
Operating a UAV Mesh & Internet Backhaul Network
using Temporospatial SDN

Brian Barritt
Google

1600 Amphitheatre Pkwy.
Mountain View, CA 94043

bbarritt@google.com

Tatiana Kichkaylo
Google

1600 Amphitheatre Pkwy.
Mountain View, CA 94043

kichkaylo@google.com

Ketan Mandke
Google

1600 Amphitheatre Pkwy.
Mountain View, CA 94043

kmandke@google.com
Adam Zalcman

Google
1600 Amphitheatre Pkwy.
Mountain View, CA 94043

viathor@google.com

Victor Lin
Google

1600 Amphitheatre Pkwy.
Mountain View, CA 94043

victorlin@google.com

Abstract— In this paper we describe an application of Tem-
porospatial Software Defined Networking (TS-SDN) to UAV
networks. Airborne platforms (airplanes, balloons, airships)
can be used to carry wireless communication nodes to provide
direct-to-user as well as backhaul connections. Such networks
also include ground nodes typically equipped with highly di-
rectional steerable transceivers. The physics of flight as well
as state of the atmosphere lead to time-dynamic link metrics
and availability. As nodes move around, the network topology
and routing need to adjust to maintain connectivity. Further,
mechanical aspects of the system, such as time required to me-
chanically steer antennas, makes the reactive repair approach
more costly than in terrestrial applications. Instead, TS-SDN
incorporates reasoning about physical evolution of the system
to proactively adjust the network topology in anticipation of
future changes. Using airborne networks under development
at Google as an example, we discuss the benefits of the TS-
SDN approach compared to reactive repair in terms of network
availability. We also identify additional constraints one needs to
account for when computing the network topology, such as non-
interference with other stationary and moving sources. Existing
SDN standards do not support scheduled updates necessary in
a TS-SDN. We describe our extensions to control messages and
software implementation used in field tests.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 2
3. NETWORK ARCHITECTURE . 2
4. MESH & BACKHAUL CHALLENGES 3
5. TEMPOROSPATIAL SDN . 3
6. APPLICATION & IMPLEMENTATION 3
7. SDN VS. DISTRIBUTED ROUTING 4
8. CONCLUSIONS . 6
REFERENCES . 6
BIOGRAPHY . 7

1. INTRODUCTION
The use of unmanned aerial vehicles (UAVs) and other
atmospheric platforms has recently emerged as a potential
solution for providing Internet access to rural populations
in emerging economies. Titan Aerospace, which Google
acquired in 2014, designed a high-altitude, long-endurance

978-1-5090-1613-6/17/31.00 c©2017 IEEE and Google

Figure 1. A high-level overview of the software-defined
networking architecture

UAVs for this purpose. Google’s parent company, Alphabet,
is developing a network of stratospheric balloons to extend
LTE access - a moonshot project in its X lab. Facebook has
been developing a high-altitude, long-durance UAV called
Aquila after acquiring the British company Ascenta.

Other past and present efforts to develop airborne platforms
that could be used for similar purposes include Airbus’s
Zephyr program, Thales Alenia Space’s Stratobus, the Vul-
ture Program’s SolarEagle, NASA’s Helios, and joint US
DoD and DARPA projects such as the ISIS Airship, among
others [1].

This paper is organized as follows. In the following sec-
tion we briefly present the concepts of Software Defined
Networking (SDN), its existing extensions to wireless net-
works and discuss some measures for accommodating time-
dynamic properties of UAV-powered networks. In section
3, we describe their overall architecture. In section 4, we
discuss unique challenges presented by these networks and
the constraints that they impose on the network control mech-
anisms. In section 5, we describe the temporospatial SDN
and its advantages more generally. In section 6, we discuss
some technical details of our implementation. In section 7,
we contrast and compare the centralized, SDN-based routing
control in UAV-powered networks with various distributed
approaches. Finally, we conclude in section 8.

