubiq Architecture

Fig. 1. Ubiq architecture in a single data center

2.1 Overview

Figure 1 illustrates the overall architecture of Ubiq in a single data center. The
numbers in the figure capture the workflow in the Ubiq system, which is as
follows:

1. Input log creation: New log events are written to the input log, which is
physically manifested as a collection of files. This step is outside the scope
of Ubiq, though we enumerate it here to show the end-to-end workflow.
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2. Tailing of input logs: The first responsibility of Ubiq is to continuously mon-
itor the files and directories associated with the input log. This functionality
is performed by the Log Data Tracker component.

3. Storage of metadata: Once newly arrived data is discovered, its metadata
(that is, file name and current offset) is delivered to a metadata repository,
which stores the state about what has been processed and what has not
(to ensure exactly-once semantics). This metadata is stored inside the State
Server, which replicates it globally.

4. Work unit creation: The continuously growing log is converted into discrete
work units, or event bundles, by the Work Unit Creator.

5. Work unit distribution: After the work units are created, they need to
be delivered to the application for executing application logic. The Local
Application Processing component pulls work units from the State Server
via the Work Unit Retriever component.

6. Application processing: The Local Application Processing component locally
applies application-specific logic such as data transformation and other busi-
ness logic. See section 4 for a sample application.

7. Work unit commitment: Once the Local Application Processing component
completes processing the work unit, it invokes the Work Unit Committer,
which coordinates the commit of the work unit by updating the metadata
at the State Server. The Work Unit Retriever and Work Unit Committer
together decouple the local application processing completely from the rest
of the Ubiq framework.

8. Dispatch of results: If the results of the local application processing are fully
deterministic and the output storage system expects at-least-once semantics,
the Local Application Processing component may dispatch the results to
output storage directly. Otherwise, the results need to be delivered to output
storage after they are committed to the State Server. This is accomplished
by the Dispatcher component, using a two-phase commit with the output
storage.

As described above, the Ubiq framework is relatively simple and straightfor-
ward. The challenge, as described in Section 1.1, is to make this system strongly
consistent, scalable, reliable and efficient.

2.2 Ubiq Architecture in a Single Data Center

Expectations for Input Log Data: Ubiq expects input files in multiple data
centers to reach eventual consistency byte by byte. For example, new files may
get added or existing files may keep growing. When created redundantly, the
corresponding files in different regions may have different sizes at any time, but
should become identical at some point in the future. If a file has size S1 in one
data center and size S2 in another and S1 < S2, the first S1 bytes in the two
files must be identical.

State Server: The State Server is the globally replicated source of truth
about log processing status, and the center of communication among all other
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Ubiq components. It is implemented using a synchronous database service called
PaxosDB [8] that performs consistent replication of data in multiple data centers
using Paxos [15], a distributed consensus protocol. It stores the metadata about
what has been processed and what has not. For each input log file and offset, it
maintains three possible states:

– Not yet part of a work unit
– Already part of a work unit in progress
– Committed to output storage

It maintains this information efficiently by merging contiguous byte offsets in
the same state; that is, maintaining state at the granularity of <filename, be-
gin offset, end offset>.

All other framework components interact with the State Server. The State
Server receives information about newly arrived data from the Log Data Tracker,
uses this meta-information to create work units that will be delivered via the
Work Unit Retriever to the Local Application Processing component, and com-
mits the work units that have been completed. The metadata information stored
at the State Server is critical to ensure the exactly-once semantics of Ubiq. The
State Server suppresses any duplicate information received from the Log Data
Tracker. All metadata operations, such as work unit creation, work retrieval by
the Work Unit Retrievers, and work commitment by the Work Unit Committers,
are executed as distributed transactions using atomic read-modify-write on the
underlying storage at the State Server.

Log Data Tracker: The primary task of the Log Data Tracker is to discover
growth of data in the input logs, which occurs in two ways: new input log files,
and increases in the size of existing files. The Log Data Tracker continuously
scans input directories and registers new log filenames in the State Server with
their current sizes. It also monitors the sizes of existing files and informs the
State Server when new bytes are discovered.

