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ABSTRACT
In personal email search, user queries often impose different re-
quirements on different aspects of the retrieved emails. For exam-
ple, the query “my recent flight to the US” requires emails to be
ranked based on both textual contents and recency of the email
documents, while other queries such as “medical history” do not
impose any constraints on the recency of the email. Recent deep
learning-to-rank models for personal email search often directly
concatenate dense numerical features1 (e.g., document age) with
embedded sparse features (e.g., n-gram embeddings). In this paper,
we first show with a set of experiments on synthetic datasets that
direct concatenation of dense and sparse features does not lead to
the optimal search performance of deep neural ranking models. To
effectively incorporate both sparse and dense email features into
personal email search ranking, we propose a novel neural model,
SepAttn. SepAttn first builds two separate neural models to learn
from sparse and dense features respectively, and then applies an
attention mechanism at the prediction level to derive the final pre-
diction from these two models. We conduct a comprehensive set of
experiments on a large-scale email search dataset, and demonstrate
that our SepAttn model consistently improves the search quality
over the baseline models.

CCS CONCEPTS
• Information systems → Learning to rank; • Computing
methodologies→ Neural networks; Regularization.
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1 INTRODUCTION
Email has long been an important means of daily communication.
Personal email search, which helps users to quickly retrieve the
emails they are looking for from their own corpora, has been an
intriguing research topic in information retrieval (IR) for years.
Email search is formulated as a learning-to-rank problem, which
has been tackled with different learning models, such as boosted
trees [8], SVM-based linear models [10, 12, 23], and shallow neural
networks [9, 11].

Recently, deep neural networks (DNNs) have shown great suc-
cess in learning-to-rank tasks. They significantly improve the per-
formance of search engines in the presence of large-scale query
logs in both web search [19] and email settings [39, 45, 51]. The ad-
vantages of DNNs over traditional models are mainly two-fold: (1)
DNNs have strong power to learn embedded representations from
sparse features, including words [32] and characters [6]. This allows
effective and accurate matching of textual features between queries
and documents. (2) DNNs are proved to have universal approxi-
mation capability [21], allowing to capture high-order interactions
between query and document features.

In the personal email search scenario, user queries impose dif-
ferent requirements on different aspects of email documents to
be retrieved. For example, the query “my recent flight to the US”
requires the email search system to focus on both the textual con-
tents and the recency of email documents, while queries such as
“medical history” expect emails to be retrieved regardless of the
recency. In email search models, different properties of email docu-
ments are reflected by different types of features, including dense
numerical ones (e.g., document age) and sparse categorical ones
(e.g., n-grams). However, there have been few efforts that study
how to effectively combine dense features with sparse features in
the learning-to-rank setting, probably because a natural approach
exists—simply concatenating dense features with embedded sparse
features and feeding them into the DNNs. Indeed, many previous
deep neural email search models use direct concatenation of dense
features with embedded sparse features [15, 38, 39, 45].

In this paper, we first begin with a set of empirical findings and
analyses to show that direct concatenation of dense with embedded
sparse features does not lead to the optimal performance of DNN-
based ranking models. As a result, we propose the SepAttn model
as an effective way to incorporate both dense and sparse features
into the personal email search model. More specifically, SepAttn
model consists of three major modules: (1) Separate DNNmodels to
learn from sparse and dense features, respectively. (2) An attention
mechanism that aggregates the outputs from the sparse feature and
dense feature DNN models. (3) A regularizer that enables the joint
learning of the sparse and dense feature DNN models. The main
advantage of SepAttn over the simple concatenation approach is
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that SepAttn separates dense from sparse features, and automati-
cally learns to explicitly focus on the important feature set, while
ignore the unimportant ones for different query types.

In summary, the followings are the contributions of this paper:
• We empirically show that simply concatenating embedded
sparse features with dense numerical features is sub-optimal
for DNN-based neural ranking models.

• To effectively leverage both sparse and dense features in
neural ranking models, we propose to learn two separate
models where their outputs are aggregated via an attention
mechanism to derive the final output.

• We propose a regularization method to train the sparse fea-
ture model and dense feature model in a collaborative man-
ner.

• We conduct a comprehensive set of experiments on synthetic
datasets and a large-scale real-world email search dataset to
demonstrate the advantage of our proposed method.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 motivates the problem through a set of ex-
periments on synthetic datasets. Section 4 introduces our proposed
SepAttn model. Section 5 presents and analyzes the performances
of SepAttn on the synthetic datasets. In Section 6, we report and
discuss the experimental results on a real-world large-scale email
search dataset. Section 7 concludes the paper and discusses future
directions.

2 RELATEDWORK
In this section, we review related works on learning-to-rank, email
search models and state-of-the-art neural attention models.

2.1 Learning-to-Rank
Learning-to-rank refers to building ranking models with machine
learning algorithms. In early years, learning-to-rank has been stud-
ied with different models, such as boosted trees [8], SVM-based
linear models [10, 12, 23] and shallow neural networks [9, 11].
Recent years have witnessed great success of applying DNNs to
learning-to-rank, such as [7, 15, 35, 38]. For a complete literature
review on neural ranking models for information retrieval, please
refer to a survey by Mitra and Craswell [33].

2.2 Email Search
There have been several studies in the IR community focusing on the
task of email search. The Enterprise tracks of TREC 2005 [40] and
TREC 2006 [41] provide public datasets containing email data and
summarize some early explorations [14, 31, 34]. A typical trade-off
in email search system is to balance the importance of content-
based relevance and other features, e.g. freshness. Carmel et al. [12]
proposed an email search framework with a learning-to-rank re-
ranking module combining freshness with relevance signals of
emails as well as other features such as user actions. Alternatively,
Carmel et al. [13] studied to present users with both the relevance-
ranked results as well as the time-ranked results in two separate
lists for better user experience. A number of studies specifically
focus on improving the content-based relevance signals in email
search. Kuzi et al. [27] explored several methods to expand the
usually short and sparse queries by finding more related terms to

improve the relevance results. Li et al. [29] studied a more specific
synonym expansion problem to improve email search performance.

User interaction data such as clicks is another important signal
for learning-to-rank models in email search. Bendersky et al. [4]
leveraged user interactions by attribute parameterization. Wang et
al. [48] mitigated the position bias in click data for better training
of the model. In addition, Zamani et al. [51] showed that contexts
such as search request time and location of users were helpful for
email search quality.

There are also studies on understanding and leveraging query
intent information in email search. Ai et al. [2] conducted a thor-
ough survey of search intent by analyzing user logs of email search.
Shen et al. [39] categorized email search queries into different clus-
ters before adding the query cluster information to improve email
ranking.