1

2. BACKGROUND
Software Defined Networking (SDN) technology has become
more common in terrestrial networking. SDN enables the
implementation of services and applications that control,
monitor, and reconfigure the network layer and switching
functionality. SDN provides a software abstraction layer that
yields a logically centralized view of the network for control
plane services and applications. This centralized view, in
turn, enables coherent management of modern large scale net-
works, whose topology continuously evolves over time [2]. A
high-level overview of the SDN reference architecture [3] is
shown in Figure 1.

Recently, new requirements have led to proposals to ex-
tend this concept for Software-Defined Wireless Networks
(SDWN), which decouple radio control functions, such as
spectrum management, mobility management, and interfer-
ence management, from the radio data-plane [4]. As before,
SDWN enable centralized management of various aspects of
constantly evolving networks, which reduces labor require-
ments and improves agility of the network.

In traditional networks, wired or wireless, failure is unpre-
dictable. Such unpredictable outages may be caused by hard-
ware failure or occluded links. This is typically addressed
by building redundancy into the network and/or reactively
repairing breakages when they occur. Outside of random
failures, the properties of traditional networks remain stable.

In aerospace networks, however, the properties of the candi-
date network topology change constantly, but in a somewhat
predictable manner. While it is possible to treat such changes
the same way as traditional failures, doing so leads to ineffi-
cient use of resources and to user-visible network disruptions.

A better solution is to extend the SDN concept again, this
time by adding a temporospatial aspect [5]. In this extended
model, called Temporospatial-SDN (TS-SDN), the holistic
view of the topology provided to SDN applications is an-
notated with the predicted, time-dynamic properties of its
network links and nodes, and network changes are sched-
uled as opposed to executed as soon as possible. In TS-
SDN, the SDN controllers utilize knowledge of the physical
position and trajectory of each platform and its antennas to
make predictions about the future state of the lower-level
network [5]. For instance, the state and performance of
current or potential future line-of-sight wireless links in a
UAV or satellite network are relatively easy to accurately
predict using modeling and simulation tools such as STK.2

3. NETWORK ARCHITECTURE
We use the hierarchical internetworking model [6] to describe
the high-level architecture of a network that provides 4G LTE
mobile Internet service from airborne platforms.

As depicted in Figure 2, the Access Layer is comprised of
an LTE base station (eNodeB) on each airborne platform,
which connects directly to many end user handsets, tablet,
etc, referred to as user equipment, or UEs. In accordance
with 3GPP standards, each eNodeB establishes a stateful
connection (S1 interface) to an Evolved Packet Core (EPC)
in the Core Layer of the network for data plane flows and
control plane signaling. The EPC peers with the Internet,
performs billing and subscriber management functions, and

2http://www.agi.com

Figure 2. UAV and LEO satellite networks are unique in
the high degree of mobility in their Distribution Layer.

handles Access Layer mobility management.

The Distribution Layer connects the eNodeB to the Core
Network infrastructure. In traditional LTE networks, this is
accomplished via static, wired (typically fiber) infrastructure.
Our Distribution Layer, however, is comprised of a time-
dynamic multi-hop wireless mesh/backhaul network, which
is significantly more complex.

Because these networks are designed to provide Internet
service to underserved populations of users, we cannot as-
sume that terrestrial fiber backhaul infrastructure is available
within the coverage area of a given UAV. As such, bent pipe
architectures in which the UAV acts as an analog transponder
for LTE service cannot be used. Instead, we favor a packet-
based multi-hop wireless mesh network for our backhaul.

Terrestrial ground stations must be located in regions with
sufficient fiber or wired backhaul, and may be beyond line-
of-sight (LoS) for some UAVs. Because of the long distances
between peers, to keep transmit power within safe and realiz-
able limits, ground stations and UAVs must use mechanically
or electronically steered beams (gimbaled parabolic antennas,
phased arrays, or steerable free-space optics assemblies) to
establish highly-directional links, even to nearby peers. Dif-
ferent platforms in the network may have varying constraints
on the number of mesh links that they can form with peers.
For example, a ground station may only be able to track a
single UAV, while each UAV may be able to simultaneously
steer multiple beams towards several other platforms. Differ-
ent link types may be used within the same mesh, e.g., optical
links between airborne platforms and radio links to ground
stations. These links in aggregate form a mesh network that
enables multi-hop wireless communication between non-LoS
peers.