The Tracker runs independently in or near each input logs data center and
only notifies the State Server of updates in its local logs data center. Since the
State Server de-duplicates the information received from the Tracker, the design
for the Tracker is simplified, to provide at-least-once semantics. Every file is
tracked by at least one Tracker worker. Every update is retried until successfully
acknowledged by the State Server.

Work Unit Creator: The Work Unit Creator runs as a background thread
inside the State Server. Its goal is to convert the continuously growing log files
into discrete work units, or event bundles. The Work Unit Creator maintains the
maximum offset up to which the file has grown at each of the input logs data
centers. It also stores the offset up to which work units have been created in the
past for this file. As it creates new work units, it atomically updates the offset to
ensure that each input byte is part of exactly one work unit. In order to prevent
starvation, the Work Unit Creator prioritizes bytes from the oldest file while
creating work units. The Work Unit Creator also tries to ensure that a work
unit has chunks from several different files, as these could be read in parallel by
the application.
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Work Unit Retriever and Work Unit Committer: The goal of these
two framework components together is to decouple the local application process-
ing completely from the rest of the Ubiq framework. The Work Unit Retriever is
responsible for finding uncommitted work units in the State Server. It delivers
these work units to the Local Application Processing component (whenever the
latter pulls new work units) and tracks this delivery through the global system
state. Once the Local Application Processing component completes processing
a work unit, it requests a commit by invoking the Work Unit Committer. This
initiates an atomic commit, and if successful, the global system state is updated
to ensure that the data events in the completed work unit will not be processed
again. On the other hand, if the commit fails, the work unit will be retried again
to ensure exactly-once semantics.

Dispatcher: If the results of an application are deterministic and the output
storage system expects at-least-once delivery, the Local Application Processing
component can directly deliver the results to output storage system. Otherwise, a
dedicated framework component, the Dispatcher, delivers the results of the Local
Application Processing to output storage. The Dispatcher needs to perform a
two-phase commit between the State Server and the output storage system to
ensure exactly-once semantics. Ubiq currently supports dispatching to Mesa [12]
and Colossus (Google’s distributed file system). Ubiq has a generic API that can
be extended to support more output storage systems in future.

Garbage Collector: Once a work unit is dispatched to the output storage,
a background thread in the State Server is responsible for garbage-collecting the
work unit and all the metadata associated with it. This thread also garbage-
collects input filenames once these get older than a certain number of days (e.g.,
d days) and they are fully processed. The State Server guarantees that if it
receives an input filename (from the Log Data Tracker) with a timestamp older
than d, it will drop the filename. The Log Data Tracker only tracks files at most
d days old.

2.3 Ubiq Architecture in Multiple Data Centers

So far we have focused on the Ubiq design in the context of a single data center.
Figure 2 shows the detailed architecture of the Ubiq system deployed over two
data centers.

Replication of critical state: In Ubiq, the critical component that must
remain consistent across data centers is the global system state maintained at the
State Server. In particular, the global state information must be synchronously
maintained with strong consistency across multiple data centers to ensure that
we do not violate the exactly-once property of the log processing framework. This
is accomplished by using PaxosDB, as described in the previous section on the
State Server. All metadata operations, such as work creation, work retrieval by
the Work Unit Retrievers, and work commitment by the Work Unit Committers,
are executed inside State Server as distributed transactions across multiple data
centers globally. In order to amortize the overhead of individual transactions, we
use several system-level optimizations such as batching multiple transactions.
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Fig. 2. Ubiq architecture in two data centers

De-duplication of input from multiple logs data centers: As men-
tioned earlier, Ubiq expects input bytes in multiple data centers to reach eventual
consistency byte by byte. The Log Data Tracker in each data center indepen-
dently tracks growth of data in the corresponding input log data center. The
Work Unit Creator unifies data from multiple input log data centers to create
global work units. It does this by maintaining a key-value data structure inside
the State Server. The key is the basename of a file (i.e., name of the file without
the path). Inside the value, it stores metadata about the file in all input logs
data centers. If the input bytes are available in only one input data center, it will
mark this in the work unit so that the work unit is preferably processed only in
a nearby data center. The State Server assigns work units uniformly amongst all
healthy data centers, or proportionally to the fraction of resources provisioned
by the user for local application processing in each data center.