To the best of our knowledge, there is no previous work on
email search that studied how to effectively combine dense numer-
ical features with embedded sparse features in DNN-based ranking
models. In the previous works, dense features were directly concate-
nated with embedded sparse features, which led to the suboptimal
performances of DNN ranking models, as we will show later.

2.3 Attention Models
Recently, neural attention mechanisms have demonstrated enor-
mous power on sequence modeling. They derived the optimal se-
quence representation by learning to focus on the important to-
kens in the sequence and down-weighting unimportant ones for
downstream tasks. The attention mechanism was first proposed by
Bahdanau et al. [3] in machine translation, where attention was
used on top of RNN encoders for input-output alignment. Later,
the attention mechanism has been adapted to a wide range of
compelling sequence modeling tasks, including image caption gen-
eration [49], text classification [50] and natural language question
answering [20, 26, 43].

The above studies employ attention mechanism in conjunction
with RNN or CNN models. Vaswani et al. [46] proposed the Trans-
former, which used self-attention along with positional encoding.
Later, Devlin et al. [16] proposed a deep bidirectional Transformer
structure, BERT, which becomes one of the state-of-the-art pre-
trained language models benefiting many downstream tasks with
fine-tuning. The attention mechanism has also been generalized to
attend to a group of structurally adjacent items instead of single
ones, as studied by Li et al. [30].

Regardless of the manner that attention mechanisms are used in
the previous works, the common purpose was to derive sequence
representations as a weighted average of token representations.
Therefore, the attention mechanisms were applied at the feature
level, as a step of feature learning. In our work, however, the atten-
tion is used to aggregate the outputs from two models—the sparse
and the dense feature models, to derive the final scoring outputs of
the ranking model. To the best of our knowledge, this is the first
work that applies attention mechanism at the prediction level.
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(a) First Synthetic dataset (Sparse only)
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(b) Second Synthetic dataset (Dense only)
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(c) Third Synthetic dataset (Sparse and Dense Combined)

Figure 1: Training and testing performance of three models, i.e., Sparse only, Dense only and Sparse + Dense models on three
synthetic datasets. The dotted lines represent training accuracy and the solid lines represent testing accuracy. For complete-
ness, we also show the performance of our SepAttnmodel in these figures. “Accuracy” is the ratio of correctly classified docu-
ments.

3 MOTIVATION
In this section, we provide motivation for our proposed “Separate
and Attend” model, i.e., SepAttn, and show that simply concatenat-
ing different feature types (i.e., dense and sparse features) does not
lead to the optimal performance. Different queries in email search
impose different requirements. For example, a query such as “medi-
cal history” does not indicate requirements on dense features (e.g.,
recency of an email document). As a result, simply concatenating
both dense and sparse features and feeding them into the model
might lead to suboptimal performance for such queries. In such a
case, dense features are purely noise and could potentially distract
the model from concentrating on useful features.

In order to simulate the personal email search scenario, we create
three synthetic datasets and consider a simple binary classification
problem, where a document d is classified to be relevant (y = 1)
or irrelevant (y = 0) for a given query q. We use 100-dimensional
GloVe pretrained embeddings [37] as embedded sparse feature rep-
resentations for queries and documents.

The query features q and document sparse features dsparse are
obtained by randomly sampling word embeddings from the pre-
trained embedding vocabulary. The document dense featuresddense
are generated from a uniform distribution in the interval [−0.5, 0.5].
We set the dimension of dsparse (after embedding) and ddense to
be both 100. The ground-truth labels are generated differently for
each of these synthetic datasets which will be explained later in
this section.

We compare the performance of these models: (1) Themodel that
learns fromq anddsparse only; (2) The model that learns fromq and
ddense only; (3) The model that learns fromq and the concatenation
of dsparse and ddense. All models are built based on a feed-forward
DNN [28] with a hidden layer of 50 dimensions; the only difference
between the models is that they learn from different feature sets.
We generate 20, 000 samples for both training and testing sets.

For thefirst dataset, the following rule describes how the ground-
truth data is generated:

y =

{
1, if cos(dsparse,q) > 0
0, else

which simulates the scenario where document and query matching
is based only on sparse features, and dense features are unimpor-
tant/unused.

Similarly, we create the second synthetic dataset by generating
ground-truth labels only based on dense features as below:

y =

{
1, ifq ∈ Q and

∑
ddense < 0

0, else

where Q is a manually selected vocabulary of words that impose
requirements on the recency of the documents, such as “recent”,
“latest”, “newest”, “today”.

We show the performance of the aforementioned models on the
first synthetic dataset and second synthetic dataset in Figure 1(a)
and Figure 1(b), respectively. In these figures, dotted lines repre-
sent training curves, and solid lines represent testing curves. We
also show the performance of our proposed method SepAttn for
completeness in these figures and postpone the discussions about
its performance to Section 5.

On the first synthetic dataset, sparse only model is the bench-
mark because it learns only from sparse features and inherently
avoids unimportant dense features. We observe from Figure 1(a)
that the concatenation model overfits the training set—when its
training accuracy goes up, its testing accuracy goes down. This in-
dicates that the concatenation model learns noisy signals from the
training set that cannot be generalized to the testing set, demon-
strating its ineffectiveness of discriminating the useful features
from unimportant ones.

On the second synthetic dataset, dense only model is the bench-
mark since it avoids the unimportant sparse features. Figure 1(b)
shows that the testing accuracy of concatenation model falls be-
hind that of the dense only model. This again demonstrates that
the concatenation model is negatively influenced by unimportant
features.

The third synthetic dataset is generated based on combination
of both sparse and dense features and the ground-truth labels are
defined as follows:



y =

{
1, if

(
cos(dsparse,q) > 0

)
∧

(
q ∈ Q and

∑
ddense < 0

)
0, else

where the document-query matching requires both sparse and
dense feature matching.

The performance of the above models using this dataset is shown
in Figure 1(c). Although the concatenation model outperforms
sparse only and dense only models, it still suffers from overfit-
ting (testing accuracy increases while training accuracy decreases).
This demonstrates that DNNs are ineffective to learn from concate-
nated sparse and dense features. We explain the reason as below:
ddense and dsparse come from different feature space—dense numer-
ical feature values (e.g., document age) have practical meanings
(i.e., a higher value of document age means the email was received
earlier), while embedding feature values (e.g., n-gram embedding)
do not have practical meanings [42] (i.e., a higher value in n-gram
embedding dimensions is not interpretable). If ddense and dsparse
are directly concatenated and fed into the DNNs, operations applied
between ddense and dsparse are meaningless (e.g., it does not make
sense to add/multiply document age with n-gram embeddings) and
can lead to ineffectiveness and overfitting of DNNs.

