
Qubitization of Arbitrary Basis Quantum Chemistry
Leveraging Sparsity and Low Rank Factorization
Dominic W. Berry1, Craig Gidney2, Mario Motta3, Jarrod R. McClean2, and Ryan Bab-
bush2

1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
2Google Research, Venice, CA 90291, United States
3Division of Chemistry, California Institute of Technology, Pasadena, CA 91125, United States

2019-11-27

Recent work has dramatically reduced the gate complexity required to quantum
simulate chemistry by using linear combinations of unitaries based methods to exploit
structure in the plane wave basis Coulomb operator. Here, we show that one can
achieve similar scaling even for arbitrary basis sets (which can be hundreds of times
more compact than plane waves) by using qubitized quantum walks in a fashion that
takes advantage of structure in the Coulomb operator, either by directly exploiting
sparseness, or via a low rank tensor factorization. We provide circuits for several
variants of our algorithm (which all improve over the scaling of prior methods) including

one with Õ(N3/2λ) T complexity, where N is number of orbitals and λ is the 1-norm of
the chemistry Hamiltonian. We deploy our algorithms to simulate the FeMoco molecule
(relevant to Nitrogen fixation) and obtain circuits requiring about seven hundred times
less surface code spacetime volume than prior quantum algorithms for this system,
despite us using a larger and more accurate active space.

1 Introduction
Quantum computers were originally proposed as special purpose tools for efficiently modeling
physical quantum mechanical systems [1]. Ever since then quantum simulation has been central to
the study of quantum computing [2] while also regarded as one of its most promising applications.
In recent years, progress in quantum hardware has led to great optimism for the field. However, a
large gap remains between expectations for the technology and the expected value of the relatively
few known applications that appear viable on even a small fault-tolerant quantum computer [3].
This disparity has underscored the importance of estimating and reducing the resources required
to implement quantum algorithms within a fault-tolerant cost model.

The most widely studied and anticipated application of quantum simulation is chemistry [4].
Most work on this topic has focused on providing solutions to the electronic structure problem by
using phase estimation to sample molecular eigenstates and estimate eigenvalues [5, 6]. Even at
small problem sizes of around a hundred qubits, efficient and accurate solutions to this problem
could prove transformative for various fields of study and the development of technologies such as
better batteries, pharmaceuticals and industrial catalysts.

In order to represent molecular systems on a quantum computer one usually discretizes the
many-body wavefunction using a basis of single-particle functions referred to as orbitals. The
vast majority of quantum chemistry calculations use either plane wave orbitals, or more elaborate
orbitals that are commonly composed of linear combinations of Gaussians. Plane waves are often
chosen in calculations of periodic materials and lead to highly structured Hamiltonians. The
work of [7] showed that exploiting this structure leads to asymptotic advantages for quantum

Dominic W. Berry: dominic.berry@mq.edu.au
Ryan Babbush: babbush@google.com

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:1

90
2.

02
13

4v
4

 [
qu

an
t-

ph
]

 2
7

N
ov

 2
01

9

https://quantum-journal.org/?s=Qubitization%20of%20Arbitrary%20Basis%20Quantum%20Chemistry%20Leveraging%20Sparsity%20and%20Low%20Rank%20Factorization&reason=title-click
https://quantum-journal.org/?s=Qubitization%20of%20Arbitrary%20Basis%20Quantum%20Chemistry%20Leveraging%20Sparsity%20and%20Low%20Rank%20Factorization&reason=title-click
https://orcid.org/0000-0003-3446-1449
https://orcid.org/0000-0002-2809-0509
https://orcid.org/0000-0001-6979-9533
https://orcid.org/0000-0001-6979-9533
mailto:dominic.berry@mq.edu.au
mailto:babbush@google.com

algorithms. Today, the best-scaling quantum algorithms for chemistry in second quantization use
plane waves; with either O(N3) gate complexity (with small constant factors) [8, 9] or O(N2 logN)
gate complexity (with large constant factors and more spatial complexity) [10].

A major limitation to using plane waves in second quantization is that one needs a very large
number of spin-orbitals to represent many molecular systems to chemical accuracy. The work of
[11] suggests resolving this problem by simulating the plane wave Hamiltonian in first quantization

to achieve Õ(N1/3η8/3) gate complexity, where η is the number of electrons. With such low scaling
in N , one might be able to use an extremely large plane wave basis. Unfortunately, the practicality
of that algorithm is unclear because it has not been compiled to explicit circuits, and it is unclear
how large the basis would need to be [10].

The more obvious remedy to the low resolution of plane waves is to use a more compact basis.
Indeed, the majority of proposals for the quantum simulation of chemistry focus on using very
compact molecular orbitals. However, using molecular orbitals leads to complex Hamiltonians
with coefficients defined in terms of integrals and O(N4) distinct terms. As a consequence, the
first quantum algorithms in this representation had gate complexity O(N11) [12, 13]. Since then, a
large community of researchers has worked to significantly reduce the cost of simulation in this rep-
resentation through tighter bounds [13–15], better mappings between fermions and qubits [16–20],
improved state preparation techniques [21–24], application of new time-evolution strategies [25–
27], considerations of fault-tolerant overheads [28–30] and other representational and algorithmic
insights [31–36].

The lowest rigorous complexity of prior work on second quantized arbitrary basis chemistry
simulation is either the Õ(N5) scaling of [26], or the Õ(λ2) scaling of [27], where λ is the 1-norm
of the Hamiltonian. However, the [26] algorithm suffers from large constant factors in the scaling,
and the approach of [27] scales quadratically worse than post-Trotter methods with respect to the
evolution time. In practice, we expect the most competitive prior method would be Lie-Trotter
product formulae [36], but the step size for that approach has not been studied. These results are
challenging to compare directly because the scaling of λ with respect to N depends on whether N
is growing towards the thermodynamic (large system) or continuum (large basis) limit. Here we

provide an algorithm with Õ(N3/2λ) T complexity, which appears better than all prior work so
long as λ = Ω(N3/2), which is usually the case.

Prior papers to compile a quantum chemistry algorithm to the level of Clifford + T gates
and estimate the resources required within an error-correcting code are [8, 9, 29]. These papers
focus on minimizing T complexity or Toffoli complexity because these gates cannot be transversely
implemented within practical codes [30, 37]. To implement these gates one must distill magic
states or Toffoli states, which takes orders of magnitude more spacetime volume (qubitseconds)
than executing Clifford gates and also consumes a very large number of physical qubits [38, 39].

The work of [29] focused on the simulation of an active space of the FeMo cofactor of the
Nitrogenase enzyme, aka “FeMoco” (stoichiometry Fe7MoS9C). FeMoco is the active site for the
catalytic conversion of Nitrogen gas into ammonia (fertilizer) in biological processes [40]. This
reaction is of great importance; while the mechanism is not understood due to complex electronic
structure, biological Nitrogen fixation is significantly more efficient than the industrial alternative.
The paper by RWSWT [29] focused on a 108 qubit active space, and determined that roughly
1014 T gates would be required. If implemented in the surface code using gates with 10−3 error
rates, the most efficient protocols for magic state distillation in this context require roughly 14
qubitseconds [30, 37] of spacetime volume. At those rates, just distilling the magic states needed
for [29] would require over four million qubitdecades (e.g., four million qubits running for a decade
or a billion qubits running for two weeks), which is not practical.

The works of [8, 9] show that one can perform similar sized chemistry simulations with roughly
108 T gates, but in a plane wave rather than Gaussian basis. By application of techniques from [37]
such calculations could be implemented in the surface code at 10−3 physical error rates with fewer
than a million physical qubits in just hours. However, one would require far more plane waves
to treat FeMoco, so these algorithms are not appropriate. In this paper, we develop an approach
that has T counts somewhere in between those discussed in [8, 9] and [29] and is compatible with
compact molecular orbitals appropriate for a system like FeMoco.

Our approach is to perform phase estimation directly on a quantum walk [41] generated using
qubitization oracles [25], designed to simulate Hamiltonians in the linear combinations of unitaries

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 2

query model [42]. Our analysis of the phase estimation algorithm is nearly identical to that in [8],
which realizes a proposal suggested in [22, 23] based on qubitization [25]. We make heavy use of
the unary iteration technique introduced in [8] (see also a similar idea in [43]) as well as the QROM
based state preparation and coherent alias sampling technique that was originally developed in [8]
and then improved to lower T gate complexity in [44]. Finally, a key aspect of our algorithm is
to leverage the sparse nature of the Coulomb operator, using a low rank representation recently
discussed in [36].

In the case where we limit the number of ancilla qubits used, mostly using the system qubits as
“dirty” ancilla, our algorithm can obtain chemical accuracy for FeMoco with about 2×1013 Toffoli
gates, using the active spaces of either Reiher, Wiebe, Svore, Wecker, and Troyer (RWSWT) [29]
or Li, Li, Dattani, Umrigar, and Chan (LLDUC) [45]. If we allow a large number of ancilla then
the number of Toffoli gates achieved with our most efficient approach is about 2 × 1011 for the
RWSWT orbitals, or 8 × 1010 for the LLDUC orbitals. Throughout we focus on complexities in
terms of Toffoli counts, because the non-Clifford gates we use are exclusively Toffolis. The cost
in terms of T gates will be four times as large but since we are bottlenecked by Toffolis we can
directly distill Toffoli states, which is possible with roughly the same cost as distilling two magic
states for T gates [37]. Although we improve upon the distillation spacetime volume required by
[29], at 10−3 error rates we still require about three million qubitweeks of state distillation, which
improves over previous results by roughly a factor of seven hundred, but is still substantial.

The paper is organized as follows. In Section 2 we review how it is possible to truncate the
Coulomb operator to low rank, and establish notation. In Section 3 we describe the Hamiltonian as
a linear combination of unitaries, and how to perform the state preparation and controlled unitary
operations. We give calculations of the complexities obtained with the low rank truncation for
FeMoco in Section 4. In Section 5 and Section 6 we discuss techniques that can be used to further
lower the cost of qubitization based quantum chemistry simulations by leveraging unstructured
sparsity that may exist in the Coulomb operator. We conclude in Section 7. In Appendix A,
Appendix B, and Appendix C we discuss technical details relating to how the qubitization state
preparation oracle is implemented. In Appendix D we discuss the scaling of the λ parameter for
more general chemical systems. In Appendix E we give the details for minor contributions to the
cost, and in Appendix H we give circuits and exact costings for arithmetic.

2 Low Rank Tensor Factorization of the Coulomb Operator
In this section we review representations of the Coulomb operator based on low rank tensor de-
compositions. These ideas have existed in some form in the classical electronic structure literature
for decades [46–51], and were recently discussed in the context of Trotter based electronic structure
simulations in [36].

We first define the electronic structure Hamiltonian in an arbitrary second quantized basis as

H =
∑

σ∈{↑,↓}

N/2∑
p,q=1

hpqa
†
p,σaq,σ + 1

2
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

hpqrsa
†
p,αa

†
q,βar,βas,α (1)

=
∑

σ∈{↑,↓}

N/2∑
p,q=1

Tpqa
†
p,σaq,σ +

∑
α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Vpqrsa
†
p,αaq,αa

†
r,βas,β (2)

where a†p and ap are fermionic creation and annihilation operators for spin-orbital φp(r). The
scalar coefficients hpq and hpqrs are the one- and two-electron integrals over the basis functions,

hpq =
∫
dr1 φ

∗
p(r1)

(
−∇

2

2 + U(r1)
)
φq(r1), (3)

hpqrs =
∫
dr1 dr2 φ

∗
p(r1)φ∗q(r2)V (r1, r2)φr(r2)φs(r1), (4)

where U(r1) and V (r1, r2) are the nuclear and electron-electron potentials, respectively. In Eq. (2)
we have implicitly defined Tpq and Vpqrs with respect to the usual integrals by rearranging the

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 3

Coulomb operator in so-called “chemist notation” with a†a a†a instead of a†a†a a, and absorbing the
factor of 1/2 into the coefficients. Reordering operators according to the fermionic anticommutation
relations {a†p, aq} = δpq also slightly changes the one-body coefficients.

Assuming real basis functions (such as molecular orbitals), Tpq and Vpqrs are real and have the
symmetries [52],

Tpq = Tqp, Vpqrs = Vsrqp = Vpqsr = Vqprs = Vqpsr = Vrsqp = Vrspq = Vsrpq, (5)

which are important for properties of the tensor decompositions we will discuss. The rank-4 tensor
V has N/2 elements along each axis and we can reshape V (e.g. using “numpy.reshape”) into an
N2/4 × N2/4 matrix W which has composite indices pq (representing the first electron) and rs
(representing the second electron). This procedure is commonly referred to in the applied math
literature as the matricization of a tensor.

The W matrix is symmetric and positive semidefinite. It is important to emphasize here
that we have focused on the spatial orbital representation of the two-electron integrals in the
chemist ordering. In the physicist ordering, the resulting matrix has full rank, and no reduction
of cost is possible. Similarly, introduction of fermionic symmetries induced in the full spin-orbital
Hamiltonian into the coefficients (e.g. removing coefficients of terms like a†ia

†
jakak) will destroy the

required structure for efficient simulation. This is because we are exploiting the low rank nature
of the underlying spatial Coulomb interaction through matrix factorization, and it is easy to lose
this structure if one is not careful. We will diagonalize it as

Wg(`) = ω` g
(`), W =

L∑
`=1

ω` g
(`)
(
g(`)
)T

, (6)

where g(`) is the `th eigenvector of W having size N2/4 and ω` ≥ 0 is its associated eigenvalue.
Since we are taking V and hence W to be real, g(`) will also be real. The rank of W is denoted L.

If W were of full rank then it would be the case that L = N2/4; however, the integrals that
one encounters in molecular electronic structure applications contain considerable structure. As a
consequence of this structure, it turns out that W is not full rank, and instead L ∈ O(N). The
physical basis for this result is the pairwise nature of the Hamiltonian interactions, arising from
the Coulomb kernel in a real-space representation. This property is regularly exploited in classical
approaches to electronic structure in techniques such as “density fitting” [47, 48] which is commonly
performed using a Cholesky decomposition [49–51] (which is similar to the diagonalization in Eq. (6)
but is numerically more efficient and permits different left and right eigenvectors).

We use the notation g
(`)
pq to denote the entry of g(`) indexed by the composite index pq (the

same composite index we used to flatten V into W). The eigenvectors g(`) inherit certain symmetry

properties of V , with the result that g
(`)
pq is symmetric between p and q. We can express the two-

electron operator in terms of g
(`)
pq as

∑
α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Vpqrsa
†
p,αaq,αa

†
r,βas,β =

L∑
`=1

ω`

 ∑
σ∈{↑,↓}

N/2∑
p,q=1

g(`)
pq a
†
p,σaq,σ

2

. (7)

While common in electronic structure, this representation was first proposed in a quantum comput-
ing context in [15]; however, that work did not appear to appreciate the low rank aspect, which was
first exploited for advantage in quantum computing in [36]. Whereas there are O(N4) seemingly
distinct coefficients on the left side of this equation, there are O(N2L) = O(N3) distinct coeffi-
cients on the right side of the equation. Due to symmetry, the number of independent coefficients
for each ` is N2/8 +N/4, giving a total number of L(N2/8 +N/4).

The work of [36] also discussed further factorizations of the Hamiltonian based on the results
of [53]. There, they showed that one can also diagonalize and truncate the matrix with elements

g
(`)
pq which turns out to have only O(logN) significant eigenvalues in certain asymptotic limits.

Furthermore, one can rotate into the basis where the operator is diagonal using O(N logN) oper-
ations. One might think this would be useful for linear combinations of unitaries based quantum
simulation, and with sufficient cleverness, that might be the case. However, we do not focus on

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 4

that second factorization in this work because it adds many intricacies, is less well understood than
the first factorization, and might not offer an asymptotic advantage in T complexity for technical
reasons related to the improved scaling that comes from using the improved “QROAM” discussed
later in this work.

3 LCU based simulation
A number of techniques for simulating Hamiltonian evolution are based upon the linear combination
of unitaries approach [42, 54]. This approach enables one to achieve a sum of unitaries that yields
another unitary operation. Say the operation to perform is given in the form U =

∑
j wjUj , where

wj are real and positive. First a control register is prepared in the state
∑
j

√
wj/λ |j〉, where

λ =
∑
j wj is needed for normalization. We call this preparation operation “prepare”. Then a

controlled Uj operation is performed on the target system, an operation we will call “select”.
The inverse prepare operation is performed, then if the control system is measured in the state
|0〉, then the operation U will have been applied to the target system. This operation only has
probability 1/λ2 of success, so to achieve U with unit success probability one can use ∼ λ steps of
oblivious amplitude amplification.

This formalism was generalized by the block encoding, or “qubitization”, formalism of [25],
where one can take the Hamiltonian to be a linear combination of unitaries, and use quantum
signal processing [55] to obtain Hamiltonian evolution. For quantum chemistry, we are typically
interested in the eigenvalues of the Hamiltonian. In that case, instead of performing the Hamil-
tonian evolution, one can instead consider performing phase estimation on a single step from the
qubitization formalism of [25]. This step corresponds to expressing the Hamiltonian as a linear
combination of unitaries using two prepare operations and one select operation, as well as a
reflection as one would do for oblivious amplitude amplification. The eigenvalues of this step will
then be e±i arccos(Ek/λ), where Ek are the eigenvalues of the Hamiltonian. The complexity is fun-
damentally dependent on the quantity λ =

∑
j wj . The overall complexity will be proportional to

λ multiplied by the complexity of the select and prepare operations.