In some architectures, UAVs and ground stations may also
establish links with platforms at even higher altitudes, such
as satellites. The highly-directional nature of the Distribution
Layer motivates the use of such links as an additional out-of-
band control channel to bootstrap the network. That is, since
narrow beam link establishment requires both peers to know
that they must point at each other at the same time, when
nodes cannot see anyone they could bootstrap themselves via

2

such a link. This control channel may be very low data rate
and expensive. In many systems, existing control and non-
payload communication (CNPC) links may be suitable for
this purpose.

4. MESH & BACKHAUL CHALLENGES
The use of highly-directional and narrow beams in a mobile
multi-hop, wireless Distribution Layer creates unique chal-
lenges. The mobility of network platforms and changing
weather conditions impart time-dynamic properties to the
availability and fidelity of wireless mesh/backhaul links. Ad-
ditional complexity in control is caused by the fact that beam
steering (whether mechanical or electrical) results in non-zero
link acquisition times. Any reconfiguration of the Distribu-
tion Layer topology therefore risks disrupting connection-
oriented network protocols that need to transit across this
time-dynamic network.

These challenges impart the following constraints:

• Centralized Topology Control - Constructing a mesh topol-
ogy that may include narrow, mechanically steered beams
(with slew and link acquisition times on the order of at least
several seconds) is prohibitively difficult using distributed
protocols. A centralized controller is therefore required to
coordinate link establishment between peers.
• No Addressing Hierarchy - In traditional 3GPP standards-
based radio access networks (RANs), the S1 interface be-
tween the EPC and eNodeB uses IP at layer 3, and both the
EPC and each eNodeB could reasonably assume that the other
has a static IP address. The hierarchy inherent in a traditional
RAN’s topology allows for routers in the Distribution Layer
to use routing prefixes in the forwarding information base
(FIB), which helps to minimize the size of forwarding tables.
In contrast, the lack of implicit hierarchy in a UAV-based
Distribution Layer network means that the assignment of
static addresses or address blocks to access points limits our
ability to prefix and aggregate routes in the FIB of network
routers and switches.
• Disruption Avoidance - These networks are designed to
provide Internet access, and most user-traffic uses the TCP
protocol. TCP throughput backs off exponentially in the face
of packet loss, and prolonged disruptions (on the order of
several seconds to minutes, depending on the configuration)
can result in socket closures. These can cause users to
experience call drops in interactive voice and video, cancelled
file transfers, and other problems. It is therefore important
that we avoid disruption to the S1 user plane connection
between the eNodeB and EPC.
• Traffic Engineering - These networks need to support suf-
ficient capacity to carry all traffic between eNodeB and EPC,
or between eNodeBs. The network needs to ensure it can
provide sufficient capability to carry all traffic. For example,
the routing algorithm should investigate use of all available
links, instead of using only the shortest path route.

5. TEMPOROSPATIAL SDN
As previously mentioned, the TS-SDN concept was devel-
oped to capture the potential for SDN controllers to utilize
knowledge of physics and physical relationships to make pre-
dictions about the future state of the lower-level network [5].
Whether in multi-hop wireless mesh/backhaul networks con-
sisting of UAVs and ground stations, or in low-earth orbiting
(LEO) satellite networks [7], the predictably evolving time-
dynamic nature of highly-directional steerable links presents

a significant opportunity to benefit from the application of
TS-SDN.

The advantages of TS-SDN in these networks include:

• Topology Management - Since the entire set of potential
links and paths available at the current time or any near-future
time can be accurately predicted, optimal link sets can be
selected, and unnecessary links (e.g. redundant cross-links
that are not part of an optimal path) can be disabled. This can
provide power savings, among other advantages.
• Proactive Packet Routing - Routes programmed via TS-
SDN can be adjusted in advance of handovers or other events
that would temporarily disrupt a path. Since the physical
timing of link events is highly predictable, packet routes at
the network layer can be updated in direct accordance with
the predicted physical layer events. This can avoid user ser-
vice impacts including dropped packets, reduced throughput,
multimedia stream disruptions, etc.
• Radio Resource Management - Radio parameters such as
channel and transmit power can be centrally controlled in
order to avoid and minimize interference and to comply with
radio spectrum regulations.
• Scheduled operation - Due to the predictable nature of
the system, the controller can schedule operations for each
switch controlled by the TS-SDN controller. This should vir-
tually eliminate the network disruption for expected topology
changes.