Replication of output data: It is possible that the data center containing
the output of the Local Application Processing component may go down before
the results are consumed by output storage. In order to handle this, Ubiq must
be able to either roll back a committed work unit to regenerate the output or
replicate the output of the Local Application Processing component into another
data center, before committing the work unit into the State Server. If the ap-
plication’s business logic is non-deterministic and output storage has partially
consumed the output, rollback is not an option. In order to address this, Ubiq
provides a Replicator component as a first-class citizen. The Replicator copies
a file from the local filesystem to one or more remote filesystems in other data
centers.

Preventing starvation: Even though Ubiq does not provide any hard or-
dering guarantees, it ensures that there is no starvation. Each framework compo-
nent prioritizes the oldest work unit. For example, the Work Unit Creator adds
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the oldest bytes when creating work units; the Work Unit Retriever retrieves the
oldest work unit, and so on.

3 Ubiq System Properties

3.1 Consistency Semantics

Depending upon the nature of the underlying applications, processing of input
data events can be based on (i) at-most-once semantics; (ii) at-least-once se-
mantics; (iii) exactly-once semantics; or (iv) in the extreme case, no consistency
guarantees. Given that Ubiq has to be generic to be used in multiple application
contexts, it provides exactly-once semantics. Supporting this consistency guar-
antee introduces significant synchronization overhead; however, our experience
is that a large class of applications, especially those with financial implications
(e.g., billing advertisers, publisher payments, etc.), warrant exactly-once process-
ing of data events in the input log. As mentioned in section 2.3, Ubiq achieves
exactly-once semantics by de-duplicating input from multiple logs data centers,
executing all metadata operations on input byte offsets as distributed Paxos
transactions inside the State Server, and ensuring that there is no starvation.

Note that for applications to leverage the exactly-once guarantees of Ubiq,
they must write code that does not have side effects outside the Ubiq framework
(e.g., updating a global counter in an external storage system). The Ubiq design
does not provide any ordering guarantees; it restricts the processing logic of
input events to be independent of each other. However, Ubiq ensures that input
events are not starved.

3.2 Fault Tolerance in a Single Data Center

Here is how Ubiq handles machine failures in a single data center:

– All components in Ubiq are stateless, except the State Server, for which the
state is stored persistently. Within a single data center, every Ubiq component
can be executed on multiple machines without jeopardizing the correctness of
the system. Hence, each component is relatively immune to machine failures
within a data center.

– The State Server leverages PaxosDB [8] for fault tolerance. If an application
is running entirely in a single data center, Ubiq enables running multiple
PaxosDB group members as replicas in the same data center to handle machine
failures.

– To handle local application processing failures, we use a notion called Estimated
Time of Arrival, or ETA, to capture the expected amount of time processing
a work unit should take. Violations of ETAs are clues that something might
be wrong in the system. To handle local application processing failures within
a single data center, we define a local ETA with each work unit. When a Work
Unit Retriever obtains a work unit W from the State Server, the State Server
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marks it with an ETA of t time units. When a mirrored Work Unit Retriever
approaches the State Server within t time units, W is blocked from distribu-
tion. On the other hand, if the Retriever requests work after t time units have
elapsed, then W becomes available for distribution. This allows backup work-
ers in the same data center to start processing the work unit if the original
worker is unable to process before the local ETA expires. Duplicate requests
to commit a work unit (either because two workers were redundantly assigned
the work unit or the request to commit got duplicated at the communication
level due to timeout) are suppressed at the State Server since only one of them
will be accepted for commit and the others will be aborted.

3.3 Fault Tolerance in Multiple Data Centers

As mentioned in [13], a data center is in full outage mode if it is completely
unresponsive. A data center in partial outage mode is responsive but its perfor-
mance / availability may be significantly degraded. Although both partial and
full outages are handled by migrating workloads from a malfunctioning data
center to a healthy one, there are some major differences in how such workload
migration takes effect.