3.1 The Hamiltonian as a linear combination of unitaries
We can map a†paq + a†qap and the number operator np = a†pap to qubits using the Jordan-Wigner
transformation as

a†p,σaq,σ + a†q,σap,σ 7→
(
Xp,σ

~ZXq,σ + Yp,σ ~ZYq,σ

)
, a†p,σap,σ 7→

1
2 (1− Zp,σ) , (8)

where X, Y and Z are the Pauli operators, the subscripts indicate the qubits these operators act
on, and Ap ~ZAq is shorthand for ApZp+1 · · ·Zq−1Aq. Thus, our Hamiltonian can be represented as
the linear combination of unitaries:

H 7→ 1
2
∑
p 6=q,σ

Tpq

(
Xp,σ

~ZXq,σ + Yp,σ ~ZYq,σ

)
+ 1

2
∑
p,σ

Tpp (1− Zp,σ)

+ 1
4
∑
`

ω`

 ∑
p 6=q,σ

g(`)
pq

(
Xp,σ

~ZXq,σ + Yp,σ ~ZYq,σ

)
+
∑
p,σ

g(`)
pp (1− Zp,σ)

2

. (9)

The terms in the first line in this expression correspond to the one-body operator T , and the
terms in the second line correspond to the factorized two-body operator. Here the ranges of the
summations are the same as for H.

Given the Hamiltonian expressed as a linear combination of unitaries, we can now give the
expression for λ. In the following we will use λT to refer to the sum of weights for the one-body
term as in Eq. (2), and use λW to refer to the sum of weights for Coulomb operator in its factorized
form, as on the right-hand side of Eq. (7). We have λ = λT + λW , with

λT = 2
N/2∑
p,q=1

|Tpq| , λW = 4
L∑
`=1

ω`

 N/2∑
p,q=1

∣∣∣g(`)
pq

∣∣∣
2

. (10)

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 5

Here the factors of 2 and 4 in front of the sums are due to summation over the up and down spins.
By simulating the factorized Hamiltonian we are slightly increasing λ over what it would be if we
used the Hamiltonian in its original form from Eq. (2). Denoting by λV the sum of weights for the
potential term in the form Eq. (2), one has

λV = 4
N/2∑

p,q,r,s=1
|Vpqrs| = 4

N/2∑
p,q,r,s=1

∣∣∣∣∣
L∑
`=1

ω` g
(`)
pq g

(`)
rs

∣∣∣∣∣ ≤ 4
L∑
`=1

ω`

N/2∑
p,q,r,s=1

∣∣∣g(`)
pq

∣∣∣ ∣∣∣g(`)
rs

∣∣∣ = λW . (11)

However, we do not expect any difference between the asymptotic scaling of λV and λW with
respect to N .

Because these quantities directly scale the complexity of our approach, techniques for reducing
the effective value of λ are potentially important. Perhaps the simplest idea to reduce λ might be
to optimize it under rotations of the single-particle basis (and to accordingly rotate the initial state
using the Givens rotation technique in [56]). Another example of such a technique is to modify
the Hamiltonian by adding to it a linear combination of n-representability [57] equality constraints
that have provably zero expectation value. This strategy was introduced and shown to be effective
in Section V of [58]. Other techniques that might be useful for this include mean-field background
subtraction [59] and the use of soft pseudopotentials [60]. However, one should make sure that
these methods are applied in a way that does not increase the rank of the Coulomb operator,
which would be counterproductive for the overall complexity. Note finally that interaction picture
techniques [10] do not appear to be helpful here because while λV � λT , the V operator cannot
be fast-forwarded.

In order to perform phase estimation via the qubitization/LCU approach, we need to be able
to perform the state preparation prepare and controlled unitaries select. The techniques to
achieve these operations are described in the following subsections.

3.2 State preparation
The state we would need to prepare is

|ψ〉 = |0〉 |+〉 |0〉
∑
p,q,σ

√
|Tpq|
λ
|θ(0)
pq 〉 |0〉 |p, q, σ〉 |0〉

+
∑
`

√
ω`
λ
|`〉 |+〉 |+〉

∑
p,q,r,s,α,β

√
|g(`)
pq g

(`)
rs | |θ(`)

pq 〉 |θ(`)
rs 〉 |p, q, α〉 |r, s, β〉 , (12)

where λ is as defined in Eq. (10), |+〉 = (|0〉+ |1〉)/
√

2, α and β are spin labels, and θ
(`)
pq are used

to obtain the correct signs on the terms. They are given by

θ(0)
pq =

{
0, Tpq > 0,
1, Tpq < 0,

θ(`)
pq =

{
0, g

(`)
pq > 0,

1, g
(`)
pq < 0.

(13)

The first register gives `, with |0〉 reserved for the first term. The first term gives the first two
terms in Eq. (9), with the first term in Eq. (9) obtained for p 6= q and the second term obtained
for p = q. The |+〉 state on the second qubit selects between 1 and Zp,σ for p = q. We use p < q

and p > q to select between Xp,σ
~ZXq,σ and Yp,σ ~ZYq,σ for p 6= q, in a similar way as in [8]. The

second term gives the third term in Eq. (9), with the sums over p, q and r, s yielding the square.
The two |+〉 states in registers 2 and 3 select between 1 and Zp,α for p = q and between 1 and
Zr,β for r = s.

There are (L+1)(N2/8+N/4) = O(N3) unique coefficients, which indicates the state prepara-
tion can be performed with similar complexity. Using the QROM and subsampling techniques from
[8], the T complexity can be expected to be O(N3 + log(1/ε)), where ε is the required precision.
By using a more sophisticated preparation scheme it will be possible to reduce the number of T
gates, as will be described below.

To perform the state preparation, we start with all registers in the |0〉 state, then perform the
following steps.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 6

1. Prepare a superposition over the first register, to produce the state|0〉
√√√√∑

p,q

2|Tpq|
λ

+ 2
∑
`

√
ω`
λ
|`〉
∑
p,q

|g(`)
pq |

 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 . (14)

2. Perform a Hadamard on the second register, and a Hadamard on the third register controlled
on the state of the first register being |`〉 for ` > 0, giving|0〉 |+〉 |0〉

√√√√∑
p,q

2|Tpq|
λ

+ 2
∑
`

√
ω`
λ
|`〉 |+〉 |+〉

∑
p,q

|g(`)
pq |

 |0〉 |0〉 |0〉 |0〉 . (15)

3. Prepare a superposition over register six controlled on the first register. For the first register
in the state |0〉, we prepare weights

√
|Tpq|, and for |`〉 with ` > 0 we prepare weights

proportional to

√
|g(`)
pq |. The state is then

|0〉 |+〉 |0〉
∑
p,q,σ

√
|Tpq|
λ
|0〉 |0〉 |p, q, σ〉 |0〉

+
√

2
∑
`

√
ω`
λ
|`〉 |+〉 |+〉

∑
p,q,α

√
|g(`)
pq |
√∑

r,s

|g(`)
rs | |0〉 |0〉 |p, q, α〉 |0〉 . (16)

4. Perform another state preparation on register seven, controlled on register one. For register

one in the state |`〉 with ` > 0 we prepare weights proportional to

√
|g(`)
rs |, giving

|0〉 |+〉 |0〉
∑
p,q,σ

√
|Tpq|
λ
|0〉 |0〉 |p, q, σ〉 |0〉

+
∑
`

√
ω`
λ
|`〉 |+〉 |+〉

∑
p,q,r,s,α,β

√
|g(`)
pq g

(`)
rs | |0〉 |0〉 |p, q, α〉 |r, s, β〉 . (17)

5. Use QROM to output |θ(`)
pq 〉 in register four and |θ(`)

rs 〉 in register five.

We will allow total error ε. Because there are a number of steps, each step will have an allowable
error some fraction of ε. Here we aim to estimate the leading-order term in the complexity, and
the allowable error will only appear in logarithms, so we will simply give log(1/ε), rather than
subdividing the allowable error between the different steps. Throughout we will use log to indicate
logarithms to base 2.

For the state preparation in step 1, the approach in [8] gives complexity in terms of Toffolis
L +O(log(1/ε)). The complexity in step 1 will be negligible compared to the complexity of later
steps. The second step is just controlled operations on two qubits, and has negligible complexity
compared to the other steps.

Steps 3 and 4 have the greatest complexity. A simple method is to use the unary iteration
procedure as described in [8] (Section IIIA) combined with the state preparation procedure in
[8] (Section IIID). The unary iteration procedure allows us to progressively perform an operation
controlled on a register being |0〉, then |1〉, and so forth, with the overall complexity of the control
in terms of the number of Toffoli gates being L (since there are here L+ 1 possible values). That
unary iteration procedure is performed on the first register, and for each value of this register, the
state preparation is performed on the sixth register (for step 3) or the seventh register (for step 4).

There is a subtlety in that the values of p and q range over N/2 values, which need not be a
power of 2. The result from [8] is for contiguous binary values. In the case where there are two
subregisters, then we can iterate through the register for p, and use its output qubit as the control
for the unary iteration over the register for q. The complexity for iterating over p is N/2− 1, and

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 7

for each of the N/2 values of p the complexity of iterating over q is N/2 − 1. That gives a total
complexity for iterating over p and q that is N2/4− 1.

As a result the complexity of the state preparation is N2/4 + O(log(1/ε)) for each ` in both
steps 3 and 4. In each case the complexity is N/2 + O(log(1/ε)) for zero on the first register for
step 3 only. The total complexity is then N/2 + LN2/2 + O(L log(1/ε)). We can significantly
reduce the complexity using three techniques.

A) Take advantage of the symmetry of g
(`)
pq and Tpq.

B) Combine the preparation for all values of ` together.

C) Use the QROM of [44] which allows one to further reduce Toffoli complexity at the cost of
extra ancilla.

To take advantage of the symmetry, we can initially prepare a state proportional to

√
2
∑
p>q

√
|g(`)
pq | |p, q, α〉+

∑
p

√
|g(`)
pp | |p, p, α〉 . (18)

Then we have this state tensored with a register in a |+〉 state. For preparation on register six,
the |+〉 state is on register two (step 3), or for preparation on register seven the |+〉 state is on
register three (step 4).

We can then perform a swap between the registers storing p and q controlled by this register,
giving state ∑

p>q

√
|g(`)
pq | |0〉 |p, q, α〉+

∑
p<q

√
|g(`)
pq | |1〉 |p, q, α〉+

∑
p

√
|g(`)
pp | |+〉 |p, p, α〉 . (19)

This gives the correct weighting for each of the terms in the superposition. As always with these
state preparations for LCU, the prepared state is permitted to be entangled with junk registers.
For p 6= q the additional ancilla may be regarded as a junk register, whereas for p = q this register
will be used to distinguish between 1 and Zp,α operations. The controlled swap costs O(logN)
Toffolis, which is negligible compared to other steps. As a result of this simplification, there are
(L+ 1)(N2/8 +N/4) distinct values required in step 3, and L(N2/8 +N/4) distinct values in step
4.

To explain technique B for reducing the complexity, the state preparation is performed in the
following way.

(i) Create an equal superposition over j for the register where we are performing the state
preparation.

(ii) Output alternate indices (|altj〉 in [8]) and probabilities (|keepj〉 in [8]) using a QROM.

(iii) Perform an inequality test between the probability register and an ancilla in an equal super-
position state.

(iv) Perform a controlled swap between the register where we are performing the state preparation
and the alternate index register based on the result of the inequality test.

We also need to create superpositions over the spin registers, but that can be done trivially with
Hadamards. If we were to iterate through ` and perform state preparation for each value of `, we
would be performing the entire procedure for each value of `. The insight here is to note that we
can call the QROM for all `, then perform the inequality test and controlled swap. That means
we only need to perform the inequality test and controlled swap once, instead of L times.

Technique C for reducing the complexity is the most significant. The dominant cost in the
procedure is that of the QROM, which has cost of (2L + 1)(N2/8 + N/4) Toffolis if we use the
procedure of [8]. That is, we need to output (L+ 1)(N2/8 +N/4) or L(N2/8 +N/4) numbers in
QROM, with outputs of size log(N2) + log(1/ε) +O(1). Here log(N2) is the size of the register for
the alternate values, and the size of the register for the probability is log(1/ε) +O(1).

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 8

The complexity in terms of Toffolis can be reduced by using a more advanced QROM based
on that of [44]. This QROM uses a combination of the QROM of [8] and a technique for trad-
ing between spatial complexity and gate complexity in a fashion that accomplishes something
reminiscent of what authors aspired to demonstrate with the original concept of “QRAM” [61].
Thus, here we will refer to the more advanced QROM of [44] as “QROAM”. In the following
we will use d for the number of entries that we must look up using the QROM (here we have
d ≈ L(N2/8 + N/4)), k for an arbitrary power of two, and M for the size of the output in
qubits (here we have M = log(N2/ε) +O(1)). Then the complexity for computing the QROM is
dd/ke + M(k − 1), and for uncomputing the QROM is dd/ke + k (see Appendix C). Moreover,
it is possible to choose the k for the uncompute to be different from that for the compute step.
The number of additional ancillae needed is (k − 1)M . It is also possible to use ancillae that are
already being used for some other purpose, called “dirty” ancillae. Using these dirty ancillae, the
compute cost is over twice as much, 2dd/ke + 4M(k − 1) (see Appendix A), and the uncompute
cost is changed to 2dd/ke + 4k. The compute and uncompute are used for the state preparation
and inverse state preparation, so the combined cost is what needs to be considered.

The results we use here are improved slightly over those in [44]. The Toffoli count achieved
in [44] is 2d/k + 8Mk (from the last column and last row of Table II, after dividing by 4 to
account for the fact they are counting T gates and also after substituting d, k and M for N , λ
and b respectively). Our corresponding Toffoli count is 2d/k + 4M(k − 1). The factor of two
improvement in the Mk term is because we use a linear depth swapping network instead of a
logarithmic depth swapping network. A logarithmic depth network requires spreading control
qubits for parallel CSWAPs over many ancillae, but because the ancillae are dirty each CSWAP
must be toggled-controlled which involves repeating the operation twice. The small improvement
from Mk to M(k − 1) in the ancilla count is due to using |+〉 states instead of a spare register in
order to ensure the output is only toggled once. There is also an improvement from Mk to M(k−1)
in the Toffoli count, but that is due to a more careful accounting of the number of controlled swaps
needed.

The most significant improvement we make is the application of measurement based uncom-
putation, as described in Appendix C, which removes the dependence on M in the complexity
when uncomputing a lookup. The principle is similar to that used to reduce the Toffoli complex-
ity of addition in [62]. Instead of just reversing the circuit for a table lookup, you can perform
X measurements on the output qubits. Based on the measurement result you can perform a
classically-conditioned phase fixup. This procedure also means that the ancillae used by the for-
ward QROAM only need to be used temporarily, and can be erased after the QROAM and reused.

There is a subtlety in using these results in that the QROAM is for a single control register
which can take a contiguous set of values. In contrast, here we have three registers with `, p, and
q. In this case we can simply convert to a single contiguous register for the iteration. We can
compute a value for a single contiguous register s from `, p, and q as

s = `(N2/8 +N/4) + p(p+ 1)/2 + q. (20)

The p(p + 1)/2 term takes account of the fact that we are preparing p and q only for p ≥ q. We
can use QROAM directly on s with just an additional logarithmic overhead for the arithmetic.

We will consider two cases. First is that where we attempt to minimize the cost in terms of
Toffolis, but use a large number of ancillae. In that case, for the compute we can take k ≈

√
d/M ,

in which case the cost of the compute step is approximately 2
√
dM . For the uncompute, we can

take k ≈
√
d, which gives an uncompute cost of approximately 2

√
d, for a total cost of the compute

and uncompute of 2
√
d(
√
M + 1). For our d ≈ LN2/8 and M ≈ log(N2/ε), we get a combined

cost of approximately √
LN2 log(N2/ε)/2 . (21)

We find that this approach needs a number of extra ancillae√
LN2 log(N2/ε)/8 . (22)

As L = O(N) the complexity in terms of Toffolis is O(N3/2
√

log(N/ε)), and a similar number of
ancillae are needed.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 9

Alternatively, if we are attempting to minimize the number of additional ancillae needed, we
can use “dirty” ancillae instead (ones that are not initialized to zero). Fortunately, we happen to
have N dirty ancilla lying around because the system register is not acted upon while implementing
the state preparation operation. Moreover, there are multiple steps of state preparation that are
performed, and there are qubits that will be used in some steps of state preparation that can
be used as dirty qubits for the other steps of state preparation. We will find that we can take
the number of dirty qubits to be somewhat larger than N , but not a lot larger. Assuming the
number of dirty qubits is about N , we can take k ≈ N/M . Then we would have compute cost
2dM/N − 4M + 4N ≈ 1

4LN log(N2/ε). For the uncompute step we can take k ≈ N , giving cost
approximately LN/4. In both cases the costs need to be multiplied by 2 to account for steps 3 and
4.

Finally we consider the cost of outputting |θ(`)
pq 〉 in register four and |θ(`)

rs 〉 in register five. This
use of QROM can simply be combined with that in steps 3 and 4. For example, for step 3,

when calling the QROM for the state preparation, output the value of θ
(`)
pq , as well as that for

the alternate values of p and q. Then, when doing the controlled swap, also swap these registers.
There is a net increase in the size of the output of 2 qubits, and one extra Toffoli for the controlled
swaps. This cost is negligible compared to the overall cost in steps 3 and 4.