Many different control plane architectures are feasible for TS-
SDN. While OpenFlow generally operates remotely between
switches and servers hosting the controller software over a
network, controllers can also be co-located with switches
(e.g. onboard a relay spacecraft). TS-SDN allows centralized
intelligence to completely orchestrate the future network
state, distribute timed directives to localized relay controllers,
and have those directives executed at set times. If control
plane connectivity to the centralized intelligence is broken,
the controller may still deliver these directives to a network
node via a (potentially more expensive) out-of-band control
channel.

6. APPLICATION & IMPLEMENTATION
Google’s implementation of a TS-SDN operating system
follows the general architecture depicted in Figure 1. Its
central component is the Control Layer which interfaces with
a set of SDN applications in the Application Layer and a set
of Control Data Plane Interface (CDPI) agents running on the
network devices in the Infrastructure Layer.

The Control Layer employs a network data model to expose
an abstract, mutable, high-level view of the network to the
SDN applications. The data model consists of a number
of typed entities that describe both networking and physical
attributes of the network nodes and links. Examples of
supported node attributes include: assigned IP address, time-
dynamic position and orientation, transponder ICAO address,
antenna radiation patterns, etc. Examples of network link
attributes include: physical implementation of the link (wired
or wireless; fixed, omnidirectional, or steerable), link state
(enacted or candidate) and time-dynamic quality metrics such
as expected bit error rate. Figure 3 shows an example of a net-
work graph with different types of nodes and their candidate
links. These links are accessible according to models, but are
not yet established in the network.

3

Figure 3. The network data model represents the nodes
(verticies) and links (edges) in the topology and includes

all accessible wired and wireless links.

Figure 4. The network topology is annotated with
required end-to-end packet connectivity and provisioned

flow capacities.

In addition to describing the current state of the network and
its properties, the model also allows SDN applications to
express network configuration objectives, such as a request
to establish end-to-end packet connectivity between a pair
of network nodes or interfaces, or to provision and reserve
a minimum, time-varying network capacity for transiting
network flows. Figure 4 shows an example in which the
data model is expressing that four UAV nodes in the network
need to establish end-to-end packet connectivity with certain
minimum capacities to the EPC node.

The network data model serves as a shared state as well as
an API between SDN applications, managers, and services –
each of which consumes and produces data of certain kinds.
For example, one controller service produces link quality data
based on telemetry from vehicles, weather data, and physics
models. A backhaul request manager sets connectivity objec-
tives as UAVs enter and exit LTE service regions. Together,
this data specifies the input problem to be solved by a separate
SDN application that is responsible for jointly optimizing the
network topology and routing as shown in Figure 5. Our
experience with developing these and other SDN applications
highlights the ease with which the TS-SDN operating system
can be extended to include complex and powerful network
control logic.

The abstract, high-level intents of SDN applications are con-

Figure 5. A traffic engineered solution is created by
finding a satisficing subgraph or spanning tree.

Table 1. Comparison of Three Mesh Routing Protocols

Properties AODV DSDV OLSR
Route Format table

driven
table
driven

table
driven

Route Discovery reactive proactive proactive
Route Maintenance periodic periodic periodic
Core Algorithm searching Bellman-

Ford
Dijkstra

tinuously translated by the Control Layer to the low-level net-
work node state information exchanged with CDPI agents in
the Infrastructure Layer. The information exchanged consists
of state change requests sent to the CDPI agents and state
notifications sent back in the opposite direction. In traditional
SDN systems, this exchange uses one of the existing CDPI
protocols, such as OpenFlow.

