
Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dangling
Pointers

Thurston H.Y. Dang
University of California, Berkeley

Petros Maniatis
Google Brain

David Wagner
University of California, Berkeley

Abstract
Using memory after it has been freed opens programs up
to both data and control-flow exploits. Recent work on
temporal memory safety has focused on using explicit
lock-and-key mechanisms (objects are assigned a new
lock upon allocation, and pointers must have the correct
key to be dereferenced) or corrupting the pointer values
upon free(). Placing objects on separate pages and us-
ing page permissions to enforce safety is an older, well-
known technique that has been maligned as too slow,
without comprehensive analysis. We show that both old
and new techniques are conceptually instances of lock-
and-key, and argue that, in principle, page permissions
should be the most desirable approach. We then validate
this insight experimentally by designing, implementing,
and evaluating Oscar, a new protection scheme based on
page permissions. Unlike prior attempts, Oscar does not
require source code, is compatible with standard and cus-
tom memory allocators, and works correctly with pro-
grams that fork. Also, Oscar performs favorably – often
by more than an order of magnitude – compared to re-
cent proposals: overall, it has similar or lower runtime
overhead, and lower memory overhead than competing
systems.

1 Introduction

A temporal memory error occurs when code uses mem-
ory that was allocated, but since freed (and therefore pos-
sibly in use for another object), i.e., when an object is ac-
cessed outside of the time during which it was allocated.

Suppose we have a function pointer stored on the heap
that points to function Elmo() (see Figure 1) at address
0x05CADA. The pointer is used for a bit and then de-
allocated. However, because of a bug, the program ac-
cesses that pointer again after its deallocation.

This bug creates a control-flow vulnerability. For ex-
ample, between the de-allocation (line 7) and faulty re-

1 vo id (∗∗ someFuncPt r) () = m a l lo c (s i z e o f (vo id ∗)) ;
2 ∗ someFuncPt r = &Elmo ; / / At 0x05CADA
3 (∗ someFuncPt r) () ; / / C o r r e c t use .
4 vo id (∗∗ c a l l b a c k) () ;
5 c a l l b a c k = someFuncPt r ;
6 . . .
7 f r e e (someFuncPt r) ; / / F r ee s p a c e .
8 userName = ma l lo c (. . .) ; / / R e a l l o c a t e s p a c e .
9 . . . / / O v e r w r i t e wi th &Grouch a t 0x05DEAD .

10 (∗ c a l l b a c k) () ; / / Use a f t e r f r e e !

0 5 C A D A 0 0

0 5 D E A D 0 0

someFuncPtr

callback

someFuncPtr
userName

callback

Figure 1: Top: someFuncPtr and callback refer
to the function pointer, stored on the heap. Bot-
tom: userName reuses the freed memory, formerly of
someFuncPtr/callback.

use of the pointer (line 10), some other code could allo-
cate the same memory and fill it from an untrusted source
– say a network socket. When the de-allocated pointer is
faultily invoked, the program will jump to whatever ad-
dress is stored there, say the address of the ROP gadget
Grouch() at address 0x05DEAD, hijacking control flow.

Heap temporal memory safety errors are becoming in-
creasingly important [27, 42]. Stack-allocated variables
are easier to protect, e.g., via escape analysis, which stat-
ically checks that pointers to a stack variable do not out-
live the enclosing stack frame, or can be reduced to the
heap problem, by converting stack allocations to heap
allocations [33]. Stack use-after-free is considered rare
[42] or difficult to exploit [27]; a 2012 study did not
find any such vulnerabilities in the CVE database [15].
We therefore focus on temporal memory safety for heap-

1

allocated objects in the rest of this paper.
Various defenses have been tried. A decade ago, Dhur-

jati and Adve [23] proposed using page permissions and
aliased virtual pages for protection. In their scheme, the
allocator places each allocated object on a distinct virtual
page, even though different objects may share the same
physical page; when an object is deallocated, the cor-
responding virtual page is rendered inaccessible, caus-
ing pointer accesses after deallocation to fail. Although
a combination of the technique with static analysis led
to reasonable memory economy and performance, critics
found faults with evaluation and generality, and – with-
out quantitative comparison – summarily dismissed the
general approach as impractical [31, 42], or without even
mentioning it [41]. Since then, researchers have pro-
posed more elaborate techniques (CETS [31], DangSan
[41], Dangling Pointer Nullification [27] (“DangNull”)
and FreeSentry [42]), relying on combinations of deeper
static analysis and comprehensive instrumentation of
heap operations such as object allocation, access, and
pointer arithmetic. However, these schemes have yielded
mixed results, including poor performance, partial pro-
tection, and incompatibility.

In this work, we first study past solutions, which we
cast as realizations of a lock-and-key protection scheme
(Section 2). We argue that using page permissions to
protect from dangling pointers, an implicit lock-and-key
scheme with lock changes, is less brittle and complex,
and has the potential for superior performance. We then
develop Oscar, a new protection mechanism using page
permissions, inspired by Dhurjati and Adve’s seminal
work [23]. We make the following contributions:

• We study in detail the overhead contributed by the
distinct factors of the scheme – shared memory
mappings, memory-protection system calls invoked
during allocation and deallocation, and more page
table entries and virtual memory areas – using the
standard SPEC CPU 2006 benchmarks (Section 3).

• We reduce the impact of system calls by care-
ful amortization of virtual-memory operations, and
management of the virtul address space (Section 4).

• We extend Oscar to handle server workloads, by
supporting programs that fork children and the
common case of custom memory allocators other
than those in the standard C library (Section 5).

• We evaluate Oscar experimentally using both SPEC
CPU 2006 and the popular memcached service,
showing that Oscar achieves superior performance,
while providing more comprehensive protection
than prior approaches.

Our work shows, in principle and experimentally,
that protection based on page permissions – previously

thought to be an impractical solution – may be the most
promising for temporal memory safety. The simplicity
of the scheme leads to excellent compatibility, deploya-
bility, and the lowest overhead: for example, on SPEC
CPU, CETS and FreeSentry have 48% and 30% runtime
overhead on hmmer respectively, vs. our 0.7% overhead;
on povray, DangNull has 280% overhead while ours is
< 5%. While DangSan has runtime overhead similar to
Oscar, DangSan’s memory overhead (140%) is higher
than Oscar’s (61.5%). Also, our study of memcached

shows that both standard and custom allocators can be
addressed effectively and with reasonable performance.

2 Lock-and-Key Schemes

Use of memory after it has been freed can be seen as an
authorization problem: pointers grant access to an allo-
cated memory area and once that area is no longer al-
located, the pointers should no longer grant access to it.
Some have therefore used a lock-and-key metaphor to
describe the problem of temporal memory safety [31]. In
this section, we show how different published schemes
map to this metaphor, explicitly and sometimes implic-
itly, and we argue that page-permission-based protection
may be the most promising approach for many work-
loads (see Table 1 for a summary).

2.1 Explicit Lock-and-Key: Change the
Lock

In this scheme, each memory allocation is assigned a
lock, and each valid pointer to that allocation is assigned
the matching key. In Figure 1, the code is modified so
in line 1, the allocated object gets a new lock (say 42),
and the matching key is linked to the pointer (see Figure
2). Similarly, in line 5, the key linked to someFuncPtr

is copied to callback. The code is instrumented so that
pointer dereferencing (lines 3 and 10) is preceded by a
check that the pointer’s key matches the object’s lock.

When the space is deallocated and reallocated to a new
object, the new object is given a new lock (say, 43), and
userName receives the appropriate key in line 8. The
keys for someFuncPtr and callback no longer match
the lock past line 7, avoiding use after free (Figure 3).

Since this scheme creates explicit keys (one per
pointer), the memory overhead is proportional to the
number of pointers. The scheme also creates one lock
per object, but the number of objects is dominated by the
number of pointers.

Example Systems: Compiler-Enforced Temporal
Safety for C (CETS) [31] is an example of this scheme.
Although in our figure we have placed the key next to the
pointer (similar to bounds-checking schemes that store

2

0 5 C A D A 0 0someFuncPtr

callback

lock: 42key: 42

key: 42

Figure 2: Each pointer has a key, each object has a lock.

someFuncPtr

callback

lock: 43key: 42

key: 42
userName

key: 43

0 5 D E A D 0 0

Figure 3: Lock change (see Figure 2 for the ’Before’).

someFuncPtr

callback

lock: 42key: XX

key: XX
userName

key: 42

0 5 D E A D 0 0

Figure 4: Key revocation (see Figure 2 for the ’Before’).

someFuncPtr

callback

userName

NULL

Figure 5: After pointer nullification (see Figure 1 for the
’Before’), object space can be reused safely.

both the pointer plus the size [25], called plus-size point-
ers) and lock next to the object, this need not be the case
in implementations. Indeed, one of the key advances of
CETS over prior lock-and-key schemes is that it uses a
disjoint metadata space, with a separate entry for each
pointer that stores the key and the lock location; this
avoids changing the memory layout of the program.