3.3 Controlled unitaries
For the controlled unitaries (the select circuit) in the case of using only the first diagonalization,
we need to implement the terms in the Hamiltonian as in Eq. (9). The general principle is that

we do a pair of operations, each of which has Xp
~ZXq and Yp ~ZYq for p 6= q, with the term selected

by whether p or q is larger. For p = q we use an ancilla qubit to select between 1 and Zp. The
way the state preparation is chosen, this can be performed in the same way for ` = 0 and ` > 0,
because the ancillae will only select the identity operation. The operations we need are

select1 |q1, q2, θ1, θ2, {p, q, α}, {r, s, β}〉 |ψ〉

= (−1)θ1 |q1, q2, θ1, θ2, {p, q, α}, {r, s, β}〉 ⊗


Xp,α

~ZXq,α |ψ〉 , p < q,

Yp,α ~ZYq,α |ψ〉 , p > q,

|ψ〉 , p = q ∧ q1 = 1,
−Zp,α |ψ〉 , p = q ∧ q1 = 0,

(23)

select2 |q1, q2, θ1, θ2, {p, q, α}, {r, s, β}〉 |ψ〉

= (−1)θ2 |q1, q2, θ1, θ2, {p, q, α}, {r, s, β}〉 ⊗


Xr,β

~ZXs,β |ψ〉 , r < s,

Yr,β ~ZYs,β |ψ〉 , r > s,

|ψ〉 , r = s ∧ q2 = 1,
−Zr,β |ψ〉 , r = s ∧ q2 = 0.

(24)

Note that the selected operations we need are similar to those in [8, 63], and we can use a similar
approach. The complexity is linear in N , and will therefore be smaller than the complexity of the
state preparation. The technique is shown in Figure 1 for select1, and select2 is equivalent. If
p < q then the Y operation in Z . . . ZY acts on the same qubit as one of the Zs in the Z . . . ZX
operation. As a result, the Y gets multiplied by Z and becomes ZY = −iX. Therefore the
operation implemented is of the form −iXp,αZ . . . ZXq,α. If p > q then the X operation in
Z . . . ZX acts on the same qubit as one of the Zs in the Z . . . ZY operation. Thus we have X
times Z on that qubit giving XZ = −iY . Therefore the operation implemented is of the form
−iYpZ . . . ZYq. If p = q then all the Zs cancel leaving only Xp,αYp,α = iZp,α.

Now note that the register q1 is 0 for p > q and 1 for p < q. Before and after the ranged
operations, we perform an inequality test between p and q, controlled on q1, with the result that
an extra ancilla is in the state |1〉 unless p = q and q1 = 0. That register is used as a control for
the ranged operations, so if p = q and q1 = 0 then the identity is performed. We then apply an S
gate on this ancilla, with the result that the operations performed are Xp,αZ . . . ZXq,α for p < q,
Yp,αZ . . . ZYq,α for p > q, and −Zp,α for p = q and q1 = 0. For p = q and q1 = 0 this ancilla is

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 10

zero, so the phase on the identity is unchanged. This yields the desired operations with the correct
phases, and lastly the controlled Z on the θ register gives the (−1)θ1 phase factor.

|1〉 ⊕p = q • S • ⊕p = q

control • • • • •

q1 Inq1

θ1 Inθ1 Z

p
logN − 1

/ Inp =
logN − 1

/ Inp Inp Inp

q
logN − 1

/ Inq
logN − 1

/ Inq Inq Inq

α Inα Inα Inα

|ψ〉
N
/ select1

N
/

−→
Z Yp,α

−→
ZXq,α

Figure 1: The circuit needed to perform a controlled select1 operation. We have omitted the registers this
operation does not act upon for simplicity. The unitaries labeled as −→ZAj apply the operation Z0 · · ·Zj−1Aj to
the target register, depending on the value from the input register, using the technique shown in Figure 9 of [8].
This operation can be achieved using an inequality test, followed by a ranged operation via the technique shown
in Figure 8 of [8]. The controlled select2 operation is completely equivalent except with different control
registers.

4 Complexity
Let us denote the upper bound on the error required for the eigenvalue estimation by ∆E. Then
following [8] we find the complexity of the estimation is the cost of each LCU step times 2m, where

m =
⌈

log
(√

2πλ
2∆E

)⌉
. (25)

Moreover, the error that is allowable for the implementation of each LCU step is

ε =
√

2∆E
4λ . (26)

Some minor costs are as follows.

1. The cost of the controlled operation in Figure 1 is 2N Toffoli gates for the two controlled
ranged operations, and 2dlogNe for the two inequality tests. These need to be done twice
for a total of 4N + 4dlogNe.

2. In the state preparation we initially need to prepare superpositions over `, p, q, r, s, with
` ≤ L, N/2 > p ≥ q, N/2 > r ≥ s. This can be achieved by creating an equal superposition
over ranges that are powers of two using Hadamards, then flagging success using inequality
tests. The number of Toffolis needed for these inequality tests will correspond to the number
of qubits. Amplitude amplification can give the desired result with amplitude close to 1. The
reflection in the amplitude amplification also needs a number of Toffolis corresponding to the
number of qubits, so for m steps of amplitude amplification the number of Toffolis is 3m+ 1
times the number of qubits. This needs to be multiplied by two because there is preparation
and inverse preparation at each step.

3. The state preparation needs an inequality test, which has cost µ for µ bits of precision in the
keep probability, and a cost corresponding to the number of qubits for the controlled swap.
A controlled swap on a pair of qubits can be performed with a single Toffoli and CNOTs.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 11

4. For the state preparation we also do controlled swaps of the p and q, as well as r and s
registers. These two controlled swaps cost 2dlog(N/2)e Toffolis.

5. Computing the function in Eq. (20) requires multiplication by a constant, a regular multipli-
cation, and three additions. The division by 2 can be achieved by trivially shifting the bits.
The multiplication can be achieved with 2dlog(N/2)e2 Toffolis.

In the remainder of this section we quantify the costs of the QROM needed for the state
preparation, which is the main contributor to the complexity, then give the total cost.

4.1 RWSWT orbitals
The prominence of the RWSWT paper [29], which was the first work to rigorously estimate the
T complexity of any quantum algorithm for chemistry makes it an important benchmark. Unfor-
tunately, LLDUC [45] later argued that there were substantial problems with the orbitals chosen
for the RWSWT paper. For the reasons discussed in the paper by LLDUC, we believe that future
papers should compare against this work using only the LLDUC integrals. But in order to more
easily compare with past work, here we analyze the complexity of simulating both RWSWT and
LLDUC FeMoco active spaces. Note that at 152 spin-orbitals the LLDUC active space is also
significantly larger than the 108 spin-orbital RWSWT active space.

Our approach is to choose L by observing the effect of truncation on two different efficient clas-
sical correlated approximate methods for molecular electronic structure: Configuration Interaction
at the singles and doubles level (CISD) and Møller-Plesset perturbation theory to second order
(MP2). For a review of both methods, see [52].

We perform CISD/MP2 on the exact Hamiltonian and then perform CISD/MP2 on the trun-
cated Hamiltonian for various truncations and track the discrepancy. In Figure 2 we plot how
the energies converge for both the RWSWT [29] and LLDUC [45] integrals. Specifically, we plot
the correlation energy (the difference between the mean-field energy and the exact energy) for the

0 100 200 300 400
L

-0.024

-0.012

0.000

0.012

0.024

∆
E

c(
L
)
[a
.u
.]

MP2 CISD chem. acc.

0 100 200 300 400
L

1

2

3

4

λ
W
[1
04
a.
u
.]

(a) 108 spin-orbital active space from RWSWT.

0 100 200 300 400
L

-0.024

-0.012

0.000

0.012

0.024

∆
E

c(
L
)
[a
.u
.]

MP2 CISD chem. acc.

0 100 200 300 400
L

0

1

2

3

λ
W
[1
04
a.
u
.]

(b) 152 spin-orbital active space from LLDUC.

Figure 2: Top: difference ∆Ec between truncated and untruncated correlation energy, for the FeMoco cluster
with MP2 and CISD methods (red, blue). The grey shaded region represents chemical accuracy; thus, for
both active spaces we expect L = 200 is sufficient for our purposes. Bottom: λW as a function of L. For
RWSWT [29], λT = 1,490 a.u., λV = 8,373 a.u. and the maximum value of λW is 34,552 a.u.; thus, we
take λ = 36,042 a.u. For LLDUC [45], λT = 3,446 a.u., λV = 4,168 a.u. and the maximum value of λW is
20,746 a.u.; thus, we take λ = 24,192 a.u.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 12

reason that the mean-field energy converges much faster than the correlation energy and so it is
easier to see the trend this way. In general, CISD and MP2 are very different methods and we
would expect truncation to affect them differently. However, both methods appear well converged,
for both RWSWT and LLDUC integrals, by L = 200. This gives us confidence that the exact
ground state energy of the truncated Hamiltonian would also be consistent with the exact ground
state energy of the untruncated Hamiltonian by this point. Accordingly, we choose 200 as the
rank of our Coulomb operator. Note that the RWSWT and LLDUC integrals have very different
properties, and so we assume it is a coincidence that both converge around the same value of L.

For the integrals of RWSWT with this truncation we obtain λ = 36,042 a.u. (see Figure 2). For
both active spaces, we will focus on obtaining the standard “chemical accuracy”, corresponding to
∆E = 0.0016 a.u. [52]. For the integrals of RWSWT, that gives ε ≈ 1.7 × 10−8. The output size
for the QROM is approximately log(N2/ε) for N = 108, giving about 40. More specifically, the
output size for the probabilities in the QROM is given by Eq. (36) in [8]. In that equation, only
the first term is significant, giving

µ =
⌈

log
(

2
√

2λ
∆E

)⌉
. (27)

That would give µ = 26 bits, except we have three steps of state preparation, which means the
number of qubits for the probabilities needs to be increased by 2 to µ = 28. With N = 108 we
need two registers of size dlog(N/2)e = 6, as well as two single qubit registers for the θ values,
for a total of M = 42 qubits for steps 3 and 4. As we take L = 200, for step 1 (preparing the
superposition over the ` register), only 8 qubits are needed for `, for a total of 36 qubits output.
We will use the QROAM for steps 3 and 4, as these steps have the dominant complexity.

4.1.1 Dirty ancillae

If we are attempting to minimize the number of qubits used, it is convenient to combine steps 1
and 3. That is, we use a state preparation over `, p, and q simultaneously, and output alt values
for these three indices. Then there are only two steps of state preparation, and we can reduce the
number of qubits for the keep probabilities to µ = 27. That means the state preparation has an
output size of M1 = 8 + 12 + 2 + 27 = 49. There will be M2 = 41 qubits used for the output in
step 4, because there is one fewer qubit for the keep probability.

If we use dirty qubits, then in the first state preparation we can use the N = 108 system
registers as well as the M2 = 41 ancilla registers that will be used as output in the next step. We
can therefore take k = 4, which uses (k−1)M1 = 147 qubits, and fits within that size. Similarly, for
the second state preparation, we are able to use the output registers from the first state preparation
as dirty qubits. The cost of the QROAM compute would be 2dd/4e + 12M . For the uncompute,
we can take k = 128, giving cost 2dd/ke+ 4k = 2dd/128e+ 512.

Taking L = 200 gives d1 = (L+1)(N2/8+N/4) = 298,485 for the first preparation, and Toffoli
cost

2dd1/4e+ 12M1 + 2dd1/128e+ 512 = 155,008. (28)

For the second state preparation d2 = L(N2/8 +N/4) = 297,000, giving Toffoli cost

2dd2/4e+ 12M2 + 2dd2/128e+ 512 = 154,146. (29)

The total is 309,154. The minor costs result in another 1,534 Toffolis, for a total of 310,688 (see
Appendix E). We find that the number of qubits for the phase estimation is

m =
⌈

log
(√

2πλ
2∆E

)⌉
= 26, (30)

so we obtain an overall complexity (in terms of Toffolis)

2m × 310688 ≈ 2.1× 1013. (31)

There is a total of 378 logical qubits needed (see Appendix E).

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 13

4.1.2 Large ancilla count

Alternatively, we can use a large number of ancilla qubits in an attempt to minimize the Toffoli
count. In the compute step it is optimal to take k = 64, and in the uncompute step it is optimal
to take k = 512. The combined complexity of compute and uncompute for each step is then

dd/64e+ 63M + dd/512e+ 512. (32)

In this case it is better to use steps 3 and 4 as described above, with a separate state preparation
for ` in step 1. Since there are three steps of state preparation, we should take M = 42. The
Toffoli complexity for step 1 is only 200 using normal QROM. With the d values given above, we
obtain a complexity 8,405 for step 3 and 8,379 for step 4. The minor costs are increased to 1,594.
That gives an overall Toffoli complexity of

2m × 18578 ≈ 1.2× 1012. (33)

Altogether there are 3,024 qubits used (see Appendix E).

4.2 LLDUC orbitals
An alternative active space for FeMoco was advocated for in [45]. This work argued that the active
space Hamiltonian from RWSWT did not properly capture the electronic structure of FeMoco and
was classically solvable. LLDUC introduced an alternative Hamiltonian for the FeMoco active
space with N = 152 spin-orbitals. There it is found that λT = 3,446 a.u. and λW = 20,746 a.u.,
for a total of λ = 24,192 a.u. The smaller value of λ means that the number of qubits for the
probabilities should be µ = 27 regardless of whether we merge steps 1 and 3 or not. Since N is
larger than before, we now need one additional qubit for each of the orbital numbers, for a total
of M = 43 qubits.

4.2.1 Dirty ancillae

Merging steps 1 and 3, the output size is M1 = 51 for the first state preparation, then M2 = 43 for
the second state preparation. This time taking k = 4 would use (k−1)M1 = 153 qubits for the first
state preparation and (k−1)M2 = 129 for the second, both of which are small enough to use other
qubits as dirty qubits. We again can take L = 200 which results in d1 = (L+ 1)(N2/8 + N/4) =
588,126 for the first preparation and d2 = L(N2/8 + N/4) = 585,200 for the second preparation
(step 4). Using k = 128 for the uncompute again yields a cost for the first preparation of

2dd1/4e+ 12M1 + 2dd1/128e+ 512 = 304,378. (34)

The cost of the second preparation is approximately

2dd2/4e+ 12M2 + 2dd2/128e+ 512 = 302,772. (35)

The total of the minor costs is 1,818 for a total of 608,968. This time we find that log(
√

2πλ)/(2∆E)
is very slightly larger than 25

log
(√

2πλ
2∆E

)
≈ 25.0015. (36)

It would be unreasonably inefficient to round up to m = 26. Instead we can allow very slightly less
error in other parts of the algorithm (which does not affect the complexity significantly because
the algorithm depends on that error logarithmically) and take m = 25. Then we get a total cost

2m × 608968 ≈ 2.0× 1013. (37)

The total number of logical qubits is 437.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 14

4.2.2 Large ancilla count

If we use a large number of ancilla qubits, we should again take the k sizes as 64 and 512 in the
compute and uncompute steps, respectively. We again perform steps 1 and 3 separately for this
approach. The M will be 43 for both steps 3 and 4. Then using dd/64e + 63M + dd/512e + 512
gives Toffoli costs 13,560 and 13,508 for steps 3 and 4, respectively. This time the additional step
of preparation needs 200 Toffolis for QROM. The minor costs are increased to 1,872, for a total of
29,140. That gives an overall complexity in terms of Toffolis

2m × 29140 ≈ 9.8× 1011. (38)

The total number of qubits is 3,143.
In summary, the Toffoli costs are as given in Table 1. In this table we have given approximate

formulae including only the leading terms, and taken k = 4 for the QROM compute circuits.

5 Exploiting sparsity in the Coulomb operator
Next we provide a strategy for further reducing constant factors when qubitizing the non-factorized
quantum chemistry Hamiltonians. It is also possible to apply this strategy to the factorized form,
but the result is worse for the case of FeMoco, so we will not address it here. This strategy will
likely reduce the T complexity in practical situations, but only by constant factors. We focus on
the form of the Coulomb operator

V =
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Vpqrsa
†
p,αaq,αa

†
r,βas,β , (39)

which has the truncated form

Ṽ (c) =
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Ṽ (c)
pqrsa

†
p,αaq,αa

†
r,βas,β , Ṽ (c)

pqrs =
{
Vpqrs, |Vpqrs| ≥ c,
0, |Vpqrs| < c.

(40)

The purpose of this truncation is to induce sparsity in the operators by removing near-zero elements.
The idea of reducing quantum simulation costs by exploiting sparsity in the Coulomb operator was
first explored in [64], but in the context of Trotter based methods. The idea of the approach
here is to choose the value of c to be as large as possible while still leaving classical correlated
approximations such as CISD within chemical accuracy (essentially the same procedure we used
for choosing L shown in Figure 2). This is shown in Figure 3.

We will define L
(c)
V as the number of nonzero values of Ṽ

(c)
pqrs. In general, we expect that

L
(c)
V = O(N4); which is to say that this truncation should not asymptotically change the sparsity

of the operators. However, in practice we do expect to find that L
(c)
V < N4/16; which is to say

that we do expect there to be additional sparsity in these operators. While the matter of exactly
how much sparsity exists is highly system dependent, we might sometimes desire an algorithm that
exploits this sparsity, even if it is highly unstructured.

It is possible to perform a state preparation that has cost dependent on the number of nonzero
elements, at the cost of a slightly larger number of ancillae. Consider the state preparation of [8],
which has the following steps.

1. Create an equal superposition over the system registers

1√
d

d∑
j=1
|j〉 . (41)

2. Use QROM indexed on the system registers to output alt values and keep values

1√
d

d∑
j=1
|j〉 |altj〉 |keepj〉 . (42)

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 15

-0.005

0.000

0.005

0.010

∆
E
(c
)
[a
.u
.]