In the next section, we describe the details of our model, i.e.,
SepAttn.

4 METHODOLOGY
We first formulate the problem and define the notations. Then we
describe our SepAttn model.

4.1 Problem Formulation
The inputs for personal email search problem are tuples (q,D)

where q is a user query string, and D = {d1, . . . ,dn } is a list of
candidate documents. The ground truth labels y ∈ {0, 1}n are user
click-through data indicating whether the corresponding document
is clicked. The goal of personal email search model is to rank D so
that the clicked document is ranked as high as possible.

The query features q are n-grams and character n-grams ex-
tracted from the original user query string q, the document features
d include sparse categorical features dsparse (e.g., n-grams) and
dense numerical features ddense (e.g., document ages).

To preserve privacy, the query-document inputs are anonymized
based on k-anonymity approach [44], and only query and document
n-grams that are frequent in the entire corpus are retained. We
summarize the features used in the model in Table 1.

Given the input features X = {q,d1, . . . ,dn }, the email search
model learns a per-item scoring function h : (q,di ) → R, such that

h(X) =
[
h(q,d1) · · · h(q,dn )

]⊤ (1)

induces a permutation π and h(X)
��
π −1(r ) monotonically decreases

with increasing rank r . The per-item scoring function h could be
learned by gradient boosted trees [18], support vectormachines [24]
or neural networks [9]. In this paper, we aim to design a DNN-
based model that effectively incorporates both dsparse and ddense
for improving personal email search performance.

With the input features (q,di ) described above, ground truth
click-through data yi and a per-item scoring function h, we follow

Table 1: Features used in personal email search.

Type Features

Query Feature (q) n-grams
character n-grams

Document Sparse Feature (dsparse)
n-grams

character n-grams

Document Dense Feature (ddense)
number of attachments
number of recipients

document age

the Softmax Cross-Entropy listwise loss setting in [36] to train the
model. Specifically, the loss is defined as

Llistwise = −

n∑
i=1

yi log
(

exp (h(q,di ))∑n
j=1 exp

(
h(q,dj )

) ) . (2)

4.2 Separate and Attend Method
In this section, we introduce our “Separate and Attend model”, i.e.,
SepAttnmodel, to address the observed DNN learning issues when
sparse and dense features are directly concatenated, as described in
Section 3. The model structure of SepAttn is presented in Figure 2.

Often times different queries impose different requirements re-
garding an email document to be retrieved, and different email
document properties are reflected by the sparse and dense features
extracted. In this section, we first build separate models that learn
from each sparse and dense features individually, and then develop
an attention mechanism at the prediction stage that enables the
model to explicitly learn to focus on the important features for
different queries.

Specifically, we first build two models to learn two per-item
scoring functions (one model for sparse and one model for dense
features):

hsparse : (q,di :sparse) → R, hdense : (q,di :dense) → R,

which score a document given a query based on sparse and dense
document features, respectively.

Then the scores of a list of n documents given by sparse and
dense feature models are:

hsparse(X) =
[
hsparse(q,d1:sparse) · · · hsparse(q,dn:sparse)

]⊤
,

hdense(X) =
[
hdense(q,d1:dense) · · · hdense(q,dn:dense)

]⊤
.

Next, we introduce an attention mechanism that aggregates
hsparse(X) and hdense(X) to derive the final scores for the docu-
ment list. Specifically, we first feed hsparse(X) and hdense(X) to a
one-layer feed-forward neural network [28] to derive the hidden
representation of the document scores, and then compute their
attention weights based on the hidden representations as well as
a context vector. Finally, hsparse(X) and hdense(X) are weighted-
averaged according to their attention weights to derive the final
scores h(X) for all the documents. Mathematically, the attention
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<latexit sha1_base64="QtadI/TWSj5ydbhWgcQE6tZDjhI=">AAACBnicbVBNS8NAEN34WetX1aMIwSJ4Kkkt6LHgxWMF+wFNKZvNtF262YTdiVhCTl78K148KOLV3+DNf+O2zUFbHyz7eG+GmXl+LLhGx/m2VlbX1jc2C1vF7Z3dvf3SwWFLR4li0GSRiFTHpxoEl9BEjgI6sQIa+gLa/vh66rfvQWkeyTucxNAL6VDyAWcUjdQvnXh+JAI9Cc2Xxlk/9RAeMA1AasiyfqnsVJwZ7GXi5qRMcjT6pS8viFgSgkQmqNZd14mxl1KFnAnIil6iIaZsTIfQNVTSEHQvnZ2R2WdGCexBpMyTaM/U3x0pDfV0U1MZUhzpRW8q/ud1Exxc9VIu4wRBsvmgQSJsjOxpJnbAFTAUE0MoU9zsarMRVZShSa5oQnAXT14mrWrFvahUb2vlei2Po0COySk5Jy65JHVyQxqkSRh5JM/klbxZT9aL9W59zEtXrLzniPyB9fkDSNiaPQ==</latexit>

pdense
<latexit sha1_base64="QtadI/TWSj5ydbhWgcQE6tZDjhI=">AAACBnicbVBNS8NAEN34WetX1aMIwSJ4Kkkt6LHgxWMF+wFNKZvNtF262YTdiVhCTl78K148KOLV3+DNf+O2zUFbHyz7eG+GmXl+LLhGx/m2VlbX1jc2C1vF7Z3dvf3SwWFLR4li0GSRiFTHpxoEl9BEjgI6sQIa+gLa/vh66rfvQWkeyTucxNAL6VDyAWcUjdQvnXh+JAI9Cc2Xxlk/9RAeMA1AasiyfqnsVJwZ7GXi5qRMcjT6pS8viFgSgkQmqNZd14mxl1KFnAnIil6iIaZsTIfQNVTSEHQvnZ2R2WdGCexBpMyTaM/U3x0pDfV0U1MZUhzpRW8q/ud1Exxc9VIu4wRBsvmgQSJsjOxpJnbAFTAUE0MoU9zsarMRVZShSa5oQnAXT14mrWrFvahUb2vlei2Po0COySk5Jy65JHVyQxqkSRh5JM/klbxZT9aL9W59zEtXrLzniPyB9fkDSNiaPQ==</latexit>