2.2 Explicit Lock-and-Key: Revoke the
Keys

Instead of changing the lock, one could revoke all
keys upon reallocation. This requires tracking of
keys throughout memory; for example, freeing either
someFuncPtr or callback should revoke the keys for
both pointers (Figure 4).

To enable this, upon allocation (line 1) instrumenta-
tion must maintain global metadata tracking all pointers
to a given object, and this index must be updated at every
relevant assignment (line 5). Deallocation (line 7) must
be followed by looking up all pointers to that object, re-
voking (nullifying or otherwise invalidating) their keys.
Revoking keys is harder than changing the lock, since it
requires tracking of key propagation.

Example Systems: To our knowledge, this has not been
used for any published explicit lock-and-key scheme;
but, it segues to the next idea that has been used in prior
work: revoking the keys with implicit lock-and-key.

2.3 Implicit Lock-and-Key: Revoke the
Keys

We can view a pointer as the key, and the object as the
lock. Thus, instead of revoking a key from a separate ex-
plicit namespace, we can change the pointer’s value [27].

The relevant code instrumentation is similar to the ex-
plicit case. Upon allocation or pointer assignment, we
update a global index tracking all pointers to each object.
Upon deallocation, we find and corrupt the value of all
pointers to the deallocated object (Figure 5), say by set-
ting them to NULL. Pointer dereferences need not be in-
strumented, since the memory management unit (MMU)
performs the null check in hardware.

Although this scheme does not need to allocate mem-
ory for explicit lock or key fields, it does need to track
the location of each pointer, which means the physical
memory overhead is at least proportional to the number
of pointers.1

Example Systems: DangNull’s dangling pointer
nullification [27] is an example of this scheme.
FreeSentry [42] is similar, but instead of nullifying the
address, it flips the top bits, for compatibility reasons (see
Section 6.3). DangSan [41] is the latest embodiment of
this technique; its main innovation is the use of append-
only per-thread logs for pointer tracking, to improve run-
time performance for multi-threaded applications.

2.4 Implicit Lock-and-Key: Change the
Lock

Implicit lock-and-key requires less instrumentation than
explicit lock-and-key, and changing locks is simpler than
tracking and revoking keys. The ideal scheme would
therefore be implicit lock-and-key in which locks are
changed.

One option is to view the object as a lock, but this
lacks a mechanism to “change the lock”. Instead, it is
more helpful to view the virtual address as the lock.

1DangSan can use substantially more memory in some cases due to
its log-based design.

3

ptr2

 C B A

C B A

 Virtual page

 Physical page frame

Figure 6: The virtual page has
been made inaccessible: accesses
to objects A, B or C would cause
a fault.

 A

A

 B

B

 C

C

Virtual page

 Physical page frame

Figure 7: With one object per page, we can
selectively disable object B.

 C

 B

 A

 B A C C B A

 Shadow virtual

pages

 Canonical virtual
page

Physical

page frame

Figure 8: Each object has its own
shadow virtual page, which all
map to the same physical frame.

Recall that objects (and physical memory) are ac-
cessed via virtual addresses, which are translated (by the
MMU) into physical addresses. By removing the map-
ping or changing the page permissions, we can make a
virtual page inaccessible; the underlying physical mem-
ory can then be mapped to a different virtual address
(changed lock) for reuse. A drawback is that making a
virtual page inaccessible renders all objects on that page
– often a non-trivial number, since pages are 4KB or
larger – inaccessible (Figure 6). Placing one object per
page (Figure 7) is wasteful of memory resources: it uses
more memory and strains the cache and the TLB.

It is not strictly necessary to use page permissions to
enforce page inaccessibility after deallocation. In princi-
ple, we could maintain a hashtable of live pointers, and
instrument all the pointer dereferences to check that the
pointer is still live, trading off instrumentation for system
calls. This would still have less overhead than an explicit
lock-and-key scheme, because we would not need to in-
strument pointer arithmetic.

Example Systems: Electric Fence [9] implements this
scheme, by placing one object per physical frame. Its
high physical memory usage renders it impractical for
anything other than debugging.

Dhurjati and Adve [23] overcame this shortcoming
through virtual aliasing. Normally, malloc might place
multiple objects on one virtual page, which Dhurjati and
Adve refer to as the canonical virtual page. For each ob-
ject on the canonical virtual page, they create a shadow
virtual page that is aliased onto the same underlying
physical page frame. This allows each object to be dis-
abled independently (by changing the permissions for the
corresponding shadow page), while using physical mem-
ory/cache more efficiently than Electric Fence (Figure
8). However, this still requires many syscalls and in-
creases TLB pressure. Furthermore, creating shadows
introduces compatibility issues with fork (Section 5.1).

The physical memory overhead – one page table en-
try, one kernel virtual memory area struct, plus some
user-space allocator metadata, per object – is propor-

tional to the number of live objects. We expect this to
be more efficient than the other classes of lock-and-key
schemes, which have overhead proportional to the num-
ber of pointers (albeit with a smaller constant factor).
Some engineering is required to avoid stateholding of
munmap’ed page table entries (Section 8).

2.5 Summary of Lock and Key Schemes
Table 1 compares the plausible lock-and-key schemes.
Implicit lock-and-key schemes that change the lock (i.e.,
one object per virtual page) are advantageous by having
no overhead for any pointer arithmetic, and no direct cost
(barring TLB and memory pressure) for pointer derefer-
ences. Furthermore, the core technique does not require
application source code: for programs using the stan-
dard allocator, we need only change the glibc malloc

and free functions. However, Dhurjati and Adve’s full
scheme requires application source code to apply their
static analysis optimization, which allows them to reuse
virtual addresses when a pool is destroyed.

3 Baseline Oscar Design

We will develop the shadow virtual pages idea in a di-
rection that does not require source-code analysis, with
less stateholding of kernel metadata for freed objects,
and with better compatibility with fork. We focus on
glibc and Linux.

While we have argued that page-permissions-based
protections should require less instrumentation than
newer schemes, there has been no good data on the over-
head of shadows (without reliance on static analysis),
let alone quantitative comparisons with recent schemes.
In the first part of this paper, we quantify and predict
the overhead when using only shadows. These measure-
ments informed our approach for reducing the overhead,
which are described in the second part of this paper.

To help us improve the performance of shadow-page-
based schemes, we first measure their costs and break

4

 Explicit lock-and-key:
changing the lock e.g.,

Implicit lock-and-key:
revoking the keys e.g.,

Implicit lock-and-key:
changing the lock e.g.,

Instrumentation CETS DangNull/FreeSentry Electric Fence
malloc () Allocate lock address; Issue key; Set lock Register pointer Syscall to create virtual page

Simple ptr arithmetic: p+=2 No cost

General ptr arithmetic: p=q+1 Propagate lock address and key Update ptr registration No cost

Pointer dereference: *p Check key vs. lock value (at lock address) No cost <TLB and memory pressure>
free () Deallocate lock address Invalidate pointers Syscall to disable virtual page

No application source needed Needs source + recompilation Yes; Req’d by Dhurjati&Adve

Physical memory overhead O(# pointers) O(# pointers) O(# objects)

Table 1: Comparison of lock-and-key schemes. Green and a tick indicates an advantageous distinction.

down the source of overhead. Shadow-page schemes
consist of four elements: modifying the memory al-
location method to allow aliased virtual pages, inline
metadata to record the association between shadow and
canonical pages, syscalls to create and disable shadow
pages, and TLB pressure. We measure how much each
contributes to the overhead, so we can separate out the
cost of each.

It is natural to hypothesize that syscall overhead
should be proportional to the number of malloc/free
operations, as page-permissions-based schemes add one
or two syscalls per malloc and free. However, the other
costs (TLB pressure, etc.) are less predictable, so mea-
surements are needed.

Our baseline design [23] uses inline metadata
to let us map from an object’s shadow address
to its canonical address. When the program in-
vokes malloc(numBytes), we allocate instead with
internal_malloc(numBytes + sizeof(void*)) to
allocate an object within a physical page frame and then
immediately perform a syscall to create a shadow page
for the object. The object’s canonical address is stored
as inline metadata within the additional sizeof(void*)
bytes. This use of inline metadata is transparent to the
application, unlike with plus-size pointers. Conceivably,
the canonical addresses could instead be placed in a dis-
joint metadata store (similar to CETS), improving com-
pactness of allocated objects and possibly cache utiliza-
tion, but we have not explored this direction.

3.1 Measurement Methodology
We quantified the overhead by building and measuring
incrementally more complex schemes that bridge the de-
sign gap from glibc’s malloc to one with shadow vir-
tual pages, one overhead factor at a time.