MP2 CISD chem. acc.

10−8 10−7 10−6 10−5 10−4 10−3

c [a.u.]

106

107

L
(c
)

V

(a) 108 spin-orbital active space from RWSWT.

-0.015

-0.010

-0.005

0.000

0.005

∆
E
(c
)
[a
.u
.]

MP2 CISD chem. acc.

10−8 10−7 10−6 10−5 10−4 10−3

c [a.u.]

105

106

107

108

L
(c
)

V

(b) 152 spin-orbital active space from LLDUC.

Figure 3: We show the result of performing the truncation of Eq. (40). Top: we show difference ∆E(c) between
truncated and untruncated correlation energy, for the FeMoco cluster with MP2 and CISD methods (red, blue)
as a function of the c parameter in Eq. (40). The grey shaded region represents chemical accuracy. Bottom:
L

(c)
V as a function of c. For RWSWT [29], we can safely truncate at c = 0.0002 a.u., which corresponds

to L
(c)
V = 3,300,568. For LLDUC [45], we can safely truncate at c = 0.0001 a.u., which corresponds to

L
(c)
V = 1,291,648.

3. Use another ancilla in an equal superposition over 2µ values where µ is the number of digits
for keep. Perform an inequality test between this register and the keep register, and swap
the contents of the first two registers (the index and alternative index registers) based on the
result of this inequality test.

The total number of ancillae used by this state preparation is 2dlog de+ 2µ+ 1.
In order to perform the preparation in the sparse case, instead of iterating over the index

register, we can output the index register in the same way as the alternate index register. That
is, we have a register which iterates over the number of nonzero amplitudes in the state we aim to
prepare. Denoting that number d, our steps are as follows.

1. Create an equal superposition over the register indexing the nonzero entries.

1√
d

d∑
j=1
|j〉 . (43)

2. Use QROM indexed on this first register to output ind, alt, and keep values

1√
d

d∑
j=1
|j〉 |indj〉 |altj〉 |keepj〉 . (44)

3. Use another ancilla in an equal superposition over 2µ values, and perform an inequality test
between this register and the keep register. Based on the result of this inequality test, swap
the contents of the ind and alt registers.

The desired state will then be produced in the second register where we output ind. The value indj
is simply the index for the jth nonzero amplitude. The correctness of this state preparation routine

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 16

follows immediately from the correctness of the routine in [8], because after the QROM lookup the
state in the registers excluding the first is equivalent to that in [8]. The Toffoli complexity of this
modified state preparation procedure for sparse states depends on the number of nonzero entries
rather than the dimension.

For our application, the non-factorized form of the Hamiltonian with truncation of the Coulomb
operator can be expressed using the Jordan-Wigner representation. Using Eq. (2) and the sym-
metries Tpq = Tqp, Vpqrs = Vqprs = Vpqsr, the Hamiltonian can be written as

H = 1
2
∑

σ∈{↑,↓}

N/2∑
p,q=1

Tpq(a†p,σaq,σ + a†q,σap,σ)

+ 1
4

∑
α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Vpqrs(a†p,αaq,α + a†q,αap,α)(a†r,βas,β + a†s,βar,β). (45)

Then using the Jordan-Wigner representation via Eq. (8) and truncating V , the Hamiltonian can
be represented as

H 7→
∑

σ∈{↑,↓}

N/2∑
p,q=1

TpqQpqσ +
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Ṽ (c)
pqrsQpqαQrsβ , (46)

where

Qpqσ =


Xp,σ

~ZXq,σ, p < q,

Yp,σ ~ZYq,σ, p > q,
1
2 (1− Zp,σ) , p = q.

(47)

Here we have again used the symmetries Tpq = Tqp, Vpqrs = Vqprs = Vpqsr. Using p < q versus p > q

to distinguish between Xp,σ
~ZXq,σ and Yp,σ ~ZYq,σ is a convenient way to perform the controlled

operations as described in Figure 1. This is of the form of a linear combination of unitaries, and
the state we need to prepare is of the form

|0〉 |+〉 |0〉 |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

√
|Tpq|
λ
|θTpq00〉 |p, q, σ〉 |0〉

+ |1〉 |+〉 |+〉 |+〉
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

√
|Ṽ (c)
pqrs|
λ
|θVpqrs〉 |p, q, α〉 |r, s, β〉 . (48)

The first register is just a convenient replacement for the |`〉 register, and is used to distinguish
between the one and two body terms. The second register is used to distinguish between 1 and Zp,α
for p = q, and the third register is used to distinguish between 1 and Zr,β for r = s. The second,
third, and fourth registers will be used to generate the symmetries of the state. The fifth register is

used to give the appropriate sign of the Tpq and Ṽ
(c)
pqrs weightings, which are now combined instead

of having two separate registers as before.
We can again use symmetry to reduce the number of coefficients that need to be prepared. For

Vpqrs there is symmetry between exchanging p and q, between exchanging r and s, and between
exchanging the p, q and r, s pairs, as described in Eq. (5). For Tpq there is symmetry between p
and q. For this reason we will initially only prepare amplitudes for p ≤ q, r ≤ s, and p ≤ r for V ,
and p ≤ q for T .

To simplify the description, we will introduce some notation,

ζpq :=


√

2, p < q,

1, p = q,

0, p > q.

(49)

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 17

We will also allow ζ to be used with four subscripts, which means

ζpqrs :=


√

2, pq < rs,

1, pq = rs,

0, pq > rs,

(50)

where the notation pq < rs indicates that either p < r or p = r and q < s, and pq = rs indicates
that p = r and q = s. That is, if these are the composite indices for the matrix W , then pq < rs
indicates the upper triangle, and pq = rs indicates the diagonal.

In terms of this notation, the state produced will initially be

|0〉 |+〉 |0〉 |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

ζpq

√
|Tpq|
λ
|θTpq〉 |p, q, σ〉 |0〉

+ |1〉 |+〉 |+〉 |+〉
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

ζpqζrsζpqrs

√
|Ṽ (c)
pqrs|
λ
|θVpqrs〉 |p, q, α〉 |r, s, β〉 . (51)

Using ζ ensures that the number of nonzero terms is about 1/2 as much for T , and about 1/8 as
much for V . These sparse entries can be prepared by the technique described above for sparse
state preparation. For T the only terms prepared here are those where p ≤ q, and for V only where
p ≤ q, r ≤ s, and pq ≤ rs. Next we perform three steps.

1. Swap the p, q and r, s registers controlled on the state of the fourth register.

2. Swap the p and q controlled on the state of the second register.

3. Swap the r and s controlled on the state of the third register.

To show the effect of this, we will first show it for the first component of the state, with 0 in the
first register and weightings dependent on T . The first and third controlled swaps have no effect
because third and fourth registers are zero. The second controlled swap gives us

|0〉 |0〉 |0〉 |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

ζpq

√
|Tpq|
2λ |θ

T
pq〉 |p, q, σ〉 |0〉

+ |0〉 |1〉 |0〉 |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

ζpq

√
|Tpq|
2λ |θ

T
pq〉 |q, p, σ〉 |0〉

= |0〉 |0〉 |0〉 |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

ζpq

√
|Tpq|
2λ |θ

T
pq〉 |p, q, σ〉 |0〉

+ |0〉 |1〉 |0〉 |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

ζqp

√
|Tpq|
2λ |θ

T
pq〉 |p, q, σ〉 |0〉

= |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

√
|Tpq|
2λ (ζpq |0〉+ ζqp |1〉) |0〉 |0〉 |θTpq〉 |p, q, σ〉 |0〉

= |0〉
∑

σ∈{↑,↓}

N/2∑
p,q=1

√
|Tpq|
λ
|κpq〉 |θTpq〉 |0〉 |0〉 |p, q, σ〉 |0〉 , (52)

where we have defined the state labelling

κpq :=


0, p < q,

1, p > q,

+, p = q.

(53)

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 18

Using similar notation we can describe the effect of the controlled swaps between p, q and r, s
in a compact way. The effect of this controlled swap on the second component of the state will be

|1〉
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

ζpqζrs

√
|Ṽ (c)
pqrs|
λ
|+〉 |+〉 |κpqrs〉 |θVpqrs〉 |p, q, α〉 |r, s, β〉 , (54)

where

κpqrs :=


0, pq < rs,

1, pq > rs,

+, pq = rs.

(55)

The reasoning is exactly the same as for the T component of the state. The net effect is that
we remove the ζpqrs and the control register is now in the state |κpqrs〉. The controlled swaps
with p, q and r, s have similar effect, giving the state as in Eq. (48), except the second, third and
fourth registers are not in |+〉 states. Nevertheless, for p = q the second register is in an equal
superposition of |0〉 and |1〉, so we can we use it to select between 1 and Zp,σ for the controlled
operations. Similarly for r = s the third register is in an equal superposition of |0〉 and |1〉. These
features are sufficient to give the linear combination of unitaries required.

Hence we can prepare the desired state with about 1/8 as many nonzero entries using the
sparse preparation procedure, and controlled swaps to generate the entries that are identical due
to symmetries. For the controlled operations that need to be performed, note that the form of
the Hamiltonian without factorization has a†p,σaq,σ and a†r,σas,σ operations that are mapped to
the Pauli operators in exactly the same way as for the factorized form. This means that these
controlled operations can be performed using exactly the same select1 and select2 operations
as for the factorized form.

6 Complexity for sparse preparation
6.1 RWSWT orbitals
Next we use the results of Section 5 to determine the complexity in the case of using a sparse
preparation with the non-factorized Hamiltonian. For the integrals of RWSWT we have λT =
1,490 a.u. and λV = 8,373 a.u. for a total of λ = 9,863 a.u. The number of qubits for the phase
estimation is

m =
⌈

log
(√

2πλ
2∆E

)⌉
= 24, (56)

and the output size for the keep probabilities for the QROAM is

µ =
⌈

log
(

2
√

2λ
∆E

)⌉
= 25. (57)

There are eight registers of size dlog(N/2)e, because the sparse preparation scheme needs to output
ind values and alt values of p, q, r, s. There are also 2 qubits needed for the two output values of
θ (one for the ind and one for the alt values of p, q, r, s), as well as 2 qubits used for ind and alt
values of the first register which distinguishes between T and V . As a result the QROAM output
size is M = µ + 8dlog(N/2)e + 4. The number of orbitals is N = 108, giving dlog(N/2)e = 6 and
therefore M = 77.

Here we just consider the use of a large number of ancillae to minimize the Toffoli cost. The
cost of the preparation is then

dd/k1e+M(k1 − 1) (58)

and of the inverse preparation is
dd/k2e+ k2. (59)

Using a truncation threshold of 0.0002 a.u., we find that 3,300,568 nonzero values of Ṽ
(c)
pqrs are

needed. From the symmetries, the number of unique nonzero values is about 435,023. Adding to

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 19

that the N2/8 + N/4 = 1485 unique terms for T , we get 436,508. Then the optimal values are
k1 = 26 and k2 = 29, giving a preparation cost of 11,672 and an inverse preparation cost of 1,365,
for a total of 13,037. There are 746 Toffolis for the minor costs (see Appendix E) giving a total of
13,783. That gives an overall complexity in terms of Toffolis

2m × 13783 ≈ 2.3× 1011. (60)

The total number of logical qubits needed is 5,103.

6.2 LLDUC orbitals
For the integrals of LLDUC we have λT = 3,446 a.u., λV = 4,168 a.u. so λ = 7,614 a.u., and
N = 152. That gives m = 24, µ = 24, and dlog(N/2)e = 7. That gives the output size for the
QROAM of M = 84. Using a truncation threshold of 0.0001 a.u., we find that 1,291,648 nonzero
values are needed. From the symmetries, the number of unique nonzero values is about 176,572.
Adding to that the N2/8 + N/4 = 2926 unique terms for T , we get 179,498. Using k1 = 25 and
k2 = 29 gives a preparation cost of 8,214 and an inverse preparation cost of 863. (The optimal
value of k1 is actually 26, but the improvement is only slight and it almost doubles the number of
ancilla needed.) The minor costs have a total of 918. That gives an overall complexity in terms of
Toffolis

2m × 9995 ≈ 1.7× 1011. (61)

The number of logical qubits used is 2,904.
The Toffoli performance of this algorithm is the best of the alternatives we have so far con-

sidered. As this is the most promising for implementation, we consider a further improvement by
better allocating the allowable error between the different parts of the algorithm. In this case

log
(√

2πλ
2∆E

)
≈ 23.33. (62)

In [8] the error is given in Eq. (23) which is equivalent to

∆E2 ≈ λ2
[(π

2m+1

)2
+ (εprep + πεQFT)2

]
. (63)

Here εprep is the error allowed in the state preparation and εQFT is the gate synthesis error allowed
in the inverse quantum Fourier transform. The formula for m is obtained by equally allocating the

allowable (squared) error between
(
π/2m+1)2

and (εprep + πεQFT)2. If we instead allow approxi-
mately 26% more error from the phase estimation, then it is possible to use m = 23 (which reduces
the number of logical qubits to 2,903). The allowable error in εQFT can be reduced to compensate,
which has a negligible gate cost because it is not multiplied by 2m. As a result, the complexity in
terms of Toffolis then becomes

2m × 9995 ≈ 8.4× 1010. (64)

This is a full order of magnitude improvement over the low rank factorization method, and three
orders of magnitude improvement over the approach of [29].

7 Discussion
The cost of performing Toffoli gates may be estimated as follows. The efficient CCZ factory from
[37] has a rectangular footprint of 12×6 logical qubit patches. The paper specifies a code distance
of d = 31 which, in the rotated surface code, means each patch covers 2 · 312 ≈ 2,000 physical
qubits. The factory outputs a CCZ state every 5.5d cycles which, assuming a surface code cycle
time of 1 microsecond, is once every 170 microseconds. Thus, the spacetime volume of the factory
is 2,000 · (12 × 6) physical qubits times 170 microseconds which equals roughly 24 qubitseconds.
Every Toffoli we perform requires at least this much spacetime volume. With the same overhead
one can use these techniques to produce two magic states.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 20

leading order scaling RWSWT [29] LLDUC [45]
Toffolis for dirty ancilla algorithm

√
2πλNML/(4∆E) 2.1× 1013 2.0× 1013

logical qubits for dirty ancilla algorithm N + log(L2N8) + 4µ+m 378 437
Toffolis for many ancilla algorithm πλN

√
LM/∆E 1.2× 1012 9.8× 1011

logical qubits for many ancilla algorithm N +N
√
LM/8 3,024 3,143

Toffolis for sparse algorithm NA 2.3× 1011 8.4× 1010

logical qubits for sparse algorithm NA 5,103 2,903

Table 1: The leading order Toffoli and spatial complexities for the algorithms using dirty ancilla or allowing
a large ancilla count. The formulae given are approximate, with the counts determined in a more exact way
explained in the text. Here N is the number of spin-orbitals, L is the rank of the Coulomb operator, λ is the
1-norm of the Hamiltonian as defined in Eq. (10), ∆E is the target precision for phase estimation, M is the
output size for the QROAM, µ is the number of qubits used for “keep” probabilities, and m is the number of
qubits used for the phase estimation.

The lowest Toffoli count that we report in Table 1 is 8×1010. Combined with the 24 qubitsecond
spacetime volume for distilling a CCZ state, the spacetime volume of the algorithm is about
three megaqubitweeks. Three megaqubitweeks of spacetime volume means that if we use “only”
three million physical qubits then the computation must run for at least a week; if we want the
computation to finish in a day, we need at least 23 million qubits. We want computations to finish
in less than a day, and we don’t want to use 23 million qubits. This implies that, when attempting
to move our algorithm into the regime of practical computations, we should focus on optimizations
that reduce spacetime volume (such as exploiting symmetries in the Hamiltonian to reduce the
size of QROM reads) instead of optimizations that convert spacetime volume (such as performing
parallel distillation of states, which reduces time at the cost of space).

For the purpose of simulating arbitrary basis chemistry Hamiltonians, our approach is the best
scaling and also the most practical shown to date. Despite us using a larger and more accurate
active space, we have certainly improved over the 1014 T gates required by [29]. Based on the
numbers above, a lower bound on the spacetime volume of the [29] algorithm is roughly two
gigaqubitweeks of distillation, which is about seven hundred times more than our approach. This
ignores storage, routing, and Clifford operations, but this level of comparison seems appropriate
considering that the large spacetime volume of state distillation is still likely to dominate the overall
cost.

While our many ancilla algorithm has O(N3/2) spatial complexity and would require a few
thousand logical qubits to simulate FeMoco, at three megaqubitweeks of spacetime volume required
just for state distillation, our algorithm is bottlenecked by the Toffoli complexity, and not by the
logical qubit costs. Thus, despite the increased spatial costs, we regard the many qubit algorithm
as more practical than the dirty ancilla algorithm. However, recent work [65] has suggested that
by distinguishing between qubits that are, and are not, used for error detection, one can use a
lower code distance for most of the logical qubits required for magic state distillation. While
explicit factories realizing these improvements have not yet been laid out, these improvements
could significantly reduce our estimates of the required spacetime volume for distillation, perhaps
to less than a megaqubitweek.

One might wonder if there are other techniques that could be used to reduce the Toffoli count
at the expense of extra ancilla. In our algorithm, the Toffolis are coming from our use of QROM.
Unfortunately, a lower bound proven in [44] suggests that no further tradeoffs of this type will
be possible that asymptotically reduce the Toffoli count of the QROM we are using. A more
promising approach might be to utilize additional structure in order to reduce the effective number
of coefficients that must be read from QROM. We presented one such strategy based on leveraging
sparsity in the Coulomb operator, and another based on leveraging the rank deficiency of the
Coulomb operator.