pfinal
<latexit sha1_base64="EGxtgnVmMOUBwsYfQQTBmTph4Os=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAiuSlILuiy4cVnBPqAJYTKdtEMnkzBzI5aQlRt/xY0LRdz6De78GydtFtp6YJjDOfdy7z1BwpkC2/42VlbX1jc2K1vV7Z3dvX3z4LCr4lQS2iExj2U/wIpyJmgHGHDaTyTFUcBpL5hcF37vnkrFYnEH04R6ER4JFjKCQUu+eeIGMR+qaaS/LMn9zAX6AFnIBOZ57ps1u27PYC0TpyQ1VKLtm1/uMCZpRAUQjpUaOHYCXoYlMMJpXnVTRRNMJnhEB5oKHFHlZbMzcutMK0MrjKV+AqyZ+rsjw5EqNtWVEYaxWvQK8T9vkEJ45WVMJClQQeaDwpRbEFtFJtaQSUqATzXBRDK9q0XGWGICOrmqDsFZPHmZdBt156LeuG3WWs0yjgo6RqfoHDnoErXQDWqjDiLoET2jV/RmPBkvxrvxMS9dMcqeI/QHxucPQTyaOA==</latexit>

pfinal
<latexit sha1_base64="EGxtgnVmMOUBwsYfQQTBmTph4Os=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAiuSlILuiy4cVnBPqAJYTKdtEMnkzBzI5aQlRt/xY0LRdz6De78GydtFtp6YJjDOfdy7z1BwpkC2/42VlbX1jc2K1vV7Z3dvX3z4LCr4lQS2iExj2U/wIpyJmgHGHDaTyTFUcBpL5hcF37vnkrFYnEH04R6ER4JFjKCQUu+eeIGMR+qaaS/LMn9zAX6AFnIBOZ57ps1u27PYC0TpyQ1VKLtm1/uMCZpRAUQjpUaOHYCXoYlMMJpXnVTRRNMJnhEB5oKHFHlZbMzcutMK0MrjKV+AqyZ+rsjw5EqNtWVEYaxWvQK8T9vkEJ45WVMJClQQeaDwpRbEFtFJtaQSUqATzXBRDK9q0XGWGICOrmqDsFZPHmZdBt156LeuG3WWs0yjgo6RqfoHDnoErXQDWqjDiLoET2jV/RmPBkvxrvxMS9dMcqeI/QHxucPQTyaOA==</latexit>

· · ·<latexit sha1_base64="knvjzPn9Dm3sfwmmLM2CwU7glWY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GNBDx4r2A9oQ9lsNu3azW7YnQil9D948aCIV/+PN/+N2zYHbX0w8Hhvhpl5YSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ejm5nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhhfBxMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrVrVv6jW7i8r9ds8jiKcwCmcgw9XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AbA/jzU=</latexit>

d1:sparse
<latexit sha1_base64="XO4x69x5ACjHwA/uMJ57wf7eCe0=">AAACCXicbVC7SgNBFJ31GeMramkzGASrsBsDilXAxjKCeUCyhNnZm2TI7IOZu2JYtrXxV2wsFLH1D+z8GyfJFpp4YJjDOfdy7z1eLIVG2/62VlbX1jc2C1vF7Z3dvf3SwWFLR4ni0OSRjFTHYxqkCKGJAiV0YgUs8CS0vfH11G/fg9IiCu9wEoMbsGEoBoIzNFK/RHteJH09CcyX+lk/da56CA+Y6pgpDVnWL5Xtij0DXSZOTsokR6Nf+ur5EU8CCJFLpnXXsWN0U6ZQcAlZsZdoiBkfsyF0DQ1ZANpNZ5dk9NQoPh1EyrwQ6Uz93ZGyQE+XNZUBw5Fe9Kbif143wcGlm4owThBCPh80SCTFiE5job5QwFFODGFcCbMr5SOmGEcTXtGE4CyevExa1YpzXqne1sr1Wh5HgRyTE3JGHHJB6uSGNEiTcPJInskrebOerBfr3fqYl65Yec8R+QPr8wco0Js5</latexit>

d1:sparse
<latexit sha1_base64="XO4x69x5ACjHwA/uMJ57wf7eCe0=">AAACCXicbVC7SgNBFJ31GeMramkzGASrsBsDilXAxjKCeUCyhNnZm2TI7IOZu2JYtrXxV2wsFLH1D+z8GyfJFpp4YJjDOfdy7z1eLIVG2/62VlbX1jc2C1vF7Z3dvf3SwWFLR4ni0OSRjFTHYxqkCKGJAiV0YgUs8CS0vfH11G/fg9IiCu9wEoMbsGEoBoIzNFK/RHteJH09CcyX+lk/da56CA+Y6pgpDVnWL5Xtij0DXSZOTsokR6Nf+ur5EU8CCJFLpnXXsWN0U6ZQcAlZsZdoiBkfsyF0DQ1ZANpNZ5dk9NQoPh1EyrwQ6Uz93ZGyQE+XNZUBw5Fe9Kbif143wcGlm4owThBCPh80SCTFiE5job5QwFFODGFcCbMr5SOmGEcTXtGE4CyevExa1YpzXqne1sr1Wh5HgRyTE3JGHHJB6uSGNEiTcPJInskrebOerBfr3fqYl65Yec8R+QPr8wco0Js5</latexit>

· · ·<latexit sha1_base64="knvjzPn9Dm3sfwmmLM2CwU7glWY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GNBDx4r2A9oQ9lsNu3azW7YnQil9D948aCIV/+PN/+N2zYHbX0w8Hhvhpl5YSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ejm5nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhhfBxMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrVrVv6jW7i8r9ds8jiKcwCmcgw9XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AbA/jzU=</latexit>

dn:sparse
<latexit sha1_base64="s9AeAEq4rR+Q4MYSJWs32alv87g=">AAACCXicbVC7SgNBFJ31GeMramkzGASrsBsDilXAxjKCeUASwuzsTTJkdnaZuSuGZVsbf8XGQhFb/8DOv3HyKDTxwDCHc+7l3nv8WAqDrvvtrKyurW9s5rby2zu7e/uFg8OGiRLNoc4jGemWzwxIoaCOAiW0Yg0s9CU0/dH1xG/egzYiUnc4jqEbsoESfcEZWqlXoB0/koEZh/ZLg6yXqqsOwgOmJmbaQJb1CkW35E5Bl4k3J0UyR61X+OoEEU9CUMglM6btuTF2U6ZRcAlZvpMYiBkfsQG0LVUsBNNNp5dk9NQqAe1H2j6FdKr+7khZaCbL2sqQ4dAsehPxP6+dYP+ymwoVJwiKzwb1E0kxopNYaCA0cJRjSxjXwu5K+ZBpxtGGl7cheIsnL5NGueSdl8q3lWK1Mo8jR47JCTkjHrkgVXJDaqROOHkkz+SVvDlPzovz7nzMSlecec8R+QPn8weI15t2</latexit>