Our first scheme simply changes the memory alloca-
tion method. As background, malloc normally obtains
large blocks of memory with the sbrk syscall (via the
macro MORECORE), and subdivides it into individual ob-
jects. If sbrk fails, malloc obtains large blocks us-
ing mmap(MAP_PRIVATE). (This fallback use of mmap

should not be confused with malloc’s special case of
placing very large objects on their own pages.) We can-
not create shadows aliased to memory that was allocated
with either sbrk or mmap(MAP_PRIVATE); the Linux
kernel does not support this. Thus, our first change was
MAP SHARED arenas: we modified malloc to always
obtain memory via mmap(MAP SHARED) (which can be
used for shadows) instead of sbrk. This change unfortu-
nately affects the semantics of the program if it fork()s:
the parent and child will share the physical page frames
underlying the objects, hence writes to the object by ei-
ther process will be visible to the other. We address this
issue – which was not discussed in prior work – in Sec-
tion 5.1.

MAP SHARED with padding further changes
malloc to enlarge each allocation by sizeof(void*)

bytes for the canonical address. We do not read or write
from the padding space, as the goal is simply to measure
the reduced locality of reference.

Create/disable shadows creates and disables shadow
pages in the malloc and free functions using mremap

and mprotect(PROT_NONE) respectively, but does not
access memory via the shadow addresses; the canoni-
cal address is still returned to the caller. To enable the
free function to disable the shadow page, we stored the
shadow address inside the inline metadata field (recall
that in the complete scheme, this stores the canonical).

Use shadows returned shadow addresses to the user.
The canonical address is stored inside the inline meta-
data field. This version is a basic reimplementation of a
shadow-page scheme.

All timings were run on Ubuntu 14.04 (64-bit),
using an Intel Xeon X5680 with 12GB of RAM.
We disabled hyper-threading and TurboBoost, for
more consistent timings. Our “vanilla” malloc/free
was from glibc 2.21. We compiled the non-
Fortran SPEC CPU2006 benchmarks using gcc/g++

v4.8.4 with -O3. We configured libstdc++ with
--enable-libstdcxx-allocator=malloc, and con-
figured the kernel at run-time to allow more virtual mem-
ory mappings.

We counted malloc and free operations using

5

-10%

0%

10%

20%

30%

40%

50%

60%

bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref milc lbm sphinx astar namd soplex povray

O
ve

rh
e

ad
 (

0
%

 =
 V

an
ill

a)

MAP_SHARED arenas MAP_SHARED with padding Create/disable shadows Use shadows

Figure 9: SPEC CPU2006 C/C++ benchmarks, showing the overhead as we reach the full design.

mtrace. We placed mtrace at the start of main, which
does miss a small number of allocations (e.g., static ini-
tializers and constructors for global C++ objects), but
these are insignificant.

3.2 Results
The overhead measurements of the four incrementally
more complete schemes are shown in Figure 9 for
15 of the 19 SPEC CPU2006 C/C++ benchmarks.
The remaining four benchmarks (perlbench, dealII,
omnetpp, xalancbmk) exhaust the physical memory on
the machine when creating/disabling shadows, due to
the accumulation of vm area structs corresponding to
mprotect’ed pages of “freed” objects. We therefore de-
fer discussion of them until the following section, which
introduces our improvements to the baseline design.

Even for the complete but unoptimized scheme (Use
shadows), most benchmarks have low overhead. gcc and
sphinx have high overhead due to creating/destroying
shadows, as well as using shadows. astar and povray

have a noticeable cost mainly due to using shadows,
a cost which is not present when merely creating/dis-
abling shadows; we infer that the difference is due to
TLB pressure. Notably, mcf’s overhead is entirely due
to MAP SHARED arenas, as is most of milc’s. Inline
padding is a negligible cost for all benchmarks.

In Figure 10, we plot the run-time of creating/dis-
abling shadows, against the number of shadow-page-
related syscalls2. We calculated the y-values by measur-
ing the runtime of Create/disable shadows (we used the
high watermark optimization from Section 4 to ensure
all benchmarks complete) minus MAP SHARED with
padding: this discounts runtime that is not associated
with syscalls for shadows. The high correlation matches
our mental model that each syscall has an approxi-
mately fixed cost, though it is clear from omnetpp and
perlbench that it is not perfectly fixed. Also, we can

2A realloc operation involves both creating a shadow and de-
stroying a shadow, hence the number of malloc/free operations is
augmented with (2 * realloc).

perlbench

gcc

omnetpp

xalancbmk
dealII

y = 1.1091x
R² = 0.95

-200

0

200

400

600

800

1000

0 200 400 600 800R
u

n
-t

im
e

(s
)

o
f

cr
e

at
in

g/
d

es
tr

o
yi

n
g

(b
u

t
n

o
t

u
si

n
g)

 s
h

ad
o

w
s

malloc + free (+ 2 * realloc) (millions)

Figure 10: Predicting syscall overhead.

see that perlbench, dealII, omnetpp and xalancbmk

each create over 100 million objects, which is why they
could not run to completion using the unoptimized im-
plementation.

4 Lowering Overhead Of Shadows

The previous section shows that the overhead is due
to MAP SHARED, creating/destroying shadows, and using
shadows. The cost of using shadows – via TLB pressure
– can be reduced with hardware improvements, such as
larger TLBs (see Section 6.2). In this section, we pro-
pose, implement, and measure three optimizations for re-
ducing the first two costs.

High water mark. The naı̈ve approach creates shad-
ows using mremap without a specified address and dis-
ables shadows using mprotect(PROT_NONE). Since dis-
abled shadows still occupy virtual address space, new
shadows will not reuse the addresses of old shadows,
thus preventing use-after-free of old shadows. How-
ever, the Linux kernel maintains internal data structures
for these shadows, called vm area structs, consuming
192 bytes of kernel memory per shadow. The accumu-
lation of vm area structs for old shadows prevented
a few benchmarks (and likely many real-world applica-
tions) from running to completion.

We introduce a simple solution. Contrary to conven-

6

 malloc()

syscall:
Create

shadow

 free()

syscall:
Destroy

shadow

Not
alloc’ed;

no shadow

Allocated

(with
shadow)

 malloc()

syscall:
Create

shadow

 free()

syscall:
Refresh

shadow

Not
alloc’ed;
fresh

shadow

Allocated

(with
shadow)

Figure 11: Left: Simplified lifecycle of a chunk of mem-
ory. Right: The destroyShadow syscall has been modi-
fied to simultaneously destroy the old shadow and create
a new one.

tional wisdom [23], with a small design modification,
Oscar can both unmap and prevent reuse of a virtual
page. We use a “high water mark” for shadow addresses:
when Oscar creates a shadow, we specify the high wa-
ter mark as the requested shadow address, and then in-
crement the high water mark by the size of the alloca-
tion. This is similar to the sbrk limit of malloc. Oscar
can now safely use munmap to disable shadows, without
risk of reusing old shadows. As we show in Section 6.1,
virtual address space exhaustion is an unlikely, tractable
problem.

Our scheme, including the high water mark, is
compatible with address space layout randomization
(ASLR). At startup, we initialize the high-water mark
at a fixed offset to the (randomized) heap base address.
To reduce variability in run-times, all benchmarks, in-
cluding the baseline, were measured without ASLR, as
is typical in similar research [40].

Refreshing shadows. Figure 11 (left) depicts the sim-
plified circle of life of a heap-allocated chunk of physi-
cal memory. Over the lifetime of a program, that chunk
may be allocated, freed, allocated, freed, etc., resulting
in syscalls to create a shadow, destroy a shadow, create a
shadow, destroy a shadow, etc. Except for the very first
time a chunk has been created by malloc, every shadow
creation is preceded by destroying a shadow.

Oscar therefore speculatively creates a new shadow
each time it destroys a shadow, in Figure 11 (right). This
saves the cost of creating a new shadow, the next time an
object is allocated on that canonical page. The optimisti-
cally renewed shadow is stored in a hash table, keyed
by the size of shadow (in number of pages) and the ad-
dress of the canonical page (not the canonical object).
This means the shadow address can be used for the next
similarly-sized object allocated on the canonical page(s),
even if the new object does not coincide precisely with

the old object’s size or offset within the page. It also im-
proves the likelihood that the shadow can be used when
objects are coalesced or split by the allocator.

Up to now, we have used mremap to create shadows.
mremap actually can be used to both destroy an old map-
ping and create a new virtual address mapping (at a spec-
ified address) in a single system call. We use this ability
to both destroy the old shadow mapping and create a new
one (i.e., refresh a shadow) with one system call, thereby
collapsing 2 system calls to 1 system call. This opti-
mization depends on the high water mark optimization:
if we called mremap with old_size = new_size with-
out specifying a new_address, mremap would conclude
that there is no need to change the mappings at all, and
would return the old shadow virtual address.

Using MAP PRIVATE when possible. As men-
tioned earlier, MAP SHARED is required for creating shad-
ows, but sometimes has non-trivial costs. However, for
large objects that malloc places on their own physical
page frames, Oscar does not need more than one shadow
per page frame. For these large allocations, Oscar uses
MAP_PRIVATE mappings.