In some cases, sparsity in the Hamiltonian arises due to locality of interactions (especially for
large systems) [64], but sparsity also arises for reasons having to do with the symmetry point
groups of molecules in real space and the symmetry point groups of molecular orbitals in an active
space (this would likely be the origin of sparsity in the FeMoco active space, for instance). It might
also be possible to exploit these symmetries (which are embedded in the coefficient tensors) using

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 21

techniques from group theory. Likewise, it might be possible to further exploit the low rankness
of the Coulomb operator by using the second tensor factorization discussed in [36].

Another avenue for reducing the total cost would be to reduce the size of the λ parameter.
For example, a technique described in Section V of [58] may help reduce the λ parameter by
exploiting n-representability conditions. Yet another approach might be to incorporate mean-
field background subtraction [59]. One could also explore options for selecting the active space
differently. For instance, by using different orbitals that are more local, or more symmetric, one
could potentially induce more sparsity in the Hamiltonian. Or, one could try to select active space
orbitals with a goal of reducing λ. In both of these contexts, the use of pseudopotentials might
help [60].

Of course, it might be the case that the best path forward uses a different algorithm or repre-
sentation entirely. For instance, it is possible that Trotterization based on the Trotter step of [36]
would provide a significant improvement over the Trotter results in [29]. In practice, Trotter errors
(which determine the number of Trotter steps required) depend sensitively on the structure of the
Trotter step, and this has not yet been analyzed for the approach of [36]. However, this seems
like a promising direction. In that context one might also wonder if using higher-order Trotter
formulae could further bring down the costs, as observed for simulating simpler models in [43].

Given the high overhead that appear to be required for simulating FeMoco in a molecular orbital
basis, we might wonder how practical it would be to perform the simulation in the plane wave
basis. No approach based on second quantization is sensible here because one would need perhaps
N = 106 plane waves to simulate a FeMoco active space to sufficiently high accuracy. Nevertheless,
the first quantized algorithm of [11] continues to look competitive. While the constant factors still

need to be worked out, that approach scales as Õ(N1/3η8/3/∆E) where the number of electrons
is η. If N = 106, η = 54 (as in the RWSWT active space) and ∆E = 0.0016 a.u., the quantity
N1/3η8/3/∆E is roughly 109. Thus, if further symmetries can be exploited in this simulation to
further reduce costs (given that there will be other overheads), we expect this might be a viable
way forward; however, more work is clearly needed.

Acknowledgements
The authors thank Garnet Kin-Lic Chan, Austin Fowler, Yuval Sanders, and Hartmut Neven for
helpful discussions. DWB is funded by Australian Research Council Discovery Projects DP160102426
and DP190102633. MM was supported by the United States Department of Energy via the grant
DE-SC0019374 awarded to Garnet Kin-Lic Chan.

References
[1] R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).
[2] S. Lloyd, Science 273, 1073 (1996).
[3] M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev, R. Babbush, A. Fowler, V. Smelyanskiy,

and J. Martinis, Nature 543, 171 (2017).
[4] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science 309, 1704 (2005).
[5] A. Y. Kitaev, arXiv:quant-ph/9511026 (1995).
[6] D. S. Abrams and S. Lloyd, Physical Review Letters 79, 2586 (1997).
[7] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan, Physical

Review X 8, 011044 (2018).
[8] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and

H. Neven, Physical Review X 8, 041015 (2018).
[9] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, W. Sun, Z. Jiang, N. Rubin,

A. Fowler, A. Aspuru-Guzik, R. Babbush, and H. Neven, arXiv:1902.10673 (2019).
[10] G. H. Low and N. Wiebe, arXiv:1805.00675 (2018).
[11] R. Babbush, D. W. Berry, J. R. McClean, and H. Neven, npj Quantum Information 5, 92

(2019).
[12] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Molecular Physics 109, 735 (2011).

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 22

http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1038/543171a
http://dx.doi.org/10.1126/science.1113479
http://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1103/PhysRevLett.79.2586
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011044
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011044
http://dx.doi.org/10.1103/PhysRevX.8.041015
https://arxiv.org/abs/1902.10673
http://arxiv.org/abs/1805.00675
http://dx.doi.org/10.1038/s41534-019-0199-y
http://dx.doi.org/10.1038/s41534-019-0199-y
http://dx.doi.org/10.1080/00268976.2011.552441

[13] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, Physical Review A 90,
022305 (2014).

[14] R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik, and N. Wiebe, Physical Review A 91,
022311 (2015).

[15] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doherty, and M. Troyer, Quantum
Information and Computation 15, 361 (2015).

[16] J. T. Seeley, M. J. Richard, and P. J. Love, Journal of Chemical Physics 137, 224109 (2012).
[17] K. Setia and J. D. Whitfield, The Journal of Chemical Physics 148, 164104 (2018).
[18] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme, arXiv:1701.08213 (2017).
[19] M. Steudtner and S. Wehner, New Journal of Physics 20, 063010 (2018).
[20] Z. Jiang, J. McClean, R. Babbush, and H. Neven, arXiv:1812.08190 (2018).
[21] L. Veis and J. Pittner, Journal of Chemical Physics 140, 214111 (2014).
[22] D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders, G. H. Low, N. Wiebe, C. Gidney, and

R. Babbush, npj Quantum Information 4, 22 (2018).
[23] D. Poulin, A. Y. Kitaev, D. Steiger, M. Hastings, and M. Troyer, Physical Review Letters

121, 010501 (2017).
[24] N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins, Z. Jiang,

J. R. McClean, R. Babbush, M. Head-Gordon, and K. B. Whaley, arXiv:1809.05523 (2018).
[25] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
[26] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik, New

Journal of Physics 18, 33032 (2016).
[27] E. Campbell, Physical Review Letters 123, 070503 (2019).
[28] N. Cody Jones, J. D. Whitfield, P. L. McMahon, M.-H. Yung, R. V. Meter, A. Aspuru-Guzik,

and Y. Yamamoto, New Journal of Physics 14, 115023 (2012).
[29] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Proceedings of the National

Academy of Sciences 114, 7555 (2017).
[30] D. Litinski, Quantum 3, 128 (2019).
[31] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Proceedings of the

National Academy of Sciences 105, 18681 (2008).
[32] B. Toloui and P. J. Love, arXiv:1312.2579 (2013).
[33] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer, Quantum Information and Computation

15, 1 (2015).
[34] K. Sugisaki, S. Yamamoto, S. Nakazawa, K. Toyota, K. Sato, D. Shiomi, and T. Takui, The

Journal of Physical Chemistry A 120, 6459 (2016).
[35] F. Motzoi, M. P. Kaicher, and F. K. Wilhelm, Physical Review Letters 119, 160503 (2017).
[36] M. Motta, E. Ye, J. R. McClean, Z. Li, A. J. Minnich, R. Babbush, and G. K.-L. Chan,

arXiv:1808.02625 (2018).
[37] C. Gidney and A. G. Fowler, Quantum 3, 135 (2019).
[38] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Physical Review A 86,

032324 (2012).
[39] A. G. Fowler and C. Gidney, arXiv:1808.06709 (2018).
[40] H. Beinert, R. Holm, and E. Munck, Science 277, 653 (1997).
[41] M. Szegedy, in 45th Annual IEEE Symposium on Foundations of Computer Science (IEEE,

2004) pp. 32–41.
[42] A. M. Childs and N. Wiebe, Quantum Information and Computation 12, 901 (2012).
[43] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Proceedings of the National Academy

of Sciences 115, 9456 (2018).
[44] G. H. Low, V. Kliuchnikov, and L. Schaeffer, arXiv:1812.00954 (2018).
[45] Z. Li, J. Li, N. S. Dattani, C. J. Umrigar, and G. K.-L. Chan, The Journal of Chemical Physics

150, 024302 (2019).
[46] E. G. Hohenstein, S. I. L. Kokkila, R. M. Parrish, and T. J. Martinez, The Journal of Physical

Chemistry B 117, 12972 (2013).
[47] J. L. Whitten, The Journal of Chemical Physics 58, 4496 (1973).
[48] E. G. Hohenstein and C. D. Sherrill, The Journal of Chemical Physics 132, 184111 (2010).
[49] N. H. F. Beebe and J. Linderberg, International Journal of Quantum Chemistry 12, 683

(1977).

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 23

http://dx.doi.org/ 10.1103/PhysRevA.90.022305
http://dx.doi.org/ 10.1103/PhysRevA.90.022305
http://dx.doi.org/10.1103/PhysRevA.91.022311
http://dx.doi.org/10.1103/PhysRevA.91.022311
https://doi.org/10.26421/QIC15.5-6
https://doi.org/10.26421/QIC15.5-6
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1063/1.5019371
http://arxiv.org/abs/1701.08213
http://dx.doi.org/10.1088/1367-2630/aac54f
http://arxiv.org/abs/1812.08190
http://dx.doi.org/10.1063/1.4880755
http://dx.doi.org/ 10.1038/s41534-018-0071-5
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.010501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.010501
http://arxiv.org/abs/1809.05523
http://dx.doi.org/10.22331/q-2019-07-12-163
http://dx.doi.org/ 10.1088/1367-2630/18/3/033032
http://dx.doi.org/ 10.1088/1367-2630/18/3/033032
http://dx.doi.org/10.1103/PhysRevLett.123.070503
http://dx.doi.org/ 10.1088/1367-2630/14/11/115023
http://www.pnas.org/content/114/29/7555.abstract
http://www.pnas.org/content/114/29/7555.abstract
https://quantum-journal.org/papers/q-2019-03-05-128/
http://www.pnas.org/content/105/48/18681.abstract
http://www.pnas.org/content/105/48/18681.abstract
http://arxiv.org/abs/1312.2579
https://doi.org/10.26421/QIC15.1-2
https://doi.org/10.26421/QIC15.1-2
http://dx.doi.org/10.1021/acs.jpca.6b04932
http://dx.doi.org/10.1021/acs.jpca.6b04932
http://dx.doi.org/10.1103/PhysRevLett.119.160503
http://arxiv.org/abs/1808.02625
https://doi.org/10.22331/q-2019-04-30-135
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1808.06709
http://dx.doi.org/http://science.sciencemag.org/content/277/5326/653
http://dx.doi.org/10.1109/FOCS.2004.53
https://doi.org/10.26421/QIC12.11-12
http://dx.doi.org/ 10.1073/pnas.1801723115
http://dx.doi.org/ 10.1073/pnas.1801723115
https://arxiv.org/abs/1812.00954
http://dx.doi.org/ 10.1063/1.5063376
http://dx.doi.org/ 10.1063/1.5063376
http://dx.doi.org/10.1021/jp4021905
http://dx.doi.org/10.1021/jp4021905
http://dx.doi.org/10.1063/1.1679012
http://dx.doi.org/10.1063/1.3426316
http://dx.doi.org/10.1002/qua.560120408
http://dx.doi.org/10.1002/qua.560120408

[50] H. Koch, A. S. de Meras, and T. B. Pedersen, The Journal of Chemical Physics 118, 9481
(2003).

[51] F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen,
M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, and R. Lindh,
Journal of Computational Chemistry 31, 224 (2010).

[52] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure Theory (Wiley, 2002).
[53] B. Peng and K. Kowalski, Journal of Chemical Theory and Computation 13, 4179 (2017).
[54] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, in STOC ’14 Proceedings

of the 46th Annual ACM Symposium on Theory of Computing (2014) pp. 283–292.
[55] G. H. Low and I. L. Chuang, Physical Review Letters 118, 010501 (2017).
[56] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-Guzik, G. K.-L. Chan, and

R. Babbush, Physical Review Letters 120, 110501 (2018).
[57] D. A. Mazziotti, Physical Review Letters 108, 263002 (2012).
[58] N. Rubin, R. Babbush, and J. McClean, New Journal of Physics 20, 053020 (2018).
[59] W. A. Al-Saidi, S. Zhang, and H. Krakauer, Journal of Chemical Physics 124, 224101 (2006).
[60] D. Vanderbilt, Physical Review B 41, 7892 (1990).
[61] V. Giovannetti, S. Lloyd, and L. Maccone, Physical Review Letters 100, 160501 (2008).
[62] C. Gidney, Quantum 2, 74 (2018).
[63] R. Babbush, D. W. Berry, and H. Neven, Physical Review A 99, 040301 (2019).
[64] J. R. McClean, R. Babbush, P. J. Love, and A. Aspuru-Guzik, The Journal of Physical

Chemistry Letters 5, 4368 (2014).
[65] D. Litinski, arXiv:1905.06903 (2019).
[66] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, arXiv:quant-ph/0410184 (2004).

A Cost of computing table lookups assisted by dirty ancillae
In [44] it is explained how to perform an efficient table lookup (a QROAM read) assisted by dirty
ancillae. Here “dirty” ancillae are used to mean ancillae that need not be initialized to some
known state before the procedure, and are returned to their initial state at the end. We provide
an equivalent technique, and prove the following result.

Theorem 1. Given a function f : Zd → ZM2 and k a power of 2 satisfying 1 < k < d, it is possible
to apply the transformation

d∑
j=1

ψj |j〉 |0〉 7→
d∑
j=1

ψj |j〉 |f(j)〉 (65)

using 2dd/ke+ 4M(k − 1) Toffoli gates, (k − 1)M dirty ancillae and dlog(d/k)e clean ancillae.

Proof. The technique proceeds as follows (see Figure 4).

• Allocate a register r0 with M clean qubits in the |+〉 state. This register will ultimately store
the output.

• Borrow registers r1, . . . , rk−1 each of size M containing dirty ancillae.

• Let l be the superposed integer value of the bottom log k qubits in the address register. Using
a series of M(k − 1) controlled swaps, permute the registers r0, ..., rk−1 such that r0 ends
up where rl was. The other registers can be permuted in any order. Call this swapping
procedure S.

• Let h be the superposed integer value of the top dlog(d/k)e qubits of the address register.
Perform a table lookup with address h targeting the r0, ..., rk−1 registers. The data for
register rl at address h is equal to the data from the original table at address h · k + l. In
effect, this is reading many possible outputs at once. Call this lookup process T .

• Perform the inverse of the swapping procedure S.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 24

http://dx.doi.org/10.1063/1.1578621
http://dx.doi.org/10.1063/1.1578621
http://dx.doi.org/10.1002/jcc.21318
http://dx.doi.org/10.1002/9781119019572
http://dx.doi.org/10.1021/acs.jctc.7b00605
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1145/2591796.2591854
http://dx.doi.org/10.1103/PhysRevLett.118.010501
http://dx.doi.org/ 10.1103/PhysRevLett.120.110501
http://dx.doi.org/10.1103/PhysRevLett.108.263002
http://iopscience.iop.org/article/10.1088/1367-2630/aab919/meta
http://dx.doi.org/10.1063/1.2200885
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.22331/q-2018-06-18-74
http://dx.doi.org/10.1103/PhysRevA.99.040301
http://dx.doi.org/10.1021/jz501649m
http://dx.doi.org/10.1021/jz501649m
http://arxiv.org/abs/1905.06903
https://arxiv.org/abs/quant-ph/0410184

• Because the qubits in r0 were in the |+〉 state, they were not affected by T (which only
targeted them with controlled bit flips). Apply Hadamard operations to r0 so that it will be
affected by the next T , which will also uncompute the dirt XOR’ed into the other registers.

• Perform S then T then S−1 again.

• r0 is now storing the output. The other registers are restored. Return the borrowed
r1, . . . , rk−1 registers.

The swapping subroutine S has a Toffoli count of M(k−1). The table lookup subroutine T has
a Toffoli count of dd/ke. We compute/uncompute S four times and perform T twice. Therefore
the total Toffoli count is 2dd/ke+ 4M(k − 1). The space cost of the procedure is (k − 1)M dirty
ancillae for workspace and dlog(d/k)e clean ancillae hidden in the implementation of T .

Note that the transformation also uses M qubits to store the output. The value of k that
minimizes the Toffoli count is approximately

√
2d/M . In practice the number of available dirty

qubits often bounds k to be a much smaller value. The value of k must be greater than 2 in order
to have a Toffoli count lower than a standard lookup.

|h〉 / • •

|l〉 / • • • •

r0 / H

S T S†

H

S T S†
r1 /

...
...

rk−1 /

Figure 4: The sequence of operations used for computing table lookups with dirty ancillae. The output register
is r0, and the registers r1 to rk−1 are the dirty ancillae. Note that the scheme in [44] (see Fig. 1(d)) uses
“Swap” for the operation we here call S, and “Select” for the operation we here call T . The sequence of
operations we use here is different than in [44], resulting in a reduction in the number of registers needed.

B Cost of computing table lookups assisted by clean ancillae
When clean ancillae are available, the optimization from Appendix A can be performed more
efficiently. The result is as follows.

Theorem 2. Given a function f : Zd → ZM2 and k a power of 2 satisfying 1 < k < d, it is possible
to apply the transformation

d∑
j=1

ψj |j〉 |0〉 7→
d∑
j=1

ψj |j〉 |f(j)〉 (66)

using dd/ke+M(k − 1) Toffoli gates and (k − 1)M + dlog(d/k)e clean ancillae.

Proof. The steps are as follows.

• Allocate registers r0, . . . , rk−1 each with M clean qubits initialized to the |0〉 state.