dn:sparse
<latexit sha1_base64="s9AeAEq4rR+Q4MYSJWs32alv87g=">AAACCXicbVC7SgNBFJ31GeMramkzGASrsBsDilXAxjKCeUASwuzsTTJkdnaZuSuGZVsbf8XGQhFb/8DOv3HyKDTxwDCHc+7l3nv8WAqDrvvtrKyurW9s5rby2zu7e/uFg8OGiRLNoc4jGemWzwxIoaCOAiW0Yg0s9CU0/dH1xG/egzYiUnc4jqEbsoESfcEZWqlXoB0/koEZh/ZLg6yXqqsOwgOmJmbaQJb1CkW35E5Bl4k3J0UyR61X+OoEEU9CUMglM6btuTF2U6ZRcAlZvpMYiBkfsQG0LVUsBNNNp5dk9NQqAe1H2j6FdKr+7khZaCbL2sqQ4dAsehPxP6+dYP+ymwoVJwiKzwb1E0kxopNYaCA0cJRjSxjXwu5K+ZBpxtGGl7cheIsnL5NGueSdl8q3lWK1Mo8jR47JCTkjHrkgVXJDaqROOHkkz+SVvDlPzovz7nzMSlecec8R+QPn8weI15t2</latexit>

· · ·<latexit sha1_base64="knvjzPn9Dm3sfwmmLM2CwU7glWY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GNBDx4r2A9oQ9lsNu3azW7YnQil9D948aCIV/+PN/+N2zYHbX0w8Hhvhpl5YSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ejm5nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhhfBxMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrVrVv6jW7i8r9ds8jiKcwCmcgw9XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AbA/jzU=</latexit>

psparse
<latexit sha1_base64="b7fxbSD7IzvYeLroPQSLdO6uDLM=">AAACB3icbVDLSsNAFJ34rPUVdSlIsAiuSlILuiy4cVnBPqAJZTK9bYdOHszciCVk58ZfceNCEbf+gjv/xkmbhbYeGOZwzr3ce48fC67Qtr+NldW19Y3N0lZ5e2d3b988OGyrKJEMWiwSkez6VIHgIbSQo4BuLIEGvoCOP7nO/c49SMWj8A6nMXgBHYV8yBlFLfXNE9ePxEBNA/2lcdZPXYQHTFVMpYIs65sVu2rPYC0TpyAVUqDZN7/cQcSSAEJkgirVc+wYvZRK5ExAVnYTBTFlEzqCnqYhDUB56eyOzDrTysAaRlK/EK2Z+rsjpYHKV9WVAcWxWvRy8T+vl+Dwykt5GCcIIZsPGibCwsjKQ7EGXAJDMdWEMsn1rhYbU0kZ6ujKOgRn8eRl0q5VnYtq7bZeadSLOErkmJySc+KQS9IgN6RJWoSRR/JMXsmb8WS8GO/Gx7x0xSh6jsgfGJ8/O3iaxg==</latexit>

psparse
<latexit sha1_base64="b7fxbSD7IzvYeLroPQSLdO6uDLM=">AAACB3icbVDLSsNAFJ34rPUVdSlIsAiuSlILuiy4cVnBPqAJZTK9bYdOHszciCVk58ZfceNCEbf+gjv/xkmbhbYeGOZwzr3ce48fC67Qtr+NldW19Y3N0lZ5e2d3b988OGyrKJEMWiwSkez6VIHgIbSQo4BuLIEGvoCOP7nO/c49SMWj8A6nMXgBHYV8yBlFLfXNE9ePxEBNA/2lcdZPXYQHTFVMpYIs65sVu2rPYC0TpyAVUqDZN7/cQcSSAEJkgirVc+wYvZRK5ExAVnYTBTFlEzqCnqYhDUB56eyOzDrTysAaRlK/EK2Z+rsjpYHKV9WVAcWxWvRy8T+vl+Dwykt5GCcIIZsPGibCwsjKQ7EGXAJDMdWEMsn1rhYbU0kZ6ujKOgRn8eRl0q5VnYtq7bZeadSLOErkmJySc+KQS9IgN6RJWoSRR/JMXsmb8WS8GO/Gx7x0xSh6jsgfGJ8/O3iaxg==</latexit>

· · ·<latexit sha1_base64="knvjzPn9Dm3sfwmmLM2CwU7glWY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GNBDx4r2A9oQ9lsNu3azW7YnQil9D948aCIV/+PN/+N2zYHbX0w8Hhvhpl5YSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ejm5nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhhfBxMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrVrVv6jW7i8r9ds8jiKcwCmcgw9XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AbA/jzU=</latexit>

Lreg
<latexit sha1_base64="oRd5XKXUpQnKaF11a3LQnZFTLIE=">AAACAXicbVA9SwNBEN2LXzF+ndoINodBsAp3MaBlwMbCIoL5gOQIe5tJsmTvg905MRxn41+xsVDE1n9h579xL7lCEx8MPN6bYWaeFwmu0La/jcLK6tr6RnGztLW9s7tn7h+0VBhLBk0WilB2PKpA8ACayFFAJ5JAfU9A25tcZX77HqTiYXCH0whcn44CPuSMopb65lHPpzhmVCQ3aT/pITxgImGUpn2zbFfsGaxl4uSkTHI0+uZXbxCy2IcAmaBKdR07QjehEjkTkJZ6sYKIsgkdQVfTgPqg3GT2QWqdamVgDUOpK0Brpv6eSKiv1NT3dGd2r1r0MvE/rxvj8NJNeBDFCAGbLxrGwsLQyuKwBlwCQzHVhDLJ9a0WG1NJGerQSjoEZ/HlZdKqVpzzSvW2Vq7X8jiK5JickDPikAtSJ9ekQZqEkUfyTF7Jm/FkvBjvxse8tWDkM4fkD4zPH8/ml7k=</latexit>

Lreg
<latexit sha1_base64="oRd5XKXUpQnKaF11a3LQnZFTLIE=">AAACAXicbVA9SwNBEN2LXzF+ndoINodBsAp3MaBlwMbCIoL5gOQIe5tJsmTvg905MRxn41+xsVDE1n9h579xL7lCEx8MPN6bYWaeFwmu0La/jcLK6tr6RnGztLW9s7tn7h+0VBhLBk0WilB2PKpA8ACayFFAJ5JAfU9A25tcZX77HqTiYXCH0whcn44CPuSMopb65lHPpzhmVCQ3aT/pITxgImGUpn2zbFfsGaxl4uSkTHI0+uZXbxCy2IcAmaBKdR07QjehEjkTkJZ6sYKIsgkdQVfTgPqg3GT2QWqdamVgDUOpK0Brpv6eSKiv1NT3dGd2r1r0MvE/rxvj8NJNeBDFCAGbLxrGwsLQyuKwBlwCQzHVhDLJ9a0WG1NJGerQSjoEZ/HlZdKqVpzzSvW2Vq7X8jiK5JickDPikAtSJ9ekQZqEkUfyTF7Jm/FkvBjvxse8tWDkM4fkD4zPH8/ml7k=</latexit>