Impact of full data center outage: Google has dedicated services that
continuously monitor full data center outages and notify interested systems; Ubiq
learns about full data center outages proactively using these external signals. In
the normal case, Ubiq assigns new work units uniformly amongst all the active
data centers. During a full data center outage, Ubiq stops assigning any work
unit to the unhealthy data center. Existing work units assigned to the unhealthy
data center are immediately re-assigned to one of the healthy data centers. The
entire workload is handled by the remaining healthy data centers as soon as the
full outage occurs. Assuming that the healthy data centers are provisioned to
handle the entire load, there is no impact on end-to-end latency.

Impact of partial data center outage: Unlike full data center outages,
there are no direct signals or monitors to detect partial data center outages.
Hence, we need to build mechanisms inside Ubiq to deal with partial outages.
As mentioned in Section 3.2, the notion of local ETA allows us to have backup
workers in the same data center. However, in the case of a partial data center
outage, backup workers in the unhealthy data center may continue to process
the same work unit, leading to starvation of work units. In order to prevent this
from happening, we have another ETA inside the State Server, known as the data
center ETA. We give a work unit to one data center by default and set the data
center ETA to T minutes. If the work unit is not committed within T minutes, it
is made available to another data center. This ensures that if one processing data
center goes down or is unable to complete the work within the specified SLA,
backup workers in the other processing data center will automatically take over
the pending workload. Therefore, when a partial data center outage occurs, the
workload migration does not take effect immediately, but needs to wait for the
timeout of the data center ETA. The healthy data center picks up the timed-out
work units from the slow data center only after the data center ETA expires. In
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practice, the data center ETA is set to be an order of magnitude larger than the
local ETA. This ETA timeout contributes to increased latency. If an application
does not want to see these latency spikes, it can set a lower value for the data
center ETA at the expense of higher resource cost.

Note that the existence of the data center ETA does not remove the need
to have a local ETA. Local application processing often performs intermediate
local checkpoints of partial data processing. Having a local ETA allows a backup
worker in the same data center to resume processing from these checkpoints.

The consequence of this design is that the overall Ubiq architecture is resilient
to both partial and full data center outages; furthermore, it can be dynamically
reconfigured from N data centers to N ′ data centers, which makes our opera-
tional task of running log processing pipelines in a continuous manner 24 × 7
significantly more manageable.

3.4 Scalability

As mentioned above, all components in Ubiq, with the exception of the State
Server, are stateless. This means that they can be scaled to run on multiple
machines without compromising on consistency.

To ensure that the State Server does not suffer from scalability bottlenecks,
the configuration information uses a key concept to partition the work among
multiple machines: input filenames are hashed to an integer domain, which
is configured in terms of a certain number of partitions; i.e., 〈integer〉 MOD
〈number of partitions〉. Each machine is responsible for a single partition.

To make the State Server design extensible, we need to allow the partition-
ing information to be dynamically re-configured without bringing the system
down. We do this by maintaining configuration information for different time
ranges. Each input filename encodes an immutable timestamp based on a global
time server utility (TrueTime [11]) to ensure that the timing information is
consistent across all filenames and across all regions. The configuration of the
State Server has a time range associated with it. That is, it may be that from
〈5:00AMToday〉 to 〈5:00PMToday〉 the State Server has 10 partitions whereas
from 〈5:01PMToday〉 onward it has 20 partitions. During the transition, the
State Server decides which partition mechanism to use based on the encoded
timestamp, until it is safe to transition to a new configuration.