• Let h be the superposed integer value of the top dlog(d/k)e qubits of the address register.
Perform a table lookup with address h targeting the r0, . . . , rk−1 registers. The data for
register rl at address h is equal to the data from the original table at address h · k + l. In
effect, this is reading many possible outputs at once.

• Let l be the superposed integer value of the bottom log k qubits in the address register.
Using a series of Mk controlled swaps, permute the registers r0, . . . , rk−1 such that rl ends
up where r0 was. The other registers can be permuted in any order.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 25

• r0 is now storing the output.

• Note that every computational basis value of the address register results in a specific compu-
tational basis value for registers r0, ..., rk−1 at this point. We have performed the equivalent of
table lookup targeting r0, ..., rk−1. We can use the uncomputation strategy from Appendix C
to uncompute this effective lookup. The first thing done by that strategy is to measure all
output qubits in the X basis. We will not be using any of the qubits from registers r1, ..., rk−1
until that point so they can be measured now instead of later. This frees the clean ancillae
for other uses. Keep the measurement results so they can be used by the uncomputation
process.

The swapping subroutine of this algorithm has a Toffoli count of M(k − 1). The table lookup
subroutine has a Toffoli count of dd/ke. We perform each exactly once, therefore the total Toffoli
count is dd/ke+M(k−1). The space cost of the procedure is (k−1)M clean ancillae for workspace
and dlog(d/k)e clean ancillae hidden in the implementation of the table lookup subroutine.

Again the transformation uses M qubits to store the output. The value of k that minimizes
the Toffoli count is approximately

√
d/M . In practice the number of available clean qubits may

bound k to be a much smaller value.

C Efficient uncomputation of table lookups using measurement based
uncomputation

Next we consider the cost of uncomputing a table lookup, reversing the procedure described in the
preceding two appendices. The result is as follows.

Theorem 3. Given a function f : Zd → ZM2 and k a power of 2 satisfying 1 < k < d, it is possible
to apply the transformation

d∑
j=1

ψj |j〉 |f(j)〉 7→
d∑
j=1

ψj |j〉 |0〉 (67)

using dd/ke+ k Toffoli gates and k+ dlog(d/k)e clean ancillae, or alternatively using 2dd/ke+ 4k
Toffoli gates, k − 1 dirty ancillae and dlog(d/k)e+ 1 clean ancillae.

Proof. Whenever a quantum circuit uncomputes a qubit q by performing a series of unitary oper-
ations that result in the qubit being in the |0〉 state, the circuit can be optimized by application
of the deferred measurement principle. For example, suppose the last operation involving q is a
CNOT targeting q. Then the circuit can be optimized by measuring q in the X basis before the
CNOT, then replacing CNOT with a Z gate conditioned on the measurement result. This is an
optimization because, in the surface code, Z gates require no spacetime volume.

This general pattern of “take an X-axis interaction that clears a qubit and use an X basis
measurement and a classically-conditioned phase fixup operation instead” applies to many con-
structions, including table lookups. Let’s consider the nature of the phase fixup task we must
perform when we eagerly measure the output qubits of a table lookup in the X basis.

We can think of each entry in the table as corresponding to a multi-control multi-target CNOT
operation. There is one control (or anti-control) for each address qubit, and one target (or skip)
for each output qubit. Because we will be measuring the output qubits, it is helpful to flip our
perspective and think of the output qubits as the controls and the address qubits as the targets.
For example, suppose the entry at address 2 of the table is the bit string 10011000. This means
that the table lookup must toggle the qubits at offset 0, 3, and 4 of the target register conditioned
on the address register storing 2. Or, equivalently, this means that the table lookup must negate
the amplitude of the |2〉 state of the address register, conditioned on the X0 ·X3 ·X4 observable
of the qubits in the target register. Because we measured the output qubits in the X basis, we
know the value of the X0 ·X3 ·X4 observable and thus know whether or not we need to negate the
amplitude of the |2〉 state of the address register. In fact, using the observables we measured, we
can figure out for every state |j〉 of the address register whether or not |j〉 needs to be negated.
Performing the necessary negations uncomputes the table lookup.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 26

Let S be the set of all address register states that need to have their amplitude negated. This
will be some arbitrary subset of the states from |0〉 to |d − 1〉. We now transform the task of
negating all the states in S into the task of performing a table lookup of size d/2 with output size
2. Let q be the least significant qubit of the address register, and u be a clean ancilla qubit in the
|1〉 state. Apply a CNOT from q onto u, then apply a Hadamard transform to each. Now define
a “fixup table” F with entries Fj each specifying two output bits defined by S:

Fj =


00 (2j /∈ S) ∧ (2j + 1 /∈ S)
01 (2j ∈ S) ∧ (2j + 1 /∈ S)
10 (2j /∈ S) ∧ (2j + 1 ∈ S)
11 (2j ∈ S) ∧ (2j + 1 ∈ S)

(68)

After preparing q and u, perform a table lookup from F onto q and u. The address of the
lookup is all of the qubits of the address register, except for the least significant qubit. Because of
how we defined F and how we prepared q and u, this negates the phase of all states from S. This
uncomputes the table lookup, and we finish the uncomputation by uncomputing the preparation
of q and u. See Figure 5 for a quantum circuit showing an overview of the process.

This technique implements the uncomputation of a table lookup with address size d and output
size M in terms of computing a table lookup with address size d/2 and output size 2. Reducing
the address and output size increase the effectiveness of the techniques explained in Appendix B
and Appendix A, since a larger value of k can be used.

By combining this technique and Appendix B, if k additional clean ancillae are available, the
Toffoli cost of uncomputing a table lookup with address size d and output size M can be reduced
to dd/ke+ k. The procedure to use is shown in Figure 6, where r0 is initially |0〉, which is flipped
to |1〉 by the X gate. The controlled swap S shifts that |1〉 to position l, giving a one-hot unary
encoding of the value in the bottom log k qubits in the address register. The Hadamards and T
then yield the correct phase factor. The reverse controlled swap then erases the unary encoding.
The first controlled swap has cost k − 1, with the cost reduced as compared to the table lookup
because the outputs are single qubits instead of M -qubit registers. The T has cost dd/ke, and the
final controlled swap may be performed with Clifford gates. The reason is that a unary encoding
may be erased using measurements and Clifford gates. There are k ancillae used for the unary
encoding, and as before there are dlog(d/k)e ancillae needed for the implementation of T .

Combining this technique with Appendix A instead, if k additional dirty ancillae are available,
the Toffoli cost of uncomputing a table lookup with address size d and output size M can be
reduced to 2dd/ke+ 4k. The procedure to use is shown in Figure 7, which is a slight modification
over that for the table lookup. As before r0 is a clean register, and r1 to rk−1 can be dirty registers,
though now they need just be qubits. The first S, T , and S† have no effect on the target qubit r0.
Then the Z gate changes the state of this qubit to (|0〉 − |1〉)/

√
2, so the next T yields the correct

phase factor. At the end the Z and H return the state of r0 to |0〉. There are k − 1 dirty ancillae
used, one clean ancilla for r0, and dlog(d/k)e clean ancillae needed for the implementation of T .

In the case of clean ancillae, the Toffoli cost is minimized for k ≈
√
d, where the Toffoli count is

2
√
d. For dirty ancillae, the cost is minimized at k ≈

√
d/2, where the Toffoli count is

√
32d.

To explain in more detail how to erase the unary register using Clifford gates, see Figure 8
to Figure 10. Figure 8 shows how to map binary to unary using controlled swaps. The sequence
of controlled swaps is the same as in [44]. If we first flip the top qubit of the unary register to
1, the controlled swap network moves the 1 to the correct position. To uncompute the unary
register, we do this process in reverse. We expand each controlled swap into a CNOT-Toffoli-
CNOT construction, as shown in Figure 9. The construction is considerably simplified because for
the second CNOT in each group the control is known to be in the |0〉 state, so the CNOT can
be omitted entirely. Furthermore, when the output of a Toffoli is known to be zero we can use
the uncomputation trick instead, leaving us with a circuit using no non-Clifford gates, as shown in
Figure 10.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 27

• •

/
(lg d)− 1

Input a
/

(lg d)− 1
Input a′

= • H
⊕Lookup Fa′

H •

|1〉 H H

/
M

⊕Lookup Da 〈0| /
M

H Compute fixup table F Input F

Figure 5: Uncomputing a table lookup using eager measurement and phase fixups. Reduces the effective address
size from d to d/2 and the effective output size from M to 2.

|h〉 / •

|l〉 / • •

r0 X

S

H

T

H

S†

X

r1 H H

...
...

rk−1 H H

Figure 6: The sequence of operations used for applying the phase fixup with clean ancillae. The registers r0
to rk−1 are single qubits, initially set to |0〉.

|h〉 / • •

|l〉 / • • • •

r0 H

S T S†

Z

S T S†

Z H

r1

...
...

rk−1

Figure 7: The sequence of operations used for applying the phase fixup with dirty ancillae. The register r0 is
initially set to |0〉, whereas r1 to rk−1 are dirty qubits.

•
• •

• • • •
X × × ×
× × ×
× ×
× ×
×
×
×
×

Figure 8: This circuit maps a binary register in the top three qubits to a one-hot unary register in the bottom
8 qubits.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 28

•
• •

• • • •
• • •

• • • •
• • •

• • •
• •

• •
• •

• •

Figure 9: The inverse of the circuit for mapping binary to unary, with the controlled swaps implemented using
CNOTs and Toffolis.

•

• •

• • • •

Z Z Z

Z Z • H •

Z • H •

Z • H •

• H •

• H •

• H •

• H •

Figure 10: The circuit in Figure 9 with the Toffolis replaced with measurements and controlled operations, and
the second CNOT in each group omitted.

D The scaling λ in general contexts
Here we briefly discuss how we expect λ might scale for more general systems, beyond the FeMoco
system considered in the rest of this work. In the plane wave basis, one can obtain a clean
bound of λ = O(N2) [7]. One might roughly expect similar scaling in a more general context,
based on intuition about electrons interacting pairwise which would imply the spectral norm of
the Hamiltonian should go roughly quadratically in N . However, for arbitrary basis sets the
relationships between λ, basis size, basis type, molecular structure, etc. are very complex and
difficult to rigorously bound. Here we use numerics to provide insight into how λ scales.

In Figure 11(a) we show how λ scales for a chain of Hydrogen atoms when basis resolution is
fixed and the system grows towards the thermodynamic (large system size) limit (e.g. a chain with
many Hydrogen atoms). We focus on an atomic chain because chains approach their thermody-
namic limit much faster than other configurations of atoms. We see in all of our numerics that
λT ≤ λV ≤ λW . For the hydrogen chains we see that λV = O(N2.2) and λW = O(N2.5). It is
interesting that λW has slightly asymptotically worse scaling than λV ; however, the difference is
far less than the factor of N that we save by performing the low rank truncation (resulting in us
scaling like λW instead of like λV).

Slightly different behavior occurs when we fix the system (in this case the H4 system) and grow
towards the continuum limit (the limit of an arbitrarily large basis), shown in Figure 11(b). Here,

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 29

we see that λV = O(N2.7) and λW = O(N3). Overall the scaling of λ is a bit worse but λW /λV
still scales as roughly O(N0.3).

In both of these numerical experiments we find that λ is scaling worse than Ω(N1.5), which

is the condition we require for our Õ(N3/2λ) scaling to be better than the Õ(λ2) scaling of [27].
Still, it is clear that more research is required to fully understand the relationship between λ and
molecular structure, and how the size of λ might be reduced.

101 102

NH

102

103

104

105

λ
T
,λ

V
,λ

W
[a
.u
.]

λT [a.u.] λV [a.u.] λW [a.u.]

(a) λ values as function of Hydrogen chain size.

101 102

N

100

102

104

106

108

λ
T
,λ

V
,λ

W
[a
.u
.]

λT [a.u.] λV [a.u.] λW [a.u.]

(b) λ values as function of basis size for H4.

Figure 11: The scaling of λT , λV and λW for simple systems growing towards continuum and thermodynamic
limits. In (a) we see a linear chain of Hydrogen atoms represented in the STO-6G basis, as a function of the
number of Hydrogens, NH , in the chain. The atoms have a spacing of 1.4 Bohr radii. For this system the number
of spin-orbitals, N , is twice the number of Hydrogens, NH . The linear regressions suggest λT = O(N1.3

H),
λV = O(N2.2

H) and λW = O(N2.5
H). In (b) we see a plaquette of four Hydrogen atoms (H4) with a spacing of 2

Bohr radii on each side, as function of the number of spin-orbitals (qubits, N) used to represent the system. The
points here correspond to progressively larger basis sets between STO-6G and cc-pV5Z (the first point seems to
have a slightly different trend, likely because STO-6G uses very different primitive functions than the correlation
consistent basis sets). The linear regressions suggest λT = O(N1.9), λV = O(N2.7) and λW = O(N3.0).

E Detailed costings
Here we give the details for the minor Toffoli costs and the numbers of logical qubits used.

E.1 RWSWT orbitals
For the case where the low rank factorization approach is used, and the small number of dirty
qubits is used, the minor costs are as follows.

1. 4(N + dlogNe) = 460 Toffolis for the controlled operations.

2. For the initial equal superposition state preparation, we have 8 qubits for `, and 6 qubits for
each of the p, q, r, s registers for a total of 32. To obtain a final amplitude close to one it is
convenient to also prepare an ancilla in an equal superposition of 15 out of 16 basis states
(on 4 qubits). Then the number of qubits is increased to 36, and two steps of amplitude
amplification takes 454 Toffolis (see Appendix F). The final amplitude is close enough to one
that it does not affect the complexity at the precision we are giving.

3. The inequality tests and controlled swaps for the state preparation need to be done twice for
each of the two preparations, because there is a cost to prepare and a cost to unprepare. We
are preparing 21 qubits in the first step, and 13 qubits in the second step. The total cost is
therefore 2(2µ+ 21 + 13) = 176.

4. The controlled swaps used for the symmetries have a cost of 4dlog(N/2)e = 24 Toffolis, taking
into account preparation and inverse preparation.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 30

5. A careful accounting of the number of Toffolis needed to evaluate s in Eq. (20) gives 105 (see
Appendix G). We incur this cost four times, because we have two state preparations and
two inverse preparations. The total is therefore 4× 105 = 420.

The total of these costs is 1,534.
The numbers of qubits used are as follows.

1. The system is represented on N = 108 qubits.

2. We are preparing a state with a number of qubits dlogLe + 6 + 4dlog(N/2)e = 38. In this

expression the first term takes account of `, the +6 takes account of q1, q2, θ
(`)
pq , θ

(`)
rs , α, and

β, and the last term takes account of the p, q, r, s registers.

3. There are 4 ancillae used in preparing the equal superposition state, plus a flag qubit for
success.

4. Computing Eq. (20) (for the register to iterate over for the QROAM) twice needs 19×2 = 38
qubits for the output.

5. There are 49 + 41 = 90 qubits used as output in the two steps of the state preparation.

6. The QROAM uses dlog(d/k)e = 17 clean qubits for the preparation. A smaller number of
clean qubits are used for the inverse preparation, and we may reuse the same qubits.

7. Each state preparation needs µ = 27 qubits to store a superposition state to perform the
inequality comparison, plus a flag qubit for success.

8. The number of qubits needed for the phase estimation m = 26.

Adding all these qubit counts together gives 378.
Next we consider the case where the large number of ancilla qubits is used. The minor costs

are the same as before, except now there are three inequality tests and controlled swaps needed
for the state preparation, and µ is increased to 28. In preparing the superposition over `, the size
of the registers acted upon by the controlled swap is dlogLe = 8. In preparing the superposition
over p and q, there are two registers of size dlog(N/2)e = 6, as well as the qubit register storing

θ
(`)
pq , for a total of 13. The number of qubits in preparing the superposition over r and s is the

same. Therefore the Toffoli cost of the inequality tests and controlled swaps is increased from 176
to 6µ+ 2(8 + 13 + 13) = 236. The minor costs therefore are increased to 1,594.

Evaluating the number of qubits used is similar to the case for the dirty ancillae considered
above.

1. The system is represented on N = 108 qubits.

2. We are preparing a state with a number of qubits dlogLe+ 6 + 4dlog(N/2)e = 38.

3. There are 4 ancillae used in preparing the equal superposition state, plus a flag qubit for
success.

4. Computing Eq. (20) twice needs 19× 2 = 38 qubits for the output.

5. There are 8 + 42 + 42 = 92 qubits used as output in the three steps of the state preparation.

6. The QROAM uses (k− 1)M + dlog(d/k)e = 2,659 qubits. These are erased, so we need only
count the cost of those used in step 4 (since those may reuse the qubits used for step 3).

7. Each state preparation needs µ = 28 qubits to store a superposition state to perform the
inequality comparison, as well as a single qubit to store the result of the inequality compari-
son. We need not count the cost of the qubits used in step 4, because we may reuse qubits
from the QROAM.

8. The number of qubits needed for the phase estimation m = 26.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 31

Altogether there are 3,024 qubits used.
Third for the RWSWT orbitals, we consider the costs for the sparse state preparation approach.

In this case the minor costs are as follows.

1. 4(N + dlogNe) = 460 Toffolis for the controlled operations.

2. The preparation of the equal superposition state is just for a single register of 19 bits. It is
more efficient to use an 6-qubit ancilla and prepare a superposition over 19 basis states in
that ancilla. Then the amplitude amplification takes one step, and is on 25 bits so has a cost
of 160.

3. In this case there is a single state preparation for 26 qubits, so the cost for the preparation
plus inverse preparation is 2(µ+ 26) = 102.