SoftmaxSoftmax

Prediction from 
dense features 

Prediction from 
sparse features Llistwise

<latexit sha1_base64="5M5IkUmDMe1InSqlxibwqyVkXT0=">AAACBnicbVA9SwNBEN3zM8avU0sRDoNgFe5iQMuAjYVFBPMByRH2NpNkyd4Hu3NqOK6y8a/YWChi62+w89+4l1yhiQ8GHu/NMDPPiwRXaNvfxtLyyuraemGjuLm1vbNr7u03VRhLBg0WilC2PapA8AAayFFAO5JAfU9AyxtfZn7rDqTiYXCLkwhcnw4DPuCMopZ65lHXpzhiVCTXaS/pIjxgkq295wrStGeW7LI9hbVInJyUSI56z/zq9kMW+xAgE1SpjmNH6CZUImcC0mI3VhBRNqZD6GgaUB+Um0zfSK0TrfStQSh1BWhN1d8TCfWVmvie7syOVvNeJv7ndWIcXLgJD6IYIWCzRYNYWBhaWSZWn0tgKCaaUCa5vtViIyopQ51cUYfgzL+8SJqVsnNWrtxUS7VqHkeBHJJjckocck5q5IrUSYMw8kieySt5M56MF+Pd+Ji1Lhn5zAH5A+PzBxsImiE=</latexit>

Llistwise
<latexit sha1_base64="5M5IkUmDMe1InSqlxibwqyVkXT0=">AAACBnicbVA9SwNBEN3zM8avU0sRDoNgFe5iQMuAjYVFBPMByRH2NpNkyd4Hu3NqOK6y8a/YWChi62+w89+4l1yhiQ8GHu/NMDPPiwRXaNvfxtLyyuraemGjuLm1vbNr7u03VRhLBg0WilC2PapA8AAayFFAO5JAfU9AyxtfZn7rDqTiYXCLkwhcnw4DPuCMopZ65lHXpzhiVCTXaS/pIjxgkq295wrStGeW7LI9hbVInJyUSI56z/zq9kMW+xAgE1SpjmNH6CZUImcC0mI3VhBRNqZD6GgaUB+Um0zfSK0TrfStQSh1BWhN1d8TCfWVmvie7syOVvNeJv7ndWIcXLgJD6IYIWCzRYNYWBhaWSZWn0tgKCaaUCa5vtViIyopQ51cUYfgzL+8SJqVsnNWrtxUS7VqHkeBHJJjckocck5q5IrUSYMw8kieySt5M56MF+Pd+Ji1Lhn5zAH5A+PzBxsImiE=</latexit>

hdense(X )
<latexit sha1_base64="HpiNKma4t2s/1k6kciAjFI4xbNk=">AAACE3icbVBNS8NAEN34WetX1aOXYBHUQ0mqoEfBi8cK9gOaEjabiV3cbMLuRCwh/8GLf8WLB0W8evHmv3HT9qDWgWUf780wb16QCq7Rcb6sufmFxaXlykp1dW19Y7O2td3RSaYYtFkiEtULqAbBJbSRo4BeqoDGgYBucHtR6t07UJon8hpHKQxieiN5xBlFQ/m1Iy9IRKhHsfnyYeHnHsI95iFIDUVx4MUUh4yKvFcc+rW603DGZc8CdwrqZFotv/bphQnLYpDIBNW67zopDnKqkDMBRdXLNKSU3dIb6BsoaQx6kI9vKux9w4R2lCjzJNpj9udETmNd2jadpUf9VyvJ/7R+htHZIOcyzRAkmyyKMmFjYpcB2SFXwFCMDKBMcePVZkOqKEMTY9WE4P49eRZ0mg33uNG8Oqmfn0zjqJBdskcOiEtOyTm5JC3SJow8kCfyQl6tR+vZerPeJ61z1nRmh/wq6+MbNYufjg==</latexit>

hdense(X )
<latexit sha1_base64="HpiNKma4t2s/1k6kciAjFI4xbNk=">AAACE3icbVBNS8NAEN34WetX1aOXYBHUQ0mqoEfBi8cK9gOaEjabiV3cbMLuRCwh/8GLf8WLB0W8evHmv3HT9qDWgWUf780wb16QCq7Rcb6sufmFxaXlykp1dW19Y7O2td3RSaYYtFkiEtULqAbBJbSRo4BeqoDGgYBucHtR6t07UJon8hpHKQxieiN5xBlFQ/m1Iy9IRKhHsfnyYeHnHsI95iFIDUVx4MUUh4yKvFcc+rW603DGZc8CdwrqZFotv/bphQnLYpDIBNW67zopDnKqkDMBRdXLNKSU3dIb6BsoaQx6kI9vKux9w4R2lCjzJNpj9udETmNd2jadpUf9VyvJ/7R+htHZIOcyzRAkmyyKMmFjYpcB2SFXwFCMDKBMcePVZkOqKEMTY9WE4P49eRZ0mg33uNG8Oqmfn0zjqJBdskcOiEtOyTm5JC3SJow8kCfyQl6tR+vZerPeJ61z1nRmh/wq6+MbNYufjg==</latexit>

hsparse(X )
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Figure 2: The overview of SepAttn model. SepAttn builds separate models to learn from sparse and dense features, and then
aggregates the two models’ outputs via an attention mechanism. SepAttn also employs a regularization term to enable joint
training of the two models, and the final loss function is a combination of the listwise loss with the regularization loss. For
simplicity, we omit the query features which are concatenated with the document dense/sparse features before fed into the
DNN models.

mechanism is presented as:

usparse = tanh(Whsparse(X) + b),

udense = tanh(Whdense(X) + b),

αsparse =
exp(u⊤sparsev)

exp(u⊤sparsev) + exp(u⊤densev)
, (3)

αdense =
exp(u⊤densev)

exp(u⊤sparsev) + exp(u⊤densev)
, (4)

h(X) = αsparsehsparse(X) + αdensehdense(X), (5)

whereW ∈ Rn×n and b ∈ Rn are trainable weights and bias vector
respectively;v ∈ Rn is the context vector, randomly initialized and
trained together with other parameters.