3.5 Extensibility

Finally, Ubiq’s design is extensible. From an application developer’s perspective,
Ubiq simplifies the problem of continuous distributed data processing by trans-
forming it into processing discrete chunks of log records locally. Ubiq’s API can
be used by any application-specific code, and hence can be easily integrated in a
variety of application contexts. The application developer only needs to provide
the log processing code and some configuration information such as the input
log source filename(s), the number of workload partitions, and number of data
centers.
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4 Data Transformation & Aggregation: An Application
using Ubiq

We now describe how the Ubiq framework is used to deploy a critical application
at Google. The goal of this application is to continuously transform and aggre-
gate log events into higher-level measures and dimensions, and to materialize
the results into downstream storage systems such as Mesa [12], an analytical
data warehousing system that stores critical measurement data. As mentioned
in section 2, Ubiq separates the processing responsibilities into (i) a common
framework that focuses on incremental work management, metadata manage-
ment, and work unit creation; (ii) specialized local application processing, which
focuses on the application logic required to process a new set of input events.
This application logic has the following responsibilities:

– Transforming input events: The local application processing transforms the
input events based on application needs. Such transformation may involve
data cleaning and standardization, splitting a single event into multiple rows
destined to multiple tables in the underlying database, annotating each in-
put event with information from databases, applying user-defined functions,
executing complex business logic, etc.

– Partially aggregating input events: Although downstream systems can per-
form aggregation internally, given the massive size of input, it is much more
resource-efficient if the input is partially aggregated. The local application
processing performs a partial GROUP BY operation on each bundle of input
events.

– Converting data into requisite storage format: Input data is stored in a row-
oriented format that needs to be transformed into a columnar data layout.

Note that this application could be built using the Photon [3] architecture
as well. However, it would be very resource-intensive to store state at the event
level.

Figure 3 illustrates the above application using the Ubiq framework. The
application developer is responsible only for the development of the subcompo-
nent that encodes the application logic, the Data Transformer & Aggregator.
This subcomponent relies on a well-defined API that is provided to the appli-
cation developer for interfacing with the Ubiq components. This deployment
uses the Replicator component of Ubiq since the underlying business logic is
non-deterministic.

5 Production Metrics

Deployment setup: Ubiq in production is deployed in a highly decentralized
manner (see Figure 4). As shown in the figure, the input logs are made available
redundantly in at least two regional data centers, e.g., data centers 1 and 2.
The Ubiq pipelines are active in at least three data centers, e.g., A, B, and
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Fig. 3. Data Transformation and Aggregation: An application using Ubiq

C. To preserve data locality, data centers A and C are close to 1 while data
center B is close to 2. The global system state, although shown as a centralized
component, is in general actively maintained in a synchronous manner in at
least 5 different data centers. If data center B, for example, experiences either
a partial or complete outage, then data centers A and C will start sharing the
workload without any manual intervention and without any breach of SLA. This
assumes that there are enough resources available at data centers A and C for
scaling Ubiq components for additional workloads.

Fig. 4. A distributed deployment of Ubiq over multiple data centers

We next report some of the critical production metrics to highlight the overall
performance characteristics of the Ubiq framework. At Google, Ubiq is deployed
for dozens of different log types, which effectively means that we have several
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dozen different pipelines with different data rates being continuously processed.
The scale of a typical pipeline is on the order of a few million input events per
second, producing several million output rows per second. The metrics reported
in this section correspond to two such pipelines.

Fig. 5. Throughput during normal period

Fig. 6. Latency during normal period
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Throughput and latency during normal periods: Figure 5 illustrates
the throughput that is processed by Ubiq at each data center. One observation
we make is that the load is evenly distributed across both data centers. Figure 6
illustrates the 90th percentile latency associated with processing the input events
for the same log type during the same period as Figure 5. These latency numbers
correspond to the difference between the time when the bytes are first tracked by
Ubiq and the time when the bytes are dispatched to output storage. Note that
the latency corresponds to global results produced at both data centers. Based
on our internal instrumentation, when there is no application processing in the
pipeline, latency is approximately under a minute for the 90th percentile. All
the additional latency therefore comes from the application processing of this
particular log type.