4. This time there is a single state preparation, but three controlled swaps used to generate the
symmetries. Two of these controlled swaps are on registers of size dlog(N/2)e, and one is on
a register of twice the size, so the cost is the same as before 4dlog(N/2)e = 24.

This time there is no additional cost from arithmetic, because we are not using Eq. (20). The total
of the minor costs is therefore 746.

The numbers of qubits used are as follows.

1. The N = 108 system registers.

2. The state being prepared has size 7+4dlog(N/2)e = 31 qubits. Here the 7 includes the qubit
distinguishing between T and V , the three qubits used for the symmetries, and θ, α, and β.

3. Preparation of the equal superposition state uses 6 ancilla qubits, plus there is a flag qubit
for success.

4. The 19 qubits that we iterate over for the QROAM.

5. The qubits needed for the QROAM k1M , which includes the output M registers and another
(k1−1)M working output registers. We subtract 2+4dlog(N/2)e = 26 qubits that are in the
main output register that we have already accounted for. Here k1 = 64 and M = 77 gives
4,902.

6. The QROAM uses another dlog(d/k1)e = 12 clean qubits.

7. Each state preparation needs µ = 25 qubits to store a superposition state to perform the
inequality comparison, as well as a flag qubit. These do not add to the cost because we can
reuse qubits used in the QROAM.

8. The number of qubits needed for the phase estimation m = 24.

The total number of logical qubits needed is then 5,103.

E.2 LLDUC orbitals
For the LLDUC orbitals using the small number of dirty ancillae, the minor costs are as follows.

1. 4(N + dlogNe) = 640 Toffolis for the controlled operations.

2. This time there are 36 qubits, because the p, q, r, s registers need 7 qubits each. In this
case it is more efficient to perform amplitude amplification separately to prepare the equal
superpositions over `, p, q and r, s separately. Preparing an ancilla with 11 out of 16 basis
states (4 qubits) in the first preparation and 17 out of 32 basis states (5 qubits) in the second,
we can achieve amplitude close to one with two steps of amplitude amplification. The total
Toffoli cost is 534 (see Appendix F).

3. We are preparing 23 qubits in the first step, and 15 qubits in the second step. The total cost
for the inequality tests and controlled swaps is 2(2µ+ 23 + 15) = 184.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 32

4. The controlled swaps used for the symmetries have a cost of 4dlog(N/2)e = 28 Toffolis.

5. A careful accounting of the cost of evaluating Eq. (20) gives 108 (see Appendix G), and this
is incurred four times for a total of 4× 108 = 432.

The total of these costs is 1,818.
This time the qubits used are as follows.

1. The system is on N = 152 qubits.

2. The number of qubits in the prepared state is dlogLe+ 6 + 4dlog(N/2)e = 42.

3. There are 9 qubits used for preparing the equal superposition state, plus one to flag success.

4. Computing Eq. (20) twice needs 20× 2 = 40 qubits for the output.

5. The two QROMs output 51 + 43 = 94 qubits.

6. The QROAM uses dlog(d/k)e = 18 clean qubits for the preparation. A smaller number of
clean qubits are used for the inverse preparation, and we may reuse the same qubits as before.

7. The two size µ = 27 registers for the inequality tests, plus the two qubits flagging the results.

8. The number of qubits for the phase estimation is m = 25.

The total number of logical qubits is 437.
Next we consider the LLDUC orbitals with a large number of clean ancillae. This time the

minor costs are the same, except the cost of the inequality tests and controlled swaps is increased
to 6µ + 2(8 + 15 + 15) = 238 (instead of 184). Here the number of qubits that must be swapped
in preparing the superposition over ` is dlogLe = 8. The number of qubits for preparing the
superposition over p and q is 15, because p and q have registers of dlog(N/2)e = 7 qubits each,

and there is the qubit storing θ
(`)
pq . The preparation over r and s also needs swaps with 15 qubits.

Therefore the minor costs are increased to 1,872.
The numbers of logical qubits used are as follows.

1. The system is represented on N = 152 qubits.

2. We are preparing a state with a number of qubits dlogLe+ 6 + 4dlog(N/2)e = 42.

3. There are 9 ancillae used in preparing the equal superposition state, plus a flag qubit for
success.

4. Computing Eq. (20) twice needs 20× 2 = 40 qubits for the output.

5. There are 8 + 43 + 43 = 94 qubits used as output in the three steps of the state preparation.

6. The QROAM uses (k− 1)M + dlog(d/k)e = 2,723 qubits. These are erased, so we need only
count the cost of those used in step 4 (since those may reuse the qubits used for step 3).

7. Each state preparation needs µ = 27 qubits to store a superposition state to perform the
inequality comparison, and a flag qubit. We need not count the cost of the qubits used in
step 4, because we may reuse qubits from the QROAM.

8. The number of qubits needed for the phase estimation m = 26.

The total number of qubits is therefore 3,143.
Lastly, we consider the costs with the LLDUC orbitals with the sparse state preparation ap-

proach. The minor Toffoli costs are as follows.

1. 4(N + dlogNe) = 640 Toffolis for the controlled operations.

2. The equal superposition state to prepare is on 18 qubits, and to obtain final amplitude close
to one we use 3 ancilla qubits and prepare a superposition over 3 of the 8 basis states. The
single step of amplitude amplification takes 142 Toffolis.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 33

3. The cost for the preparation plus inverse preparation on 30 qubits is 2(µ+ 30) = 108.

4. The controlled swaps used to generate the symmetries have a cost of 4dlog(N/2)e = 28.

These minor costs have a total of 918.
For the number of qubits, we have the following.

1. The N = 152 system registers.

2. The state being prepared has size 7 + 4dlog(N/2)e = 35 qubits.

3. Preparation of the equal superposition state uses 3 ancilla qubits, plus there is a flag qubit
for success.

4. The 18 qubits that we iterate over for the QROAM.

5. The qubits needed for the QROAM k1M , which includes the output M registers and another
(k1 − 1)M working output registers. We need to subtract 2 + 4dlog(N/2)e = 30 qubits that
are part of the state being prepared that we have already accounted for. Here k = 32 and
M = 84 giving 2,658.

6. The QROAM uses another dlog(d/k1)e = 13 clean qubits.

7. Each state preparation needs µ = 24 qubits to store a superposition state to perform the
inequality comparison. These do not add to the cost because we can reuse qubits used in the
QROAM.

8. The number of qubits needed for the phase estimation m = 24.

These give a total of 2,904.

F Preparation of equal superposition states
Here we explain in more detail how the number of Toffolis to prepare equal superposition states
were determined. In the case of low rank factorization, we aim to prepare an equal superposition
state

1
(N2/8 +N/4)

√
L+ 1

L∑
`=0

N/2−1∑
p=0

p∑
q=0

N/2−1∑
r=0

r∑
s=0
|`, p, q, r, s〉 . (69)

Here we take all variables to start at zero, because that is how they would be encoded in practice.
(In the body of the paper we took p, q, r, s to start from 1 for simplicity.) A way to prepare this
state is to initially use Hadmards to prepare equal superpositions over all registers, over larger
ranges that are powers of 2. Then we perform inequality tests to check that ` ≤ L, p ≥ q, p < N/2,
r ≥ s, r < N/2 are satisfied. The amplitude for success can then be brought close to 1 by amplitude
amplification.

With N = 108 (the RWSWT orbitals), there are 6 qubits for each of p, q, r, s, and 8 qubits for
`, for a total of 32. That means the state flagged by success is

1√
232

L∑
`=0

N/2−1∑
p=0

p∑
q=0

N/2−1∑
r=0

r∑
s=0
|`, p, q, r, s〉 . (70)

This has amplitude of

sinφ = (N2/8 +N/4)
√
L+ 1

216 ≈ 0.321. (71)

If we were to use k = 2 steps of amplitude amplification, then the amplitude would be

sin((2k + 2)φ) ≈ 0.998. (72)

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 34

Although that is close to 1, we can do considerably better by introducing another 4 qubits, and
preparing an equal superposition of 15 basis states out of 16 for those. Then the initial amplitude
is

sinφ =
(N2/8 +N/4)

√
15(L+ 1)

218 ≈ 0.311. (73)

Then the amplitude after two steps of amplitude amplification is

sin((2k + 2)φ) ≈ 0.99994. (74)

For the Toffoli cost, there are four facts we need to keep in mind (see Appendix H).

1. To perform an inequality test between two variables (numbers encoded in quantum registers)
with an equal number of qubits, the number of Toffolis required is equal to the number of
qubits.

2. To perform an inequality test between a variable and a constant given classically (like N/2)
requires a number of Toffolis equal to the number of qubits minus one.

3. If there is an inequality test between a variable and a constant that is a multiple of a power
of 2, then the number of Toffolis is decreased by that power.

4. A reflection about zero on a register takes a number of Toffolis two less than the number of
qubits. This is because it is equivalent to a multiply controlled Toffoli, with one of the qubits
as target.

At the end we will flag on success for the inequality tests for the state we aim to prepare. This
is because there is not perfect amplitude for success, and we aim to eliminate the error from the
cases where the inequality tests are not satisfied. However, we do not need to perform the final
inequality test for the ancilla, because that was just to adjust the amplitude.

The costs in the state preparation are as follows.

1. The inequality tests between variables, p ≥ q and r ≥ s, take 6 Toffolis each, for a total of
12.

2. The inequality tests p < N/2 and r < N/2 would take 5 Toffolis, except we can save a Toffoli
on each because the constant is N/2 = 54 = 2× 27. These two therefore cost 8 Toffolis.

3. The inequality test ` ≤ L is with a constant on 8 qubits so has a cost of 7. We could also
save some Toffolis if we were to choose L + 1 = 200 instead of 201, but we will not do that
for consistency with the rest of the paper.

4. The inequality test with 15 for the ancilla has a cost of 3.

5. There is a total of 8 + 6 × 4 + 4 = 36 qubits, so reflection about the entire state has a cost
of 34.

6. There are 6 inequality tests, so reflection about success has a cost of 4 Toffolis.

7. At the end we wish to flag on success of the 5 inequality tests for the state, which has a cost
of 4.

The total cost of the inequality tests for the state is 27. For k steps of amplitude amplification,
these inequality tests are performed 2k + 1 times, for a cost of 27(2k + 1). The inequality test on
the ancilla is performed 2k times, for a cost of 6k. The two reflections have a combined cost of
34 + 4 = 38. They are performed once for each step of amplitude amplification for a cost of 38k.
Together with the final check to produce the flag qubit, the cost is 30(2k+ 1) + 6k+ 38k+ 4. With
two steps of amplitude amplification the cost is 227. Because we need preparation and inverse
preparation for each step in the LCU approach, we have a cost of 454.

With the LLDUC orbitals N = 152, and we will find it convenient to prepare the superpositions
over `, p, q and r, s separately. Each of the p, q, r, s registers now has 7 qubits, and ` still has 8

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 35

qubits. For the preparation over `, p, q, we prepare an equal superposition over all registers, then
perform inequality tests to give a state flagged on success

1√
222

L∑
`=0

N/2−1∑
p=0

p∑
q=0
|`, p, q〉 (75)

This has amplitude of

sinφ =
√

(N2/8 +N/4)(L+ 1)
211 ≈ 0.374. (76)

In this case we will also prepare a superposition over 11 out of 16 basis states on another 4 qubits.
Then the initial amplitude is

sinφ =
√

11(N2/8 +N/4)(L+ 1)
213 ≈ 0.310. (77)

The amplitude after k = 2 steps of amplitude amplification is

sin((2k + 2)φ) ≈ 0.99997. (78)

The costs are as follows.

1. The inequality test p ≥ q has a cost of 7.

2. In this case N/2 = 152/2 = 76 = 4× 19. This means we can save two Toffolis, and the cost
for the inequality test p < N/2 is 4.

3. The cost of the inequality test ` ≤ L is 7.

4. The inequality test on the ancilla has a cost of 3.

5. The reflection about zero for the 8 + 2× 7 + 4 = 26 qubit state has cost of 24.

6. The reflection for the output qubits from the 4 inequality tests has cost 2.

7. Flagging success of all inequality tests for the state has cost 2.

There is cost 7 + 4 + 7 = 18 for the inequality tests for the state, 3 for the ancilla inequality test,
and 24 + 2 = 26 for the reflections, giving total cost 18(2k + 1) + 6k + 26k + 1 = 155. Because we
need preparation and inverse preparation that gives a cost of 310.

Next, for the preparation of r, s the inequality tests give a state flagged on success of

1√
222

N/2−1∑
r=0

r∑
s=0
|`, r, s〉 (79)

with amplitude

sinφ =
√
N2/8 +N/4

27 ≈ 0.423. (80)

We use another 5 qubits, and prepare a superposition of 17 basis states out of 32 for those. That
gives amplitude

sinφ =
√

17(N2/8 +N/4)
219 ≈ 0.308. (81)

The two steps of amplitude amplification give

sin((2k + 2)φ) ≈ 0.999986. (82)

The costs are as follows.

1. The inequality test r ≥ s has a cost of 7.

2. The inequality test r < N/2 has cost 4.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 36

3. The inequality test on the ancilla has a cost of 4.

4. The reflection about zero for the 2× 7 + 5 = 19 qubit state has cost of 17.

5. The reflection for the output qubits from the 3 inequality tests has cost 1.

6. Flagging success of inequality tests has cost 1.

There is cost 7 + 4 = 11 for the inequality tests for the state, 4 for the ancilla, and 19 + 1 = 20 for
the reflections, giving total cost 11(2k + 1) + 8k + 20k + 1 = 112. Taking account of the forward
and reverse preparation we need 224. Adding to that the 310 Toffolis for preparing the equal
superposition over `, p, q we get 534.

Next, we consider the preparation of the equal superposition state over a single register for
the sparse preparation. For N = 108 for the RWSWT orbitals, we need to prepare an equal
superposition over 436,508 states, which can be represented on 19 qubits. We also prepare an
equal superposition over 19 basis states out of 64 for 6 qubits. Then we have an initial amplitude
of

sinφ =
√

19× 436508
225 ≈ 0.497. (83)

The amplitude after a single step of amplitude amplification is

sin((2k + 2)φ) ≈ 0.99995. (84)

The costs are as follows.

1. Because 436508 = 4 × 109127, we can save 2 Toffolis and the main inequality test takes 16
Toffolis. That is done three times for a cost of 48.

2. The inequality test on the ancilla takes 5 Toffolis, and is done twice for a cost of 10.

3. There is a reflection on all qubits. There are 19 + 5 = 24, so the cost is 22.

4. There is a reflection on two qubits output from the inequality test, with no cost.

5. We need only flag success of the main inequality test, with no extra cost.

The total is therefore 48 + 10 + 22 = 80. The multiplying by 2 for the preparation and inverse
preparation gives 160.

In preparing the LLDUC orbitals with N = 152, we need a superposition over 179,498 basis
states, which needs 18 qubits. We create a superposition over 3 basis states out of 8 on a 3-qubit
ancilla to give an initial amplitude of

sinφ =
√

3× 179498
221 ≈ 0.507. (85)

A single step of amplitude amplification gives amplitude

sin((2k + 2)φ) ≈ 0.9997. (86)

The costs are as follows.

1. Since 179,498 is a multiple of 2, we need 16 Toffolis for that inequality test. That is done
three times for a cost of 48.

2. The inequality test on the ancilla takes 2 Toffolis, and is done twice for a cost of 4.

3. There is a reflection on all qubits. There are 18 + 3 = 21, so the cost is 19.

4. There is a reflection on two qubits output from the inequality test, with no cost.

5. We need only flag success of the main inequality test, with no extra cost.

The total of these costs is 71. Multiplying by 2 to account for preparation and inverse preparation
gives us 142.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 37

G Complexity of computing s
Here we determine the complexity of computing s in Eq. (20), which is

s = `(N2/8 +N/4) + p(p+ 1)/2 + q. (87)

The strategy to compute this function efficiently is as follows.

1. Copy p into the output register.

2. For qubit k encoding p, use it to control addition of 2kp to the output register. After this
the value in the output register is p(p+ 1).

3. Discard the least significant qubit in the output register. This qubit must be zero, and the
effect of discarding it is to divide by 2, giving p(p+ 1)/2.

4. Add q to the output register.

5. For bit k of N2/8 +N/4, if it is nonzero add 2k` to the output register.

For the controlled addition we can control copying of the register to be added to a new register,
then control addition of that ancilla register to the output register. Normally, if there are n qubits
then that will result in n Toffolis in addition to the Toffolis for the addition. The ancilla register
can be erased without further non-Clifford gates by measurement in the X basis and classically
controlled Clifford gates [62]. In our case, we can save one Toffoli because we are controlling
copying p by a qubit from p. Copying that qubit of p to the ancilla controlled on itself is just
achieved by a CNOT gate. The cost of the additions just corresponds to the number of qubits that
need be acted upon minus one.

In the case of the multiplication by a constant, the additions we have a sequence of classically
controlled additions. For example, for N = 108, where N2/8 + N/4 is equal to 1485 = 1024 +
256 + 128 + 64 + 8 + 4 + 1. That means, to add `(N2/8 + N/4), we add `, then 4`, then 8`,
and so forth. When we are adding a multiple of a power of 2, then we save a number of Toffolis
corresponding to that power, because we do not need to act on the less-significant qubits. See
Appendix H for an in-depth discussion of the exact costs of addition and subtraction. In general
we aim to save Toffolis by adding numbers that are multiples of larger powers of 2 towards the
end. This is because the number may be larger, but we save Toffolis because we do not need to
act on the less-significant qubits. We can improve the complexity slightly be adding q earlier in
the computation than indicated above, but it has a less clear interpretation because the q is added
during the multiplication.