In our TS-SDN, however, existing CDPI protocols turned
out to be insufficient for two reasons. First, potentially
intermittent connectivity between the Control Layer and the
CDPI agents and the need to synchronize state changes across
affected nodes imposes the requirement that state change
requests be scheduled for a specified future time. Second,
while existing CDPI protocols only support modification of
forwarding rules in the Infrastructure Layer, the wireless and
temporospatial features of TS-SDN require the control of a
broader range of parameters, such as steerable beam tasking
and cognitive radio control. Therefore, we have developed
a new, OpenFlow-inspired CDPI protocol that facilitates full
control over topology, routing, radio parameters and wireless
link establishment.

7. SDN VS. DISTRIBUTED ROUTING
In SDN, the Control Layer gathers and integrates state infor-
mation from network nodes to form a coherent, abstract view
of the entire network, which is a highly centralized approach.
As explained in prior sections of this paper, a centralized con-
troller is required to coordinate wireless link establishment
in a network that may consist of narrow, highly-directional,
mechanically-steered beams. However, while the establish-
ment and maintenance of an optimal network topology is
tightly coupled with the establishment and maintenance of
an optimal packet routing or switching solution, the use of a
centralized controller for SDN style forwarding is not strictly
required. An alternative is to embed sufficient intelligence
into network nodes themselves so that their behavior and
communication with other nodes leads to the emergence of
an adequate switching/routing solution across the whole net-
work. This section compares the centralized and distributed
approaches to packet forwarding.

Mesh Routing Protocols

In the past two decades, many dynamic routing protocols
have been proposed for wireless ad hoc networks. However
we compare TS-SDN routing with only the three popular
ones implemented in the ns-3 network simulator[8], namely
AODV[9], DSDV[10] and OLSR[11]. Table 1 shows the
comparison of the three protocols from four perspectives:
route format, route discovery mechanism, route maintenance
mechanism and the core algorithm of finding routes.

4

Figure 6. Visualization of the simulated network topology.

Simulation Scenarios

To study the performance of these three routing protocols, we
defined a plausible simulation scenario in the ns-3 network
simulator. The scenario consists of a static network topology
of 487 UAVs and 38 ground stations. Each UAV may
establish wireless mesh/backhaul links with up to 3 other
nodes, while each ground station node may connect to at most
1 UAV. Ground stations are also connected via a wired, point-
to-point packet connection to a network node representing the
EPC and Core Layer of the network. Figure 6 provides a
visualization of the simulated network topology.

We consider the performance of the three protocols in two
scenarios: startup and link failure. In the first scenario, the
three routing protocols start from empty routing tables, and
we study how long it takes them to find routes to the EPC
node for all the UAVs. In the second scenario, we first let
the routing protocols run for the same period of time, during
which they can build routing tables. Then, we break some
links and study how long it takes the routing protocols to
recover from the link failures. Therefore, in this scenario,
the metric to evaluate performance of the routing protocols
is convergence time, i.e., the average period of time it takes
the routing protocols to find routes to the EPC node for all
the UAVs. As such, the definition of convergence time used
here is different from the traditional one, which is the time
until the routing protocols find routes for every node to all
the other nodes. Here, we say the routing protocol converges
for a single UAV if the EPC node receives at least one packet
from that UAV.

We used the existing AODV, DSDV and OLSR models imple-
mented in ns-3. However, since these models are hard-coded
for wireless broadcast networks (e.g., WiFi), we modified the
source code to make them act like point-to-point links in our
network model. Since convergence time of the two proactive
protocols (i.e., DSDV and OLSR) is determined by the route
update period, we set them to small values to be comparable
with the convergence time of AODV. Specifically, in DSDV,
the periodic updating interval is set to 1 second and the
settling time is set to zero. In OLSR, the TC, Mid, Hna and
Hello intervals are all set to 0.5 seconds. The trade-off is
that a smaller route updating period results in more control
overhead throughout the network.