Impact of full data center outage: Figures 7 and 8 analyze the system
behavior in the presence of a full data center outage. In Figure 7, we observe
that one of the data centers experiences a full outage, resulting in the increased
workload at the other data center. However, the 90th percentile latency metrics
in Figure 8 demonstrate that latency is not adversely impacted during workload
migration. As explained in Section 3.3, Ubiq gets an external signal for a full
data center outage, and immediately shifts the entire workload to the healthy
data centers. Each data center is provisioned to handle the complete load. Note
that there is a huge spike in latency for a very brief period during the full data
center outage. This is because of a big increase in the number of input events
(due to minor upstream disruptions).

Fig. 7. Throughput during full data center outage

Impact of partial data center outage: Figures 9 and 10 depict the
behavior of the system in the presence of a partial data center outage. In Figure 9,
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Fig. 8. Latency during full data center outage

around 5:30am, one of the data centers experiences a partial outage and as a
result, its throughput declines sharply, while the other data center picks up the
additional load. Figure 10 reports the latency for the 90th percentile: indeed,
during the partial outage, the latency in processing input log events increases
considerably. As explained in section 3.3, this is because the shift of the workload
to the healthy data center happens after the data center ETA expires.

Fig. 9. Throughput during partial data center outage
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Fig. 10. Latency during partial data center outage

In summary, we note that both partial and full data center outage are handled
transparently by the Ubiq framework and no manual intervention is required.

6 Experiences and Lessons Learned

In this section, we briefly highlight the main lessons we have learned from build-
ing a large-scale framework for continuous processing of data streams in a pro-
duction environment. One key lesson is to prepare for the unexpected when engi-
neering large-scale infrastructure systems since at our scale many low-probability
events do occur and can lead to major disruptions.

Data corruption: As an infrastructure team, we account for software and
hardware failures of individual components in the overall system design. How-
ever, a major challenge arises in accounting for data corruption that occurs
because of software and hardware failures much lower in the stack. The scale at
which Ubiq runs increases the chance of seeing these bugs in production. Also,
there may be bugs in the business logic inside the Local Application Processing
component or in an upstream system. This may cause the Local Application
Processing component embedded in Ubiq to fail an entire work unit due to a
handful of bad events.

We have built several solutions to address the issue of data corruption. The
first approach is to provide a detailed reporting tool that allows the application
developer to identify the exact byte range of the input work unit where the
problem occurs. In addition, we have gone one step further, where a failed work
unit with diagnostics about corrupted byte range is automatically split into
multiple parts: the corrupted byte range and the uncorrupted byte ranges. A byte



18 Venkatesh Basker et al.

range consists of <filename, begin offset, end offset>. The uncorrupted ranges
are queued as new work units and the corrupted byte range is reported back to
the Ubiq clients for further investigation. This ensures that all the uncorrupted
byte ranges associated with the original work unit can be processed successfully.

Automated workload throttling: Even though Ubiq’s design is highly
scalable, in practice, bottlenecks arise within the system due to external factors.
For example, when the system requests additional machine resources to scale
the local application processing component, if there is a delay in provisioning,
there will be workload buildup within Ubiq. If no measures are taken this can
adversely impact the health of the overall system or may unnecessarily initiate
multiple resource provisioning requests to Google’s Borg system [16], resulting
in under-utilization of resources later on. In order to avoid such problems, we
have built monitoring and workload throttling tools at every stage of Ubiq to
throttle work generation from the upstream components when Ubiq finds that
downstream components are overloaded.

Recovery: Even though Ubiq itself replicates its state in multiple data cen-
ters, for critical business applications we guard against the failure of the entire
Ubiq pipeline by keeping additional metadata inside the output storage system
for each work unit. This metadata tracks the list of input filenames/offsets used
to generate the output. In the case of Ubiq failure, we can read this metadata
from both the output storage system and the input logs to bootstrap the state
of Ubiq in the State Server. In theory, if the majority of the machines on which
a Paxos partition is running go unhealthy, this can lead to corrupted state at
the State Server. In practice, a more likely cause of Ubiq failure is an accidental
bug in the code that leads to inconsistent state in the State Server.