First let us consider N = 108, so p and q are encoded in n = 6 qubits and have maximum
possible values of 53. The sequence of operations and their costs are then as described below. In
the following we use p0, p1, and so forth to denote the successive qubits encoding p. The expression
p(p+ 1)/2 can be written in terms of these values as

p(p+ 1)/2
= p/2 + p0p/2 + p1p+ 2p2p+ 22p3p+ 23p4p+ 24p5p

= [p0 + 2p1 + 22p2 + 23p3 + 24p4 + 25p5]/2 + [p0 + 2p0(2p1 + 22p2 + 23p3 + 24p4 + 25p5)]/2
+ 2p1(2p1 + 2(22p2 + 23p3 + 24p4 + 25p5)]/2 + 22p2[22p2 + 2(23p3 + 24p4 + 25p5)]/2
+ 23p3[23p3 + 2(24p4 + 25p5)]/2 + 24p4[24p4 + 2(25p5)]/2 + 210p5/2 (88)

= [p1 + 2p2 + 22p3 + 23p4 + 24p5] + [p0 + 2p0p1 + 22p0p2 + 23p0p3 + 24p0p4 + 25p0p5]
+ 2[p1 + 22p1p2 + 23p1p3 + 24p1p4 + 25p1p5] + 23[p2 + 22p2p3 + 23p2p4 + 24p2p5]
+ 25[p3 + 22p3p4 + 23p3p5] + 27[p4 + 22p4p5] + 29p5 . (89)

In Eq. (88) we have combined the terms like p0p1, p1p0 and given a factor of 2.

1. Copy p1 to p5 into the output ancilla, which has no Toffoli cost. That gives the first term in
square brackets in Eq. (89).

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 38

2. Controlled on p0, copy p into the working ancilla, with cost n− 1 = 5. That gives the second
term in square brackets in Eq. (89).

3. Add the working ancilla to the output ancilla, with cost n = 6, then erase the working ancilla
with Clifford gates.

4. Add q to the output. The maximum value in the output is now (3/2)p + q which has a
maximum of 132, so has 8 bits. The cost of the addition is therefore 7.

5. Controlled on p1, copy p1 to p5 into working ancilla, with cost 4. We use one zeroed qubit
between p1 and p1p2, because the third term in brackets in Eq. (89) has p1 then 22p1p2.

6. Add the working ancilla [corresponding to the third term in brackets in Eq. (89)] times 2 to
the output. The maximum value in the output is now 227, and needs 8 bits, and the quantity
being added is a multiple of 2, so the cost is 6.

7. Controlled on p2, copy p2 to p5 into working ancilla, with cost 3.

8. Add the working ancilla [corresponding to the fourth term in brackets in Eq. (89)] times 23

to the output. The maximum value in the output is now 381, and needs 9 bits. Since we are
adding a multiple of 23 the cost is 5.

9. Controlled on p3, copy p3 to p5 into the working ancilla, with cost 2.

10. Add the working ancilla [corresponding to the fifth term in brackets in Eq. (89)] times 25 to
the output. The maximum value in the output is now 669, and needs 10 bits. Since we are
adding a multiple of 25 the cost is 4.

11. Controlled on p4, copy p4 and p5 into working ancilla, with cost 1.

12. Add the working ancilla [corresponding to the sixth term in brackets in Eq. (89)] times 27 to
the output. The maximum value in the output is now 972, and needs 10 bits. Since we are
adding a multiple of 27 the cost is 2.

13. Copy p5 into working ancilla, with no Toffoli cost.

14. Add the working ancilla times 29 to the output. The maximum value in the output is now
N2/8 +N/4− 1 = 1484, and needs 11 bits. Since we are adding a multiple of 29 the cost is
1.

15. Add `. After adding the maximum value is 1484 + L = 1684, which needs 11 bits. The cost
is 10.

16. Add 4`. After that maximum value is 1684 + 4L = 2484 which needs 12 bits, and we need
to act on 12− 2 = 10 bits, so the cost is 9.

17. Add 8`. The maximum value is 2484 + 8L = 4084 with 12 bits. We act on 12− 3 = 9 bits,
so the cost is 8.

18. Add 64` for a maximum value of 4084 + 64L = 16884 with 15 bits. We act on 15 − 6 = 9
bits, for a cost of 8.

19. Add 128` for a maximum of 16884 + 128L = 42484 and 16 bits. We act on 16 − 7 = 9 bits
for a cost of 8.

20. Add 256` for a maximum of 42484 + 256L = 93684 and 17 bits. We act on 17 − 8 = 9 bits
for a cost of 8.

21. Add 1024` for a maximum of 93684 + 1024L = 298484 and 19 bits. We act on 19 − 10 = 9
bits for a cost of 8.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 39

Adding all these costs together gives a total Toffoli cost of 5 + 6 + 7 + 4 + 6 + 3 + 5 + 2 + 4 + 1 +
2 + 1 + 10 + 9 + 8× 5 = 105.

Next consider N = 152, so p and q are encoded in n = 7 qubits and have maximum possible
values of 75. Then we have N2/8 + N/4 = 2926. In this case it is more efficient to use the fact
that 2926 = 2048 + 1024− 128− 16− 2 and perform some subtractions. The expression p(p+ 1)/2
can be written in terms of pj as

p(p+ 1)/2 = [p1 + 2p2 + 22p3 + 23p4 + 24p5 + 25p6]
+ [p0 + 2p0p1 + 22p0p2 + 23p0p3 + 24p0p4 + 25p0p5 + 26p0p6]
+ 2[p1 + 22p1p2 + 23p1p3 + 24p1p4 + 25p1p5 + 26p1p6]
+ 23[p2 + 22p2p3 + 23p2p4 + 24p2p5 + 25p2p6]
+ 25[p3 + 22p3p4 + 23p3p5 + 24p3p6] + 27[p4 + 22p4p5 + 23p4p6]
+ 29[p5 + 22p5p6] + 211p6 . (90)

Then the sequence of elementary steps we need to perform is as follows.

1. Copy p1 to p6 into the output ancilla, which has no Toffoli cost. That gives the first term in
square brackets in Eq. (90).

2. Controlled on p0, copy p into the working ancilla, with cost n− 1 = 6. That gives the second
term in square brackets in Eq. (90).

3. Add the working ancilla to the output ancilla. The maximum value is 113, which needs 7
bits so the cost is 6.

4. Add q to the output. The maximum value in the output is now (3/2)p + q which has a
maximum of 187, so has 8 bits. The cost of the addition is therefore 7.

5. Controlled on p1, copy p1 to p6 into working ancilla, with cost 5.

6. Add the working ancilla [corresponding to the third term in brackets in Eq. (90)] times 2 to
the output. The maximum value in the output is now 333, and needs 9 bits. Since we are
adding a multiple of 2 the cost is 7.

7. Controlled on p2, copy p2 to p6 into working ancilla, with cost 4.

8. Add the working ancilla [corresponding to the fourth term in brackets in Eq. (90)] times 23

to the output. The maximum value in the output is now 583, and needs 10 bits. Since we
are adding a multiple of 23 the cost is 6.

9. Controlled on p3, copy p3 to p6 into the working ancilla, with cost 3.

10. Add the working ancilla [corresponding to the fifth term in brackets in Eq. (90)] times 25 to
the output. The maximum value in the output is now 939, and needs 10 bits. Since we are
adding a multiple of 25 the cost is 4.

11. Controlled on p4, copy p4 to p6 into working ancilla, with cost 2.

12. Add the working ancilla [corresponding to the fifth term in brackets in Eq. (90)] times 27 to
the output. The maximum value in the output is now 1579, and needs 11 bits. Since we are
adding a multiple of 27 the cost is 3.

13. Controlled on p5, copy p5 and p6 into working ancilla, with cost 1.

14. Add the working ancilla [corresponding to the fifth term in brackets in Eq. (90)] times 29 to
the output. The maximum value in the output is now 2091, and needs 12 bits. Since we are
adding a multiple of 29 the cost is 2.

15. Copy p6 into working ancilla, with no Toffoli cost.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 40

16. Add the working ancilla times 211 to the output. The maximum value in the output is now
N2/8+N/4−1 = 2925, and needs 12 bits. Since we are adding a multiple of 211 the addition
can be performed with Cliffords.

17. Add 1024`. After adding the maximum value is 2925+1024L = 207725, which needs 18 bits.
Since we added a multiple of 210 the cost is 7.

18. Subtract 128`. After that maximum value is 207725 − 128L = 182125, and we need to act
on 18− 7 = 11 bits, so the cost is 10.

19. Subtract 16`. The maximum value is 182125 − 16L = 178925, and we act on 17 − 4 = 13
bits, so the cost is 12.

20. Subtract 2` for a maximum value of 178925− 2L = 178525, and we act on 17− 1 = 16 bits,
for a cost of 15.

21. Add 2048` for a maximum of 178525 + 2048L = 588125 and 20 bits. We act on 20− 11 = 9
bits for a cost of 8.

Adding all these costs together gives a total Toffoli cost of 6 + 6 + 7 + 5 + 7 + 4 + 6 + 3 + 4 + 2 +
3 + 1 + 2 + 7 + 10 + 12 + 15 + 8 = 108.

H Costs of addition, subtraction and inequality tests
Here we describe the exact costs for addition and subtraction and inequality testing. In Figure 12,
the addition circuit from [62] is reproduced. This circuit is for addition of 5-qubit variables modulo
25. In the following we will refer to numbers given in quantum registers as “variables”, and numbers
given classically as “constants”. It can be seen that the cost of this circuit is 4 Toffolis (those on
the right can be performed with measurements and Clifford gates). More generally, if there is
modular addition (with the modulus 2n) on n-qubit variables, the Toffoli cost is n− 1. The same
circuit can be used for non-modular addition if it is known that the carry qubit would be zero
(in this case the number would be less than 25). Then the cost for addition of n-qubit variables
without a carry qubit is therefore n− 1.

Alternatively, if we wish to perform non-modular addition, and compute a carry qubit, then
the circuit will be as in Figure 13. That shows addition of 4-qubit variables, with a Toffoli cost of
4. More generally, the addition of n-qubit variables with a carry qubit has cost n. In either case
(with or without the carry qubit) we can make further savings if one of the numbers being added is
known to be a multiple of a power of 2. Say i is a multiple of 2, so the final digit i0 is 0. Then the

i0 • • • i0
t0 • • (t+ i)0

• • • •
i1 • • • i1
t1 • • (t+ i)1

• • • •
i2 • • • i2
t2 • • (t+ i)2

• • • •
i3 • • • i3
t3 • • (t+ i)3

•
i4 • i4
t4 (t+ i)4

Figure 12: A circuit to perform addition on 5 qubits modulo 25. This circuit is also sufficient for non-modular
addition if we know there will not be overflow.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 41

i0 • • • i0
t0 • • (t+ i)0

• • • •
i1 • • • i1
t1 • • (t+ i)1

• • • •
i2 • • • i2
t2 • • (t+ i)2

• • •
i3 • • i3
t3 • (t+ i)3

0 (t+ i)4

Figure 13: A circuit to perform addition on 4 qubits, with a single carry output bit.

i0 • • • i0
t0 • • (t− i)0

• • • •
i1 • • • i1
t1 • • (t− i)1

• • • •
i2 • • • i2
t2 • • (t− i)2

• • • •
i3 • • • i3
t3 • • (t− i)3

•
i4 • i4
t4 (t− i)4

Figure 14: A circuit to perform subtraction on 5 qubits modulo 25.

first carry qubit (the third line in Figure 12 and Figure 13) is zero, and the CNOTs it controls have
no effect and may be omitted. As a result, we may perform the circuit as before except starting
from i1 and t1 instead of i0 and t0. This means that we save a Toffoli. More generally, if there are
k trailing zeros for one of the numbers (it is a multiple of 2k), then we may save k Toffolis.

Next consider the case where one of the numbers is given classically, so is a constant. We can
use the same circuit, and use NOT gates to prepare i in the desired state corresponding to our
classically given number. In practice we could make further simplifications to reduce the number
of gates, but in most cases they do not reduce the number of Toffolis. One which does is to note
the value of i0. If i0 = 1, then the first Toffoli can be replaced with a CNOT, saving a single
Toffoli. That means that, for adding a constant, we always have a Toffoli cost 1 less than adding
a variable. Moreover, if i0 = 0, then we can make the same simplification as described above for
variables. That means that if the constant is a multiple of 2k then we can save k Toffolis. This
saving is in addition to the saving of 1 because we are adding a constant.

In order to perform subtraction, one can simply reverse the circuit for addition, as shown in
Figure 14. This circuit is for modular subtraction of n-qubit variables, and can also be used for
non-modular subtraction if it is known that t ≥ i. The cost to subtract two n-qubit numbers is
n−1. Again we can make a saving if it is known that i is a multiple of a power of 2. If i is a multiple
of 2k, then we can save k Toffolis, via exactly the same reasoning as for addition. Similarly, if i is
a constant, then we can save a further Toffoli.

As was noted in [66], subtraction can be used for inequality testing as well. That is, if we
perform modular subtraction t− i, then the carry qubit will carry the information about whether
i > t. In Figure 16, we show the circuit for an inequality test on two 4-qubit variables. We have

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 42

i0 • • • i0
t0 • • (t− i)0

• • • •
i1 • • • i1
t1 • • (t− i)1

• • • •
i2 • • • i2
t2 • • (t− i)2

• • •
i3 • • i3
t3 • (t− i)3

0 i > t

Figure 15: A circuit to perform an inequality test on 4 qubits. The output bit is (t− i)4, and will be 1 if t < i.
This is because it performs modular subtraction on 5 bits, with i4 and t4 guaranteed to be zero. The maximum
values of i and t are 15. If we subtract i from t modulo 32, and t < i, then the result will be between 17 and
31. These numbers all have bit 5 equal to 1.

taken the circuit in Figure 14 for two 5-qubit variables, taken i5 and t5 to be zero, and simplified.
There the fourth carry qubit can take the role of the output flagging if i > t. We no longer need
the CNOT between that ancilla and the t4 qubit, because that was just to copy out the value
of the carry qubit, and we remove the second CNOT and Toffoli with the carry qubit as target,
because they had the role of erasing that ancilla in the subtraction circuit. Note that this circuit
still gives the result of the subtraction in other registers. To restore the t register, we can use the
circuit shown in Figure 17.

Note that with 4-qubit integers, they may represent numbers from 0 to 15, and the result of
the subtraction can be from −15 to +15. Since the subtraction is performed modulo 32, negative
numbers from −15 to −1 will become 17 to 31, in which case the fifth qubit will be in the state
|1〉. Since negative numbers result from t − i < 0, so t < i, this carry qubit is flagging the result
of the inequality test. We could also test t ≤ i by reversing the action of the circuit between t
and i, giving a qubit which has the result of the inequality test t > i. A NOT gate would give the
result of the inequality test t ≤ i. The inequality test on n-qubit variables has cost n. Again, if
i is known to be a multiple of 2k, then we can save k Toffolis, and if i is a constant then we can
save an additional Toffoli.

In summary, the rules for counting costs with n-bit integers are as follows.

1. Addition with a carry qubit has cost n.

2. Addition with no carry qubit has cost n− 1.

3. Subtraction has cost n− 1.

4. Inequality tests have cost n.

5. If i is a multiple of 2k, there is a saving of k.

6. If i is a constant then there is a saving of 1.

In the case of addition or subtraction, i is the number being added or subtracted from the target
register. For the inequality test we are testing t < i.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 43

i0 • • • • i0
t0 • • t0

• • • •
i1 • • • • i1
t1 • • t1

• • • •
i2 • • • • i2
t2 • • t2

• • •
i3 • • • i3
t3 • t3

0 t < i

Figure 16: A circuit to perform an inequality test on 4 bits. This time the circuit restores the original values in
the t registers, so it does not alter this register and just outputs the result of the inequality test.

i0 i0
t0 • • t0

• • • •
i1 • • • • i1
t1 • • t1

• • • •
i2 • • • • i2
t2 • • t2

• • •
i3 • • • i3
t3 • t3

0 t < i

Figure 17: A circuit to perform an inequality test on 4 bits, with i given classically and i0 equal to 1. We can
save one Toffoli, and the first ancilla is not needed because we can control directly on t0.

Accepted in Quantum 2019-09-30, click title to verify. Published under CC-BY 4.0. 44

	1 Introduction
	2 Low Rank Tensor Factorization of the Coulomb Operator
	3 LCU based simulation
	3.1 The Hamiltonian as a linear combination of unitaries
	3.2 State preparation
	3.3 Controlled unitaries

	4 Complexity
	4.1 RWSWT orbitals
	4.1.1 Dirty ancillae
	4.1.2 Large ancilla count

	4.2 LLDUC orbitals
	4.2.1 Dirty ancillae
	4.2.2 Large ancilla count

	5 Exploiting sparsity in the Coulomb operator
	6 Complexity for sparse preparation
	6.1 RWSWT orbitals
	6.2 LLDUC orbitals

	7 Discussion
	A Cost of computing table lookups assisted by dirty ancillae
	B Cost of computing table lookups assisted by clean ancillae
	C Efficient uncomputation of table lookups using measurement based uncomputation
	D The scaling in general contexts
	E Detailed costings
	E.1 RWSWT orbitals
	E.2 LLDUC orbitals

	F Preparation of equal superposition states
	G Complexity of computing s
	H Costs of addition, subtraction and inequality tests