Implementing realloc correctly requires care. Our
ordinary realloc wrapper is, in pseudo-code:

munmap(old_shadow);

new_canonical = internal_realloc(old_canonical);

new_shadow = create_shadow(new_canonical);

This works when all memory is MAP SHARED. How-
ever, if the reallocated object (new canonical) is large
enough to be stored on its own MAP PRIVATE pages,
create shadow will allocate a different set of physi-
cal page frames instead of creating an alias. This re-
quires copying the contents of the object to the new page
frames. Copying is mildly inefficient, but few programs
use realloc extensively.

The overhead saving is upper-bounded by the original
cost of MAP SHARED arenas.

Abandoned approach: Batching system calls. We
tried batching the creation or destruction of shadows, but
did not end up using this approach in Oscar.

We implemented a custom syscall (loadable kernel
module ioctl) to create or destroy a batch of shadows.
When we have no more shadows for a canonical page,
we call our batchCreateShadow ioctl once to create
100 shadows, reducing the amortized context switch cost
per malloc by 100x. However, this does not reduce the
overall syscall cost by 100x, since mremap’s internals are
costly. In a microbenchmark, creating and destroying
100 million shadows took roughly 90 seconds with indi-
vidual mremap/munmap calls (i.e., 200 million syscalls)
vs. ≈80 seconds with our batched syscall. The savings
of 10 seconds was consistent with the time to call a no-op
ioctl 200 million times.

7

-10%

0%

10%

20%

30%

40%

50%

60%

bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref milc lbm sphinx astar namd soplex povray

O
ve

rh
e

ad
 (

0
%

 =
 V

an
ill

a)

Use shadows Use shadows w/ high water mark Refreshing shadows Refreshing shadows plus MAP_PRIVATE if ok

Figure 12: SPEC CPU2006 C/C++ benchmarks, showing the benefits of our optimizations.

In our pilot study, batching did not have a significant
benefit. It even slowed down some benchmarks, due to
mispredicting which shadows will be needed in the fu-
ture. For example, we may create 100 shadows for a
page that contains solely of a single object which is never
freed, wasting 99 shadows.

We also tried batch-disabling shadows: any objects
that are free()’d are stored in a “quarantine” of 100
objects, and when the quarantine becomes full, we dis-
able all 100 shadows with a single batched syscall, then
actually free those 100 objects. This approach maintains
temporal memory safety, unlike the standard use of quar-
antine (see Section 7). Unlike batch-creating shadows,
with batch-deletion we need not predict the future.

In our pilot study, batch deletion had mixed effects on
runtime overhead. We hypothesize this is due to disrupt-
ing favorable memory reuse patterns: malloc prefers to
reuse recently freed objects, which are likely to be hot in
cache; quarantine prevents this.

4.1 Performance Evaluation
The effect of these improvements on the previous subset
of 15 benchmarks is shown in Figure 12.

Our first two optimizations (high water mark, refresh-
ing shadows) greatly reduce the overhead for gcc and
sphinx; this is not a surprise, as we saw from Figure
9 that much of gcc and sphinx’s overhead is due to
creating/destroying shadows. These two optimizations
do not benefit mcf, as its overhead was entirely due to
MAP SHARED arenas; instead, fortuitously, the over-
head is eliminated by the MAP PRIVATE optimization.
The MAP PRIVATE optimization also reduces the over-
head on milc by roughly ten percentage points, almost
eliminating the overhead attributed to MAP SHARED.

The four allocation-intensive benchmarks are shown
in Figure 13. Recall that for these benchmarks, the
baseline scheme could not run to completion, owing
to the excessive number of leftover vm area structs

-100%

0%

100%

200%

300%

400%

perlbench omnetpp xalancbmk dealIIO
ve

rh
e

ad
 (

0
%

 =
 V

an
ill

a)

MAP_SHARED arenas MAP_SHARED with padding
Create/disable shadows w/ high water mark Use shadows w/ high water mark
Refreshing shadows Refreshing shadows plus MAP_PRIVATE if ok

Figure 13: The 4 allocation-intensive benchmarks.

for mprotect’ed shadows corresponding to “freed” ob-
jects. The high water mark optimization, which perma-
nently munmaps the shadows, allows Linux to reclaim the
vm area structs, reducing the memory utilization sig-
nificantly and enabling them to complete successfully.
To separate out the cost of syscalls from TLB pres-
sure, we backported the high water mark change to Cre-
ate/disable shadows.

For all four benchmarks, MAP SHARED and inline meta-
data costs (the first two columns) are insignificant com-
pared to creating/disabling and using shadows. Refresh-
ing shadows reduces overhead somewhat for perlbench
and omnetpp but increases overhead for xalancbmk and
dealII.

The MAP PRIVATE optimization had a negligible ef-
fect, except for perlbench, which became 30 p.p.
slower. This was initially surprising, since in all other
cases, MAP PRIVATE is faster than MAP SHARED. How-
ever, recall that Oscar also had to change the realloc

implementation. perlbench uses realloc heavily: 11
million calls, totaling 700GB of objects; this is 19x the
reallocs of all other 18 benchmarks combined (by calls
or GBs of objects). We confirmed that realloc caused
the slowdown, by modifying Refreshing shadows to use
the inefficient realloc but with MAP SHARED always;

8

? ?

672%

? ? ?
0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

O
ve

rh
e

ad
 (

b
as

e
lin

e
 =

 0
%

)

Oscar DangSan (reported) DangSan (re-run) DangNull (reported)

?

95%

0%

10%

20%

30%

40%

50%

60%

70%

gobmk h264ref hmmer lbm libquantum milc sphinx3 sjeng

O
ve

rh
e

ad
 (

b
as

e
lin

e
 =

 0
%

)

FreeSentry (reported) CETS (reported)

Figure 14: Runtime overhead of SPEC benchmarks. The graphs have different y-axes. Some overheads are based
on results reported in the papers, not re-runs (see legend). ’?’ indicates that FreeSentry did not report results for
libquantum, DangNull did not report results for dealII, omnetpp, or perlbench, and we could not re-run DangSan
on omnetpp or perlbench. FreeSentry and CETS did not report results for any of the benchmarks in the right graph.

this was marginally slower than refreshing shadows and
using MAP PRIVATE where possible.

4.2 Runtime Overhead Comparison

Figure 14 (left) compares the runtime overhead of Os-
car against DangSan, DangNull, FreeSentry, and CETS.
Figure 14 (right) shows the remaining SPEC bench-
marks, for which results were reported by DangSan and
DangNull, but not FreeSentry or CETS.

A caveat is that CETS’ reported overheads are based
on providing temporal protection for both the stack and
heap, which is more comprehensive than Oscar’s heap-
only protection. However, since CETS must, to a first
approximation, fully instrument pointer arithmetic and
dereferencing instructions even if only heap protection is
desired, we expect that the overhead of heap-only CETS
would still be substantially higher than Oscar.

All other comparisons (DangSan, DangNull,
FreeSentry) are based on the appropriate reported
overheads for heap-only temporal protection.

Comparison to DangSan. We re-ran the latest pub-
licly available version of DangSan3 on the same hard-
ware as Oscar. DangSan re-run overheads were normal-
ized to a re-run with their “baseline LTO” script. We
were unable to re-run perlbench due to a segmentation
fault, or omnetpp due to excessive memory consump-
tion4. As seen in the graphs, our re-run results are very
similar to DangSan’s reported results; thus, unless other-
wise stated, we will compare Oscar against the latter.

3March 19, 2017, https://github.com/vusec/dangsan/

commit/78006af30db70e42df25b7d44352ec717f6b0802
4We estimate that it would require over 20GB of memory, taking

into account the baseline memory usage on our machine and DangSan’s
reported overhead for omnetpp.

Across the complete set of C/C++ SPEC CPU2006
benchmarks, Oscar and DangSan have the same over-
all overhead, within rounding error (geometric means of
40% and 41%). However, for all four of the allocation-
intensive benchmarks, as well as astar and gcc, the
overheads of both Oscar and DangSan are well above the
10% overhead threshold [39], making it unlikely that ei-
ther technique would be considered acceptable. If we
exclude those six benchmarks, then Oscar has average
overhead of 2.5% compared to 9.9% for DangSan. Al-
ternatively, we can see that, for five benchmarks (mcf,
povray, soplex, gobmk, milc), Oscar’s overhead is 6%
or less, whereas DangSan’s is 10% or more. There are
no benchmarks where DangSan has under 10% overhead
but Oscar is 10% or more.5

Comparison to DangNull/FreeSentry. We emailed
the first authors of DangNull and FreeSentry to ask for
the source code used in their papers, but did not re-
ceive a response. Our comparisons are therefore based
on the numbers reported in the papers rather than by re-
running their code on our system. Nonetheless, the dif-
ferences are generally large enough to show trends. In
many cases, Oscar has almost zero overhead, implying
there are few mallocs/frees (the source of Oscar’s over-
head); we expect the negligible overhead generalizes to
any system. Oscar does not instrument the application’s
pointer arithmetic/dereferencing, which makes its over-
head fairly insensitive to compiler optimizations. We
also note that DangSan – which we were able to re-run
and compare against Oscar – theoretically should have
better performance than DangNull6.