Here αsparse and αdense are attention weights assigned to the
sparse feature model and the dense feature model, respectively. As
shown in Equation (5), the higher the attention weight a model
gets, the more dominant role it plays in the final result.

We explain why the above attention mechanism enables the
model to focus on important features for different queries. The
hidden representations usparse and udense can be interpreted as
encoding the importance of hsparse(X) and hdense(X) respectively.
For example, if dense features are noisy features (i.e., not important
for a given query which might mislead the model) with respect to a

specific query, hdense(X) will be random across all documents, and
udense will encode that this is an unimportant result. The context
vectorv can be seen as a representation of important results, and
therefore a hidden representation similar to v will be assigned
higher weights. In this way, the unimportant/noisy features will be
down-weighted by the attention mechanism, and predictions from
the important features will dominate the final score.

In the following section, we describe the model learning with
regularization.

4.3 Joint Learning with Regularization
Until now, the dense and sparse feature models are trained without
any interactions, i.e., the outputs of dense feature model will not
directly influence the training of the sparse feature model, and vice
versa. To enable direct interactions between the two models, we
introduce a regularization term into SepAttn, motivated by the idea
of co-training [5] that when two learning models capture different
and complementary feature sets of the same instances, the two
models can mutually enhance each other during training.

To encourage the dense and sparse feature models to output con-
sistent results given the same set of documents, a straightforward
way is to minimize the difference betweenhsparse(X) andhdense(X).
However, since the two sets of scores are computed from different
feature sets, they will be in different scales, making it ineffective



to regularize directly on hsparse(X) and hdense(X). Therefore, we
instead regularize on the probability distributions after normalizing
hsparse(X) and hdense(X) with Softmax, i.e.,

psparse =

[
exp

(
hsparse(q,d1:sparse)

)
∑n
j=1 exp

(
hsparse(q,dj :sparse)

) · · ·
exp(hsparse(q,dn:sparse))∑n
j=1 exp

(
hsparse(q,dj :sparse)

) ]⊤ ,

pdense =

[
exp(hdense(q,d1:dense))∑n
j=1 exp

(
hdense(q,dj :dense)

) · · ·
exp(hdense(q,dn:dense))∑n
j=1 exp

(
hdense(q,dj :dense)

) ]⊤ .

We then minimize the KL divergence of psparse and pdense with
respect to the final prediction pfinal:

Lsparse = DKL(pfinal ∥ psparse) =
n∑
i=1

pi :final log
(
pi :final
pi :sparse

)
,

Ldense = DKL(pfinal ∥ pdense) =
n∑
i=1

pi :final log
(
pi :final
pi :dense

)
,

where pfinal is SepAttn’s final prediction after normalizing h(X)

in Equation (5) via Softmax.
The regularization loss becomes the weighted average of Lsparse

and Ldense:

Lreg = αsparseLsparse + αdenseLdense, (6)

where αsparse and αdense directly come from Equations (3) and (4),
respectively, and are automatically learned during training.

The purpose of including the attention weights αsparse and αdense
again in the regularization term is to prevent noisy/unimportant
features from misleading the regularization and disturbing the pre-
dictions learned from important features. For example, when dense
features are noisy features with respect to a specific query, pdense is
a noisy distribution which is not meaningful to be regularized. Since
the attention mechanism automatically down-weights unimportant
features, the regularization term will encourage the interaction
between the two models only when both feature sets are important.

Finally, the SepAttn model is trained via a combination of the
listwise loss (Equation (2)) with the regularization loss:

L = Llistwise + λLreg, (7)

where λ > 0 is a hyperparameter that controls the importance
of regularization. We will study its effect in model training in the
experiment section.

5 RESULTS ON SYNTHETIC DATASETS
In this section, we describe the results of our method on synthetic
datasets described in Section 3. From Figures 1(a) and 1(b), we
observe that SepAttn achieves comparable performance on the
testing set to Sparse-only (benchmark on the first synthetic dataset)
and Dense-only (benchmark on the second synthetic dataset) mod-
els, respectively, which shows the robustness of our model against
noisy/unimportant features. To understand how SepAttn is able
to focus on important features and ignore noisy ones, we visualize
the attention weights, i.e., αsparse and αdense in Equations (3) and
(4) on the first and second synthetic datasets. We randomly select
20 samples. It can be observed from Figure 3(a) that on the first
synthetic dataset, SepAttn assigns almost zero attention weights
to the dense features, and effectively focuses on the sparse features.
This explains why SepAttn can achieve similar performance with

the Sparse-only model. Similarly, as shown in Figure 3(b), Sep-
Attn focuses mainly on the dense features for the second synthetic
dataset, and does not pay attention to the sparse features.

In Figure 1(c), SepAttn performs the best on the testing set,
demonstrating its effectiveness on learning from the combination
of sparse and dense features. We visualize the attention weights
in Figure 3(c), where we use 0/1 values to denote the classification
outputs from sparse and dense feature models. For example, the
first sample has a 0 in the sparse row, and a 1 in the dense row. This
means that for the first sample, the sparse featuremodel predictsy =
0 and the dense feature model predicts y = 1. Recall that the third
synthetic dataset is generated from both sparse and dense features,
i.e., only when both dense and sparse document features match
with the query features, the ground-truth label is 1. In this case, the
SepAttn model mainly focuses on the 0 predictions as shown in
Figure 3(c), which explains why SepAttn works as expected—the
final prediction is dominated by negative predictions from either
dense or sparse features.

6 EXPERIMENTS
In this section, we begin with a description of the datasets we use
in our experiments. Then, we evaluate our proposed technique and
baselines using the evaluation metrics that we will define. Finally,
we discuss the hyperparameter sensitivity of our method.

6.1 Dataset
Due to the private and sensitive nature of personal email data, there
is no publicly available large-scale email search dataset. Therefore,
the data we use comes from the search click logs of Gmail search
engine. The training set contains around 317 million queries, and
the testing set contains around 41 million queries. All queries in the
testing set are issued strictly later than all queries in the training set.
Each query has six candidate documents (i.e., n = 6 in Equation (1)),
one of which is clicked2. The goal is to rank the six documents to
increase the likelihood of a higher ranked document being clicked.

6.2 Model Evaluation
In this subsection, we describe the evaluation metrics. We denote
the evaluation set as Q , and the ranking position of the clicked
document for query q as r∗q .

• Mean reciprocal rank (MRR) of the clicked document:

MRR = 1
|Q |

∑
q∈Q

1
r∗q
.