Table 2. Comparison time at startup (in seconds)

Protocol Convergence Time
AODV 0.0238 s
DSDV 0.0579 s
OLSR 2.1358 s

In the startup simulation scenario, we let all the UAVs send
packets to the EPC node at time 0 at a constant bit rate of
50 Kbps. To forward the packets to the EPC node, the routing
protocols needed to first search for routes for all the UAVs.
In the link failure scenario, we first let the routing protocols
run for 800 msec, and then we break some links. Then, at
800 msec into the simulation, all UAVs begin sending packets
to the EPC node at a constant bit rate of 50 Kbps. On the EPC
node, we measure the time required to receive packets from
every UAV in the topology.

Simulation Results

Startup—For the startup scenario, Table 2 shows the average
convergence time of three protocols, in which we can see that
AODV converges the fastest. One reason is that AODV only
searches for routes in an on-demand manner. That is, in our
simulation, all UAVs only search for the route to the EPC
node. In contrast, in both DSDV and OLSR, each UAV must
find routes to all other UAV, ground station, and EPC nodes.
The second reason is that the convergence time of the two
proactive routing protocols is determined by their topology
update period. Shorter update periods can achieve faster
convergence, but it an also generate more control overhead.
Recall that in our simulation, we set the periodic update
interval of DSDV to be 1 second, and we set the TC updating
interval of OLSR to be 0.5 seconds.

Figure 7 illustrates the probability density function (PDF) of
convergence times in the topology. We can see that, given the
aforementioned simulation parameters, AODV achieves the
shortest convergence time while OLSR requires the longest
time to converge.

5

Figure 7. Probability distribution function of mesh
routing protocol startup convergence times for all nodes

to find a route to a designated EPC node.

Figure 8. Probability distribution function of mesh
routing protocol convergence times in repairing a single

route upon link failure.

Link Failure—Figure 8 shows the PDF of convergence time
for the three protocols. We can see that AODV also achieves
the shortest convergence time due to its on-demand feature.
In addition, we can see that DSDV usually converges in less
than 200 msec in our simulated topology. In contrast, when
the TC interval of OLSR is set to 0.5, its route recovery time
is much longer than the other two protocols.

TS-SDN can establish and maintain a wireless mesh/backhaul
topology that is more robust and stable because it computes
a routing solution with global knowledge of the present and
predicted future state of the network. Our simulation con-
sidered the use of a centralized controller for topology man-
agement, while relying on distributed mesh routing protocols
for forwarding (absent TS-SDN). The results show a layer 3
disruption of the S1 interface between the airborne eNodeB
and EPC of between 20 msec and 2 seconds depending on the
choice of mesh routing protocol, plus disruptions due to beam
steering and link establishment time, for every reconfigura-
tion of the Distribution Layer topology. In contrast, TS-SDN
can completely eliminate disruptions by predicting changes
in link accessibility and proactively rerouting provisioned
network flows to avoid disruption during reconfiguration of
the Distribution Layer topology.

It is however still desirable to use distributed routing algo-
rithms and protocols when a UAV node is disconnected from
the controller in the case of an unpredicted link failure. A
distributed routing algorithm can provide routing solutions
for the network while the TS-SDN controller can learn from
the current state of the network and re-program it for a better
solution. This hybrid approach can minimize the service in-
terruption and also avoid using expensive, out-of-band CNPC
communications channels for network reconstitution.

8. CONCLUSIONS
This paper describes a variety of challenges posed by net-
works with nodes carried aboard UAVs. The challenges
originate in the desire to manage the scarce network resources
in the optimal fashion in the face of a range of disruptive,
but generally predictable events, such as changes in vehicle
position over time or the generally long time of wireless
signal acquisition.

We discuss the constraints imposed in this environment on the
network and its control mechanisms, and propose a solution
based on extending SDN architecture to account for time-
dynamic properties of the network.

We describe an actual SDN operating system built at Google.
In particular, we note the role of the network data model as
an API for SDN applications, provide examples of powerful
network control logic implemented as SDN applications in
our SDN operating system and describe some extensions
required by temporospatial SDN in the CDPI protocol.

Finally, we contrast and compare our centralized SDN-based
approach to network routing control with the distributed ap-
proach. We find that the unfavorable trade-offs between con-
vergence time and cost in terms of network overhead make a
TS-SDN approach generally preferable. However, distributed
routing protocols constitute a viable fallback mechanism to
help nodes recover from the loss of connectivity to the SDN
controller.