7 Related Work

During the past decade, a vast body of research has emerged on continuous
processing of data streams [1, 2, 7, 9, 10]. Most of these systems are research
prototypes and the focus has been to develop declarative semantics for process-
ing continuous queries over data streams. Over the past few years, the need
for managing continuous data has become especially relevant in the context of
Internet-based applications and services. Systems such as Storm [6], Samza [5],
Spark Streaming [17], Apache Flink [4] and Heron [14] are available in the open-
source domain for continuously transforming granular information before it is
stored. However, none of these systems are multi-homed ; they operate in a single
data center and hence are vulnerable to data center outages.

The only published system that is geo-replicated and provides both multi-
homing and strong consistency guarantees even in the presence of data center
failures is Google’s Photon [3]. The main distinction between Ubiq and Pho-
ton is that Photon is targeted for event-level processing whereas Ubiq supports
processing multiple events as a single work unit (i.e., event bundles). The differ-
ence in processing granularity between Photon and Ubiq leads to the following
differences in design and performance tradeoffs:
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– Principal use cases: One canonical application for Photon is log joining, where
each log event is joined independently with other log sources and output as a
new augmented event. In contrast, Ubiq works best for applications like partial
aggregation and data format conversion where multiple events are processed
together to generate new output, which can then be efficiently consumed by
downstream applications.

– Resource efficiency: In contrast with Photon, Ubiq does not need to maintain
global state at the event level, and hence requires significantly fewer machine
and network resources to run. Although it is feasible to trivially perform ev-
ery data transformation, event by event, using Photon, it would be wasteful
in machine resources for those data transformations where event-level state
information is not necessary.

– Backup workers: The bundle processing in Ubiq allows for global, ETA-based
work unit distribution (to all processing sites), which results in near-zero du-
plicate work. In contrast, all processing sites in a Photon system need to read
all events and the de-duplication takes place later.

– Failure semantics: For applications where the processing of each event may fail
and needs to be retried (e.g., transient lookup failures to an external backend),
Ubiq would have to fail the entire work unit if the number of failed events is
beyond a threshold, which renders the idea of work-unit splitting prohibitively
expensive. By contrast, even in the worst-case scenario, if every alternate event
fails processing and needs to be retried, Photon would process the successful
events and commit them to the output since it maintains event-level state.

– Work allocation: As Ubiq is based on bundle-level granularity, it is much easier
to allocate work to local application processing using a pull-based mechanism.
Photon, on the other hand, leverages push-based work allocation.

– Latency: Ubiq incurs noticeably higher latency (on the order of tens of sec-
onds) compared to Photon (on the order of seconds). Ubiq needs to wait to
create event bundles while Photon does not need to incur this cost. Pull-based
work allocation also contributes to higher latency in Ubiq. As a result of the
different strategy for backup workers, partial data center outages impact over-
all latency in Ubiq while Photon handles partial data center outages seamlessly
without any latency impact.

8 Concluding Remarks

In this paper, we have presented the design and implementation details of an ex-
tensible framework for continuously processing data streams in the form of event
bundles. We illustrated how the Ubiq framework is used in real production appli-
cations in Google. One of the key aspects of Ubiq’s design is to clearly separate
the system-level components of the framework from the application process-
ing. This extensibility allows a myriad of applications to leverage the processing
framework without duplication of effort. Ubiq’s extensibility has proven to be
a powerful paradigm used by dozens of applications, even though it was orig-
inally envisioned to simplify the operational issues for a handful of very large
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customers. Another key feature of Ubiq is that it provides exactly-once seman-
tics. Although there are no ordering guarantees, exactly-once semantics make
application logic considerably simpler: application developers do not have to
complicate processing logic to handle missing or duplicate data. To deal with
the high variability of input data rates, Ubiq’s design is highly scalable and
elastic: additional resources can be provisioned or removed dynamically without
impacting the operational system. Component failures at the data center level
are handled by redundantly processing the work units in a staggered manner.
Finally, the multi-homed design of Ubiq makes it effective in dealing with full
and partial data center outages transparently, without any manual intervention.
In the future, we plan to develop a service-oriented architecture for Ubiq for
more effective accounting, access control, isolation, and resource management.
We are also exploring the use of machine learning models for fine-level resource
management and predictive control.
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