5Of course, there is a wide continuum of “under 10%”, and those
smaller differences may matter.

6However, DangSan’s empirical comparisons to DangNull and
FreeSentry were also based on reported numbers rather than re-runs.

9

https://github.com/vusec/dangsan/commit/78006af30db70e42df25b7d44352ec717f6b0802
https://github.com/vusec/dangsan/commit/78006af30db70e42df25b7d44352ec717f6b0802

159% 1700% 373%

÷
0%

20%

40%

60%

80%

100%

M
e

m
o

ry
 o

ve
rh

e
ad

 (
va

n
ill

a
=

0
%

)

Oscar DangSan (re-run) DangSan (reported) DangNull (reported)Figure 15: Memory overhead on CPU2006. DangNull
reported a baseline of 0MB for libquantum, so an over-
head ratio is not calculable.

Oscar’s performance is excellent compared to
FreeSentry and DangNull, even though DangNull
provides less comprehensive protection: DangNull
only protects pointers to heap objects if the pointer
is itself stored on the heap. Figure 14 (left) compares
all SPEC CPU2006 benchmarks for which DangNull
and FreeSentry both provide data. FreeSentry has
higher overhead for several benchmarks (milc, gobmk,
hmmer, h264ref) – especially higher for the latter three.
FreeSentry is faster on the remaining three benchmarks,
but in all those cases except for sphinx3, our overhead
is negligible anyway. DangNull has much higher
overhead than Oscar for gobmk and sphinx3. For other
benchmarks, DangNull often gets zero overhead, though
it is not much lower than Oscar’s, and comes with the
caveat of their weaker protection.

Our comparisons are based on our overall “best”
scheme with all three optimizations. For some bench-
marks, using just the high water mark optimization and
not the other two optimizations would have performed
better. Even the basic shadow pages scheme without op-
timizations would often beat DangNull/FreeSentry.

Figure 14 (right) shows additional SPEC CPU2006
benchmarks for which DangNull reported their overhead
but FreeSentry did not. For the two benchmarks where
DangNull has zero overhead (bzip2, namd), Oscar’s are
also close to zero. For the other six benchmarks, Oscar’s
overhead is markedly lower. Two highlights are soplex
and povray, where DangNull’s overhead is 150%/280%,
while Oscar’s is under 6%.

When considering only the subset of CPU2006 bench-
marks that DangNull reports results for (i.e., excluding
dealII, omnetpp and perlbench), Oscar has a geo-
metric mean runtime overhead of 15.4% compared to
49% for DangNull. For FreeSentry’s subset of reported
benchmarks, Oscar has just 2.8% overhead compared to

? ? ? ? ?

13,365%

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

M
e

m
o

ry
 o

ve
rh

e
ad

 (
va

n
ill

a
=

0
%

)

Oscar DangSan (re-run) DangSan (reported) DangNull (reported)

Figure 16: Memory overhead on CPU2006 (continued).
’?’ indicates that DangNull did not report memory usage
for dealII, omnetpp, or perlbench, and we could not
re-run DangSan on the latter two.

18% for FreeSentry.
Comparison to CETS. We compare Oscar to the

temporal-only mode of SoftBoundCETS [32] (which we
will also call “CETS” for brevity), since that has lower
overhead and a more comprehensive dataset than the
original CETS paper.

The latest publicly available version of SoftBound-
CETS for LLVM 3.47 implements both temporal and
spatial memory safety. We received some brief advice
from the author of SoftBoundCETS on how to modify
it to run in temporal-only mode, but we were unable to
get it to work beyond simple test programs. Thus, our
comparisons rely on their reported numbers rather than a
re-run.

We have omitted the bzip2 and mcf benchmarks, as
CETS’ bzip2 is from the CPU2000 suite [29] and we
suspect their mcf is as well.8 SPEC specifically cau-
tions that, due to differences in the benchmark workload
and/or source, the results on CPU2000 vs. CPU2006
might not be comparable [5].

Figure 14 (left) shows the overhead of CETS vs. our
overall best scheme. We are faster than CETS for all
benchmarks, often by a significant margin. For example,
CETS has >48% overhead on gobmk and hmmer, com-
pared to less than 1% for Oscar. The geometric mean
across CETS’ subset of CPU2006 benchmarks is 2.8%
for Oscar compared to 36% for CETS.

7September 19, 2014, https://github.

com/santoshn/softboundcets-34/commit/

9a9c09f04e16f2d1ef3a906fd138a7b89df44996
8In any case, since CETS has 23% and 114% overhead on bzip2

and mcf respectively – compared to less than 1.5% on each for Oscar –
including them in the comparison would not be favorable to CETS.

10

https://github.com/santoshn/softboundcets-34/commit/9a9c09f04e16f2d1ef3a906fd138a7b89df44996
https://github.com/santoshn/softboundcets-34/commit/9a9c09f04e16f2d1ef3a906fd138a7b89df44996
https://github.com/santoshn/softboundcets-34/commit/9a9c09f04e16f2d1ef3a906fd138a7b89df44996

4.3 Memory Overhead Comparison

Figures 15 and 16 show the memory overhead of Oscar,
DangSan (re-run and reported), and DangNull (reported
only). We did not find any reported data for FreeSentry,
CETS or SoftBoundCETS temporal-only. The graphs
have different y-axes to highlight differences in over-
heads in the lower-overhead benchmarks of Figure 15.

We calculated the memory overhead based on the
combined maximum resident set size (RSS)9, size
of the page tables10, and approximate size of the
vm area structs11. Our polling approach introduces
some minor inaccuracies with regard to obtaining the
maxima and baseline values. For DangSan, which does
not greatly increase the number of page table entries or
vm area structs, this is very similar to their maximum
resident set size metric. It is unclear what memory con-
sumption metric DangNull used, so some care should be
taken when interpreting their overheads.

The RSS values reported in /proc/pid/status are
misleading for Oscar because it double-counts every
shadow page, even though many of them are aliased to
the same canonical. We know, however, that the physical
memory usage of Oscar – and therefore the resident set
size when avoiding double-counting – is essentially the
same as the MAP SHARED with padding scheme (from
Section 3.1). We therefore calculated the maximum RSS
for that scheme, but measured the size of the page tables
and vm area structs for the full version of Oscar.

For the complete suite of CPU2006 benchmarks, Os-
car has 61.5% memory overhead, far lower than Dan-
gSan’s 140%. Even if we omit DangSan’s pathological
case of omnetpp (reported overhead of over 13,000%),
Oscar is still far more memory-efficient with 52% over-
head vs. 90% for DangSan. The only benchmarks on
which Oscar performs substantially worse than DangSan
are sphinx3 and soplex. sphinx3 with Oscar has a
maximum RSS of ≈50MB (compared to a baseline of
≈45MB), maximum page tables size of ≈130MB, and
maximum vm area structs of ≈45MB. In Section 8,
we propose methods to reduce the memory overhead by
garbage collecting old page table entries (which would
benefit sphinx3), and sharing inline metadata (which
benefits would soplex with its many small allocations).

DangNull has roughly 127% memory overhead, but,
as also noted by the DangSan authors, DangNull did
not report data for many of the memory-intensive bench-
marks. If we use the same subset of SPEC benchmarks
that DangNull reported, then Oscar has only 36% mem-
ory overhead (vs. ≈75% for DangSan).

9VmHWM (peak RSS) in /proc/pid/status
10VmPTE and VmPMD in /proc/pid/status
11We counted the number of mappings in /proc/pid/maps and

multiplied by sizeof(vm area struct).

5 Extending Oscar for Server Applications

When applying Oscar to server applications – which
are generally more complex than the SPEC CPU bench-
marks – we encountered two major issues that resulted in
incompatibility and incomplete protection: forking and
custom memory allocators. Additionally, we modified
Oscar to be thread-safe when allocating shadows.

5.1 Supporting shadows + fork()

Using MAP SHARED for all allocations is problematic for
programs that fork, as it changes the semantics of mem-
ory: the parent and child’s memory will be shared, so
any post-fork writes to pre-fork heap objects will un-
expectedly be visible to both the parent and child. In
fact, we discovered that most programs that fork and
use glibc’s malloc will crash when using MAP SHARED.
Surprisingly, they may crash even if neither the parent
nor child read or write to the objects post-fork.12

Oscar solves this problem by wrapping fork and em-
ulating the memory semantics the program is expecting.
After fork, in the child, we make a copy of all heap
objects, unmap their virtual addresses from the shared
physical page frames, remap the same virtual addresses
to new (private) physical page frames, and repopulate the
new physical page frames with our copy of the heap ob-
jects. The net effect is that the shadow and canonical
virtual addresses have not changed – which means old
pointers (in the application, and in the allocator’s free
lists) still work – but the underlying physical page frames
in the child are now separated from the parent.

Method. Oscar instruments malloc and free to keep
a record of all live objects in the heap and their shadow
addresses. Note that with a loadable kernel module, Os-
car could avoid recording the shadow addresses of live
objects and instead find them from the page table entries
or vm area structs.