REFERENCES
[1] F. A. d’Oliveira, F. C. L. d. Melo, and T. C. Devezas,

“High-altitude platforms - present situation and tech-
nology trends,” Journal of Aerospace Technology and
Management, vol. 8, no. 3, pp. 249–262, 2016.

[2] A. Vahdat, “SDN @ Google: Why and how,” Open
Networking Summit, 2013.

[3] O. Committee et al., “Software-defined networking:
The new norm for networks,” Open Networking Foun-
dation, 2012.

[4] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo,
“Software defined wireless networks: Unbridling
SDNs,” in Software Defined Networking (EWSDN),
2012 European Workshop on, Oct 2012, pp. 1–6.

[5] B. Barritt and W. Eddy, “Temporospatial SDN for
aerospace communications,” 2016.

[6] K. Raza and M. Turner, “Cisco network topology and
design,” Retrieved November, vol. 29, p. 2008, 2002.

[7] B. Barritt and W. Eddy, “SDN enhancements for LEO
satellite networks,” in 34th AIAA International Commu-
nications Satellite Systems Conference, 2016, p. 5755.

[8] G. F. Riley and T. R. Henderson, “The ns-3 network
simulator,” in Modeling and Tools for Network Simu-
lation. Springer, 2010, pp. 15–34.

[9] I. D. Chakeres and E. M. Belding-Royer, “AODV rout-
ing protocol implementation design,” in Distributed
Computing Systems Workshops, 2004. Proceedings.
24th International Conference on. IEEE, 2004, pp.
698–703.

[10] G. He, “Destination-sequenced distance vector (DSDV)
protocol,” Networking Laboratory, Helsinki University
of Technology, pp. 1–9, 2002.

6

[11] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti,
A. Qayyum, and L. Viennot, “Optimized link state rout-
ing protocol for ad hoc networks,” in Multi Topic Con-
ference, 2001. IEEE INMIC 2001. Technology for the
21st Century. Proceedings. IEEE International. IEEE,
2001, pp. 62–68.

BIOGRAPHY[

Brian Barritt is a software engineering
Tech Lead/Manager at Google, where he
has worked on building the Project Loon
and Titan Aerospace networks. Prior
to joining Google, Brian co-founded
Alanax Technologies, a startup special-
izing in the modeling & simulation of
aerospace networks. He has led success-
ful engineering projects at Cisco and
for NASA’s Space Communications and

Navigation (SCaN) program. Brian holds a BS and MS in
Computer Engineering as well as an MBA, and he’s currently
a part-time Ph.D. Candidate at Case Western Reserve Uni-
versity.

Tatiana Kichkaylo is a software engi-
neer at Google, where she worked on op-
timisation for temporospatial networks,
modeling of physical systems, and con-
trol of steerable antennas. Prior to join-
ing Google, she was a research scientist
at USC ISI working on mission planning,
systems engineering, and decision sup-
port systems. Tatiana holds a Ph.D. in
Computer Science from New York Uni-

versity.

Ketan Mandke is a software engineer
at Google, where he works on build-
ing wireless networks. Prior to join-
ing Google, he implemented software-
defined radio systems and developed sig-
nal processing, detection, and estima-
tion algorithms for geolocation. Ketan
holds a Ph.D. in Electrical Engineering
from the University of Texas at Austin.

Adam Zalcman is a software engineer
at Google, where he has worked on
the Project Loon, led and launched a
successful internal software project and
worked on a number of distributed stor-
age systems behind Drive and Gmail.
Prior to joining Google, Adam devel-
oped operational spacecraft simulators
for the European Space Agency and led
an international team in GTOC4 (space-

craft trajectory design competition). Adam holds a MSc in
Computer Science from Jagiellonian University in Krakow,
Poland.

Victor Lin is a Tech Lead/Manager at
Google, where he has worked on build-
ing various SDN networks for Google.
Prior to joining Google, Victor worked
on wireless network technology for var-
ious startup companies in Silicon Val-
ley. Victor holds a MS in Computer
Science from University of Minnesota,
Minneapolis.

7