• Weighted mean reciprocal rank (WMRR) [47] of the clicked
document:

WMRR = 1∑
q∈ |Q | wq

∑
q∈Q

wq

r∗q
,

wherewq is the bias correction weight, and is inversely pro-
portional to the probability of observing a click at the clicked

2These six candidate documents are presented in the dropdown menu of the Gmail
search box while users type their queries but before they click the search bottom.When
users find the target email, the system will direct them to the exact email, generating
exactly one click.



Table 2: Evaluations on testing set with percentage of improvements over the best baseline. Metrics with an upper arrow (↑)
indicate higher is better; metrics with a down arrow (↓) indicate lower is better. Improvements with an asterisk (*) denotes
statistical significance relative to the best performing baseline (Concatenation), according to the two-tailed paired t-test.

Methods MRR (↑) WMRR (↑) ARP (↓) WARP (↓) DCG (↑)
Dense-only method 0.650 0.563 2.143 2.474 0.759
Sparse-only method 0.665 0.578 2.067 2.412 0.767

Concatenation method 0.682 0.589 2.002 2.366 0.770
SepAttn 0.686 0.595 1.992 2.350 0.781

∆(%) +0.59∗ +1.02∗ −0.50∗ −0.68∗ +1.43∗

position of q. We set those weights using result randomiza-
tion, as described in [47]. This serves as our main evaluation
metric.

• Average relevance value position (ARP) [52]:

ARP = 1
|Q |

∑
q∈Q

r∗q .

• Weighted average relevance value position (WARP), which
is the weighted version of the above ARP metric:

WARP = 1∑
q∈ |Q | wq

∑
q∈Q

wqr
∗
q ,

wherewq is the bias correction weight as in WMRR.
• Discounted Cumulative Gain (DCG) [22]:

DCG = 1
|Q |

∑
q∈Q

1
log2(1 + r∗q )

.

6.3 Results and Discussions
In this section, we compare our proposed approach, i.e., SepAttn
model with the following baseline models.

• Dense-only method: The DNN model that only uses dense
document features.

• Sparse-onlymethod: TheDNNmodel that only uses sparse
document features.

• Concatenation method: The DNN model that learns from
concatenated dense and embedded sparse features.

The above models are implemented using TF-ranking [36] which is
a scalable open-source learning-to-rank Tensorflow library [1]. Due
to the data anonymization process (i.e., bag of frequent n-grams),
the sequential information in the raw email documents is lost, and
thus sequence-aware models like CNNs [38] and RNNs [35] cannot
be applied to our case. The configuration of the DNN model is
described below: The DNN model has three hidden layers whose
dimensions are 256, 128, and 64, respectively. The n-grams and
character n-grams are first passed through an embedding layer
of size 20 followed by an average pooling layer before fed into
the DNN. We use Adagrad [17] with 0.1 learning rate and batch
size 100 to train the model. The above hyperparameters are the
optimal settings of the Concatenation method, obtained from
tuning the model in the following hyperparameter ranges: Layer
dimension in {64, 128, 256, 512, 768, 1024}; embedding dimension

in {20, 30, 40, 50, 100}; learning rate in {0.05, 0.08, 0.1, 0.15, 0.3};
optimization algorithm in {Adam [25],Adagrad [17]}.

We set the regularization weight to be 1 in our SepAttn model,
and will study model sensitivity to this hyperparameter in Sec-
tion 6.4.

The results are presented in Table 2. From the table, we can see
that across all metrics, the concatenation of dense features with
embedded sparse features (i.e., Concatenation method) consistently
leads to better results than both Sparse-only and Dense-only mod-
els. An interesting finding is that even without any sparse features
(Dense-only), the model achieves reasonably good performance,
probably because emails that are more recent or with more attach-
ments are more likely to be the user-desired ones.

Moreover, our SepAttn method achieves statistically significant
improvements (using the two-tailed paired t-test with 99% confi-
dence level) over the Concatenation method.

We note that an improvement of 1% is considered to be highly
significant for our email search ranking system. In Table 2, we
see that the improvement of WMRR metric for SepAttn method
is 1.02% over the best performing baseline model (Concatenation
method).

The results demonstrate that dense features indeed play a critical
role in email search tasks, and they need to be incorporated into the
model effectively, i.e., simply concatenating them with embedded
sparse features is suboptimal; SepAttn provides a more effective
way of learning from both sparse and dense features.

6.4 Sensitivity Analysis
In this section, we discuss the sensitivity of SepAttn method to
the regularization parameter λ in Equation (7). We vary the regu-
larization parameter λ in the range [0, 2.5] and report SepAttn’s
performance (with respect to WMRR metric) in Figure 4.

We observe that when λ > 0, the performance is significantly
better than that when λ = 0. This shows that jointly training the
sparse and dense feature models by encouraging them to make
consistent prediction is indeed beneficial for improving the ranking
performance. When λ continues to grow larger, the performance
of the model becomes stable, which is a favorable property because
λ can be safely set within a relatively wide range of values.
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6.5 Attention Weights Visualization
To understand how SepAttnworks for different email search queries,
we visualize the attention weights (αsparse and αdense in Equa-
tions (3) and (4)) of SepAttn model on our email search dataset
in Figure 3(d). We randomly select 20 queries. We observe the fol-
lowing: (1) Both sparse and dense features are important for email
search tasks, and sparse features generally obtain higher weights
than dense features, which corresponds to our intuition that textual

features are more important than numerical features in email search.
(2) Different queries have different attention weight distribution
on sparse and dense features, which verifies the necessity to build
an attentive ranking model that learns to focus on different fea-
ture sets according to different queries types. For example, the 2nd,
13th, 17th and 19th samples in Figure 3(d) have higher attention
weights on dense features, while for other queries, sparse features
are more important. SepAttn automatically learns to assign appro-
priate weights to dense and sparse features in order to achieve the
best performance.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we studied how to improve email search ranking by
effectively learning from a combination of dense and sparse docu-
ment features using DNNs. We first showed on a set of synthetic
datasets that simply concatenating dense features with embedded
sparse features leads to suboptimal performance of DNN ranking
models, mainly because these features are from different feature
space. Motivated by this drawback, we proposed the SepAttnmodel
which automatically learns to focus on important features for differ-
ent queries through the attention mechanism. We evaluated our
SepAttn model on a large-scale email search dataset and showed
that it significantly outperforms the baseline approach—direct con-
catenation of dense features with sparse features.

In the future, we would like to extend our study to other IR tasks
such as web search and recommendation. Our proposed method
can be easily generalized to other scenarios where dense numerical



features and sparse categorical features both play a role. Further-
more, the attention mechanism at the prediction level introduced in
this paper may facilitate further research on ensembling multiple
learning models.
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