Then, Oscar wraps fork to do the following:

1. call the vanilla fork(). After this, the child address
space is correct, except that the malloc’d memory
regions are aliased with the parent’s physical page
frames.

2. in the child process:

(a) for each canonical page in the heap:

12glibc’s malloc stores the main heap state in a static variable
(not shared between parent and child), but also partly through inline
metadata of heap objects (shared); thus, when the parent or child al-
locates memory post-fork, the heap state can become inconsistent or
corrupted. A program that simply malloc()s 64 bytes of memory,
fork()s, and then allocates another 64 bytes of memory in the child,
is sufficient to cause an assertion failure.

11

i. allocate a new page at any unused
address t using mmap(MAP SHARED |

MAP ANONYMOUS)

ii. copy canonical page to t

iii. call mremap(old address=t,

new address=canonical page). Note
that mremap automatically removes the
previous mapping at canonical page.

(b) for each live object: use mremap to recreate a
shadow at the same virtual address as before
(using the child’s new physical page frames).

Compared to the naı̈ve algorithm, the use of mremap
halves the number of memory copy operations.

We can further reduce the number of system calls by
observing that the temporary pages t can be placed at vir-
tual addresses of our choice. In particular, we can place
all the temporary pages in one contiguous block, which
lets us allocate them all using just one mmap command.

The parent process must sleep until the child has
copied the canonical pages, but it does not need to wait
while the child patches up the child’s shadows. Oscar
blocks signals for the duration of the fork() wrapper.

This algorithm suffices for programs that have only
one thread running when the program forks. This covers
most reasonable use cases; it is considered poor practice
to have multiple threads running at the time of fork [6].
For example, apache’s event multi-processing module
forks multiple children, which each then create multiple
threads. To cover the remaining, less common case of
programs that arbitrarily mix threads and fork, Oscar
could “stop the world” as in garbage collection, or Leak-
Sanitizer (a memory leak detector) [1].

Our algorithm could readily be modified to be “copy-
on-write” for efficiency. Additionally, batching the
remappings of each page might improve performance;
since the intended mappings are known in advance, we
could avoid the misprediction issue that plagued regular
batch mapping. With kernel support we could solve this
problem more efficiently, but our focus is on solutions
that can be deployed on existing platforms.

Results. We implemented the basic algorithm in Os-
car. In cursory testing, apache, nginx, and openssh run
with Oscar’s fork fix, but fail without. These applica-
tions allocate only a small number of objects pre-fork,
so Oscar’s fork wrapper does not add much overhead
(tens or hundreds of milliseconds).

5.2 Custom Memory Allocators

The overheads reported for SPEC CPU are based on in-
strumenting the standard malloc/free only, providing a
level of protection similar to prior work. However, a few

99.81% 99.10% 98.28% 98.07% 96.62% 95.80% 95.30% 93.07%

79.31%

65.76%

55.44%

48.10% 45.97% 45.63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 0.01% 1% 2% 3% 4% 5% 10% 30% 50% 70% 90% 99% 100%

Th
ro

u
gh

p
u

t
(v

an
ill

a
=

1
0

0
%

)

Percentage of "Set" operations

Protect malloc only Protect malloc + CMA

Figure 17: Throughput of Oscar on memcached.

of the SPEC benchmarks [19] implement their own cus-
tom memory allocator (CMAs). Since standard schemes
for temporal memory safety require instrumenting mem-
ory allocation and deallocation functions, without special
provisions none of them – including Oscar – will protect
objects allocated via arbitrary CMAs.

We found that CMAs seem to be even more com-
mon in server programs, such as apache, nginx, and
proftpd. Prior work typically ignores the issue of
CMAs. We solve this by manually identifying CMAs
and wrapping them with Oscar as well. CMA identifica-
tion could also be done automatically [18].

If we do not wrap a CMA with Oscar, any objects al-
located with the CMA would obviously not be resistant
to use-after-free. However, there are no other ill effects;
it would not result in any false positives for any objects,
nor would it result in false negatives for the non-CMA
objects.

5.3 Case Study: malloc-like custom mem-
ory allocator in memcached

memcached is a memory object caching system that
exports a get/set interface to a key-value store.
We compiled memcached 1.4.25 (and its prerequi-
site, libevent) and benchmarked performance using
memaslap.

When we wrapped only glibc’s malloc, the over-
head was negligible: throughput was reduced by 0–3%,
depending on the percentage of set operations (Figure
17). However, this is misleadingly low, as it fails to pro-
vide temporal memory safety for objects allocated by the
CMA. Therefore, we applied Oscar to wrap the CMA, in
the same way we wrapped glibc’s malloc/free.

Method. To support wrapping the CMA, we had to
ensure that Oscar malloc always used MAP SHARED even
for large objects. This is because the allocation may be
used by the CMA to “host” a number of shadows. Ad-
ditionally, we partitioned the address space to use sepa-
rate high-water marks for the malloc wrapper and CMA
wrapper.

We identified that allocations and deallocations via

12

memcached’s slab allocator are all made through the
do item alloc and item free functions. Thus, it is
sufficient to add shadow creation/deletion to those func-
tions.

For ease of engineering, we made minor changes di-
rectly to the slab allocator, similar to those we applied
to glibc’s malloc: inserting a canonical address field
in the memcached item struct, and modifying the alloca-
tion/deallocation functions. In principle, we only need to
override the CMA allocate/deallocate symbols, without
needing to recompile the main application.

In this paper, the per-object metadata (e.g., the canon-
ical address) is stored inline. If Oscar switched to a dis-
joint metadata store (e.g., a hashtable), it would be easy
to extend Oscar to protect any custom memory alloca-
tors (not just CMAs with malloc-like interfaces) that
are identified: as with glibc’s malloc, the allocator
function simply needs to be wrapped to return a new
shadow, and the deallocator function wrapped to destroy
the shadow. This would be a better long-term approach
than individually dealing with each CMA that is encoun-
tered.

Results. When set operations are 3% of the total op-
erations (a typical workload [12]), the performance over-
head is roughly 4%. The overhead is higher for set oper-
ations because these require allocations (via the CMA),
which involves creating shadows. Get operations have
almost no overhead because they do not perform mem-
ory allocation or deallocation and consequently do not
require any system calls.13 Unlike SPEC CPU, which
is single-threaded, we ran memcached with 12 threads.
This shows that Oscar’s overhead is low even for multi-
threaded applications, despite our naı̈ve use of a mutex
to synchronize part of Oscar’s internal state (namely, the
high-water mark; see Section 8).

5.4 Special case: Region-based allocators
We have found several server programs that use region-
based custom memory allocators [14]. Region-based al-
locators are particularly favorable for page-permissions-
based schemes such as Oscar.

Typically, region-based allocators obtain a large block
of memory from malloc, which they carve off into ob-
jects for their allocations. The distinguishing feature is
that only the entire region can be freed, but not individ-
ual objects.

Region-based allocators by themselves are not resis-
tant to use-after-free, since the blocks from malloc may
be reused, but they provide temporal memory safety
when the underlying malloc/free is protected by a

13Technicality: memcached lazily expires entries, checking the
timestamp only during the get operation. Thus, the overhead of de-
stroying shadows may be attributed to get operations.

lock-and-key scheme. Thus, there is no need to explicitly
identify region-based CMAs; merely wrapping glibc’s
malloc/free with Oscar suffices to provide temporal
memory safety for such programs i.e., Oscar would pro-
vide full use-after-free protection for a region-based al-
locator, without the need for any custom modifications.

Oscar’s performance is especially good for programs
that use region-based allocators: since there are few
malloc()s or free()s to instrument, and correspond-
ingly low memory or TLB pressure, Oscar imposes neg-
ligible overhead. Other classes of lock-and-key schemes
also provide full protection to programs with region-
based allocators, but they often have high overhead, since
they must instrument all pointer arithmetic operations
(and possibly pointer dereferences).

6 Discussion

Our results show that shadow-page-based schemes with
our optimizations have low overhead on many bench-
marks. From Table 1, we argue that changing the lock
is theoretically easier than revoking all the keys, and im-
plicit lock-and-key is better than explicit. Our experi-
mental results confirm that prediction: Oscar’s runtime
overhead is lower than CETS, DangNull, and FreeSentry
overall and on most benchmarks, and comparable to
DangSan (but with lower memory overhead for Oscar),
even though they all need source code while Oscar does
not.

6.1 Virtual Address Space Considered
Hard to Fill

A concern might be that Oscar would exhaust the 247B
=128TB user-space virtual address space, necessitating
reuse of addresses belonging to freed pages. This is
unlikely in common scenarios. Based on extrapolating
the CPU2006 benchmarks, it would take several days of
continuous execution even for allocation-intensive pro-
grams. For example, with perlbench, which allo-
cates 361 million objects (≈1.4TB of shadow virtual
pages; >99% of objects fit in one page) over 25 min-
utes, it would take 1.6 days (albeit less on newer, faster
hardware) to allocate 128TB. dealII, omnetpp and
xalancbmk would take over 2.5 days each, gcc would
take 5 days, and all other CPU2006 benchmarks would
take at least 2 weeks. We expect that most programs
would have significantly shorter lifetimes, and there-
fore would never exhaust the virtual address space. It
is more likely that they would first encounter problems
with the unreclaimed page-table memory (see Section 8).
Nonetheless, it is possible to ensure safe reuse of virtual
address space, by applying a conservative garbage col-
lector to old shadow addresses (note that this does not

13

affect physical memory, which is already reused with
new shadow addresses); this was proposed (but not im-
plemented) by Dhurjati and Adve.

Recently, Intel has proposed 5-level paging, allowing
a 57-bit virtual address space [20]; implementation of
Linux support is already underway [37]. This 512-fold
increase would make virtual address space exhaustion
take years for every CPU2006 benchmark.

6.2 Hardware Extensions

Due to the high overhead of software-based temporal
memory safety for C, some have proposed hardware ex-
tensions (e.g., Watchdog [30]). Oscar is fast because it
already utilizes hardware – hardware which is present
in many generations of x86 CPUs: the memory man-
agement unit, which checks page table entries. We
believe that, with incremental improvements, shadow-
page-based schemes will be fast enough for widespread
use, without the need for special hardware extensions.
For example, Intel’s Broadwell CPUs have a larger TLB
and also a second TLB page miss handler [7], which are
designed to improve performance for general workloads,
but would be particularly useful in relieving Oscar’s TLB
pressure. Intel has also proposed finer grained memory
protection [35]; if future CPUs support read+write pro-
tection on subpage regions, Oscar could be adapted to
one-object-per-subpage, which would reduce the num-
ber of shadows (and thereby TLB pressure).

6.3 Compatibility

Barring virtual address space exhaustion (discussed in
Section 6.1), Oscar will crash a program if and only if the
program dereferences a pointer after its object has been
freed. It does not interfere with other uses of pointers.
Unlike other lock-and-key schemes, page-permissions-
based schemes do not need to instrument pointer arith-
metic or dereferencing (Table 1).

Accordingly, Oscar correctly handles many corner
cases that other schemes cannot handle. For exam-
ple, DangNull/FreeSentry do not work correctly with en-
crypted pointers (e.g., PointGuard [21]) or with typecast-
ing from non-pointer types. CETS has false positives
when casting from a non-pointer to pointer, as it will ini-
tialize the key and lock address to invalid values.

Additionally, DangNull does not allow pointer arith-
metic on freed pointers. For example, suppose we allo-
cate a string p on the heap, search for a character, then
free the string:

char* p = strdup("Oscar"); // Memory from malloc

char* q = strchr(p, ’a’); // Find the first ’a’

free(p);

Computing the index of “a” (q - p == 3) fails with
DangNull, since p and q were nullified. It does work
with DangSan and FreeSentry (since they only change
the top bits) and with Oscar.

DangSan, DangNull and FreeSentry only track the lo-
cation of pointers when they are stored in memory, but
not registers. This can lead to false negatives: DangSan
notes that this may happen with pointers spilled from reg-
isters onto the stack during function prologues, as well as
race conditions where a pointer may be stored into a reg-
ister by one thread while another thread frees that object.
DangSan considers both issues to be infeasible to solve
(for performance reasons, and also the possibility of false
positives when inspecting the stack).

7 Related Work

7.1 Dhurjati and Adve (2006)
Our work is inspired by the original page-permission
with shadows scheme by Dhurjati and Adve [23]. Un-
like Dhurjati and Adve’s automatic pool allocation, Os-
car can unmap shadows as soon as an object is freed, and
does not require source code. Oscar also addresses com-
patibility with fork, which appears to be a previously
unknown limitation of Dhurjati and Adve’s scheme14.
They considered programs that fork to be advantageous,
since virtual address space wastage in one child will not
affect the address space of other children. Unfortunately,
writes to old (pre-fork) heap objects will be propagated
between parent and children (see Section 5.1), resulting
in memory corruption.

While Dhurjati and Adve did measure the runtime of
their particular scheme, their measurements do not let us
break down how much each aspect of their scheme con-
tributes to runtime overhead. First, their scheme relies
upon static analysis (Automatic Pool Allocation: “PA”),
and they did not measure the cost of shadow pages with-
out PA. We cannot simply obtain “cost of syscalls” via
“(PA + dummy syscalls) − PA”, since pool allocation af-
fects the cost of syscalls and cache pressure. Second,
they did not measure the cost of each of the four factors
we identified. For instance, they did not measure the in-
dividual cost of inline metadata or changing the memory
allocation method; instead, they are lumped in with the
cost of dummy syscalls. This makes it hard to predict
the overhead of other variant schemes, e.g., using one
object per physical page frame. Finally, they used a cus-
tom benchmark and Olden [34], which make it harder to
compare their results to other schemes that are bench-
marked with SPEC CPU; and many of their benchmark

14We inspected their source http://safecode.cs.illinois.

edu/downloads.html and found that they used MAP SHARED without
a mechanism to deal with fork.

14

http://safecode.cs.illinois.edu/downloads.html
http://safecode.cs.illinois.edu/downloads.html

 One object per
physical page frame

One object per shadow virtual page
(core technique of Dhurjati & Adve [D&A])

Physical memory overhead e.g., Electric Fence Vanilla Automatic pool allocation [D&A] Our work

User-space memory 0 – 4KB per object (page align) Low overhead (O(sizeof(void*)) per object)

Page table entry for live objects 1 page table entry per object

Page table entry for freed objs <Depends on implementation> 1 PTE per object 1 PTE per object in live pools 0 PTEs*

VMA struct for live objects 1 VMA struct per object

VMA struct for freed objects <Depends on implementation> 1 VMA struct per object None

No application source needed Yes Yes No; needs source + recompilation Yes

Compatible with fork() Yes No; changes program semantics Mostly

Table 2: Comparison with Dhurjati and Adve. Green and a tick indicates an advantageous distinction. ∗ Oscar unmaps
the shadows for freed objects, but Linux does not reclaim the PTE memory (see Section 8).

run-times are under five seconds, which means random
error has a large impact. For these reasons, in this work
we undertook a more systematic study of the sources of
overhead in shadow-page-based temporal memory safety
schemes.

To reduce their system’s impact on page table uti-
lization, Dhurjati and Adve employed static source-
code analysis (Automatic Pool Allocation) – to sepa-
rate objects into memory pools of different lifetimes,
beyond which the pointers are guaranteed not to be
dereferenced. Once the pool can be destroyed, they
can remove (or reuse) page table entries (and associ-
ated vm area structs) of freed objects. Unfortunately,
there may be a significant lag between when the object is
freed, and when its containing pool is destroyed; in the
worst case (e.g., objects reachable from a global pointer),
a pool may last for the lifetime of the program. Besides
being imprecise, inferring object lifetimes via static anal-
ysis also introduces a requirement to have application
source code, making it difficult and error-prone to de-
ploy. Oscar’s optimizations do not require application
source code or compiler changes.

We cannot directly compare Oscar’s overhead to Dhur-
jati and Adve’s full scheme with automatic pool alloca-
tion, since they did not report numbers for SPEC CPU.

Oscar usually keeps less state for freed ob-
jects: they retain a page table entry (and associated
vm area struct) for each freed object in live pools
– some of which may be long-lived – whereas Oscar
munmaps the shadow as soon as the object is freed (Table
2). Dhurjati and Adve expressly target their scheme to-
wards server programs – since those do few allocations
or deallocations – yet they do not account for fork or
custom memory allocators.

If we are not concerned about the disadvantages of au-
tomatic pool allocation, it too would benefit from our
optimizations. For example, we have seen that using
MAP PRIVATE greatly reduces the overhead for mcf and
milc, and we expect this benefit to carry over when com-
bined with automatic pool allocation.

7.2 Other Deterministic Protection
Schemes

The simplest protection is to never free() any memory
regions. This is perfectly secure, does not require appli-
cation source code (change the free function to be no-
op), has excellent compatibility, and low run-time over-
head. However, it also requires infinite memory, which
is impractical.

With DangNull [27], when an object is freed, all point-
ers to the object are set to NULL. The converse policy –
when all references to a region are NULL (or invalid), au-
tomatically free the region – is “garbage collection”. In
C/C++, there is ambiguity about what is a pointer, hence
it is only possible to perform conservative garbage col-
lection, where anything that might plausibly be a pointer
is treated as a pointer, thus preventing free()’ing of the
referent. This has the disadvantages of false positives
and lower responsiveness.

The Rust compiler enforces that each object can only
have one owner [4]; with our lock-and-key metaphor, this
is equivalent to ensuring that each lock has only one key,
which may be “borrowed” (ala Rust terminology) but
not copied. This means that when a key is surrendered
(pointer becomes out of scope), the corresponding lock-
/object can be safely reused. It would be impractical to
rewrite all legacy C/C++ software in Rust, let alone pro-
vide Rust’s guarantees to binaries that are compiled from
C/C++.

MemSafe [38] combines spatial and temporal mem-
ory checks: when an object is deallocated, the bounds
are set to zero (a special check is required for sub-object
temporal memory safety). MemSafe modifies the LLVM
IR, and does not allow inline assembly or self-modifying
code. Of the five SPEC 2006 benchmarks they used, their
run-times appear to be from the ‘test’ dataset rather than
the ‘reference’ dataset. For example, for astar, their
base run-time is 0.00 seconds, whereas Oscar’s is 408.9
seconds. Their non-zero run-time benchmarks have sig-
nificant overhead – 183% for bzip2, 127% for gobmk,
124% for hmmer, and 120% for sjeng – though this in-

15

cludes spatial and stack temporal protection.
Dynamic instrumentation (e.g., Valgrind’s memcheck

[3]) is generally too slow other than for debugging.
Undangle [15] uses taint tracking to track pointer

propagation. They do not provide SPEC results, but we
expect it to be even slower than DangNull/FreeSentry,
because Undangle determines how pointers are propa-
gated by, in effect, interpreting each x86 instruction.

Safe dialects of C, such as CCured [33], generally re-
quire some source code changes, such as removing un-
safe casts to pointers. CCured also changes the memory
layout of pointers (plus-size pointers), making it difficult
to interface with libraries that have not been recompiled
with CCured.

7.3 Hardening

The premise of heap temporal memory safety schemes,
such as Oscar, is that the attacker could otherwise re-
peatedly attempt to exploit a memory safety vulnerabil-
ity, and has disabled or overcome any mitigations such
ASLR (nonetheless, as noted earlier, Oscar is compati-
ble with ASLR). Thus, Oscar provides deterministic pro-
tection against heap use-after-free (barring address space
exhaustion/reuse, as discussed in Section 6.1).

However, due to the high overhead of prior temporal
memory safety schemes, some papers trade off protec-
tion for speed.

Many papers, starting with DieHard [13], approxi-
mate the infinite heap (use a heap that is M times larger
than normally needed) and randomize where objects are
placed on the heap. This means even if an object is
used after it is freed, there is a “low” probability that
the memory region has been reallocated. Archipelago
[28] extends DieHard but uses less physical memory, by
compacting cold objects. Both can be attacked by mak-
ing many large allocations to exhaust the M-approximate
heap, forcing earlier reuse of freed objects.

AddressSanitizer [36] also uses a quarantine pool,
though with a FIFO reuse order, among other techniques.
PageHeap [2] places freed pages in a quarantine, with the
read/write page permissions removed. Attempted reuse
will be detected only if the page has not yet been reallo-
cated, so it may miss some attacks. These defenses can
also be defeated by exhausting the heap.

Microsoft’s MemoryProtection consists of Delayed
Free (similar to a quarantine) and Isolated Heap (which
separates normal objects from “critical” objects) [8].
Both of these defenses can be bypassed [22].

Cling [11] only reuses memory among heap objects of
the same type, so it ensures type-safe heap memory reuse
but not full heap temporal memory safety.

7.4 Limiting the Damage from Exploits

Rather than attempting to enforce memory safety en-
tirely, which may be considered too expensive, some ap-
proaches have focused on containing the exploit.

Often the goal of exploiting a user-after-free vulnera-
bility is to hijack the control flow, such as by modifying
function pointers per our introductory example. One de-
fense is control-flow integrity (CFI) [10], but recent work
on “control-flow bending” [16] has shown that even the
ideal CFI policy may admit attacks for some programs.
Code pointer integrity (CPI) is essentially memory safety
(spatial and temporal) applied only to code pointers [26].
Code pointer separation (CPS) is a weaker defense than
CPI, but stronger than CFI. Both CPI and CPS require
compiler support.

CFI, CPS and CPI do not help against non-control
data attacks, such as reading a session key or changing
an ‘isAdmin’ variable [17]; recently, “data-oriented pro-
gramming” has been shown to be Turing-complete [24].

8 Limitations and Future Work

Oscar is only a proof-of-concept for measuring the over-
head on benchmarks, and is not ready for production, pri-
marily due to the following two limitations.

Reclaiming page-table memory takes some engineer-
ing, such as using pte free(). Alternatively, the Linux
source mentions they “Should really implement gc for
free page table pages. This could be done with a ref-
erence count in struct page.”15 Not all page-tables can
be reclaimed, as some page-tables may contain entries
for a few long-lived objects, but the fact that most ob-
jects are short-lived (the “generational hypothesis” be-
hind garbage collection) suggests that reclamation may
be possible for many page-tables. Note that the memory
overhead comparison in Section 4.3 already counts the
size of paging structures against Oscar, yet Oscar still
has lower overall overhead despite not cleaning up the
paging structures at all.

We did not encounter any issues with users’ mmap re-
quests overlapping Oscar’s region of shadow addresses
(or vice-versa), but it would be safer to deterministically
enforce this by intercepting the users’ mmap calls.

Currently, all threads share the same high-water mark
for placing new shadows, and this high-water mark is
protected with a global mutex. A better approach would
be to dynamically partition the address space between
threads/arenas; for example, when a new allocator arena
is created, it could split half the address space from
the arena that has the current largest share of the ad-
dress space. Each arena could therefore have its own

15http://lxr.free-electrons.com/source/arch/x86/include/asm/pgalloc.h

16

high-water mark, and allocations could be made inde-
pendently of other arenas. This could lower the overhead
of the memcached benchmarks, but not the SPEC CPU
benchmarks (which are all single-threaded).

Our techniques could be applied to other popular
memory allocators (e.g., tcmalloc), or more generally,
any custom memory allocator. The overheads reported
for SPEC CPU are based on instrumenting the standard
malloc/free only, providing a level of protection simi-
lar to prior work. Wrapping CMA’s provides more com-
prehensive protection, though the overheads would be
higher for a few benchmarks, as discussed in Section 5.2.

If we are willing to modify internal malloc, Os-
car can be selective in how to refresh (or batch-create)
shadows. For example, objects that are small enough
(among other conditions) to fit in internal malloc’s
“small bins” are reused in a first-in-first-out order, which
means that a speculatively created shadow is likely to be
used eventually. Other bins are last-in-first-out or even
best-fit, which makes their future use less predictable.
This optimization may particularly benefit xalancbmk
and dealII, for which the ordinary refresh shadow ap-
proach was a net loss.

We could take advantage of the short-lived nature of
most objects to experiment with placing multiple objects
per shadow; fewer shadows means lower runtime and
memory overhead. To further reduce memory overhead,
we could change internal malloc to place the canon-
ical address field at the start of each page, rather than
the start of each object. All objects on the page would
then share the canonical address field, which could dras-
tically reduce the memory overhead for programs with
many small allocations (e.g., soplex).

9 Conclusion

Efficient, backwards compatible, temporal memory
safety for C programs is a challenging, unsolved prob-
lem. By viewing many of the existing schemes as lock-
and-key, we showed that page-permissions-based pro-
tection schemes were the most elegant and theoretically
promising. We built upon Dhurjati and Adve’s core idea
of one shadow per object. That idea is unworkable by it-
self due to accumulation of vm area structs for freed
objects and incompatibility with programs that fork().
Dhurjati and Adve’s combination of static analysis par-
tially solves the first issue but not the second, and comes
with the cost of requiring source-code analysis. Our sys-
tem Oscar addresses both issues and introduces new op-
timizations, all without needing source code, providing
low overheads for many benchmarks and simpler deploy-
ment. Oscar thereby brings page-permissions-based pro-
tection schemes to the forefront of practical solutions for
temporal memory safety.

10 Acknowledgements

This work was supported by the AFOSR under MURI
award FA9550-12-1-0040, Intel through the ISTC for Se-
cure Computing, and the Hewlett Foundation through the
Center for Long-Term Cybersecurity.

We thank Nicholas Carlini, David Fifield, Úlfar Er-
lingsson, and the anonymous reviewers for helpful com-
ments and suggestions.

References
[1] AddressSanitizerLeakSanitizer. https://

github.com/google/sanitizers/wiki/

AddressSanitizerLeakSanitizer.

[2] How to use Pageheap.exe in Windows XP, Windows 2000, and
Windows Server 2003. https://support.microsoft.com/

en-us/kb/286470.

[3] Memcheck: a memory error detector. http://valgrind.org/
docs/manual/mc-manual.html.

[4] Ownership and moves. https://rustbyexample.com/

scope/move.html.

[5] Readme 1st CPU2006. https://www.spec.org/cpu2006/

Docs/readme1st.html#Q21.

[6] Threads and fork(): think twice before mixing them.
https://www.linuxprogrammingblog.com/threads-

and-fork-think-twice-before-using-them, June 2009.

[7] Advancing Moore’s Law in 2014! http://www.intel.

com/content/dam/www/public/us/en/documents/

presentation/advancing-moores-law-in-2014-

presentation.pdf, August 2014.

[8] Efficacy of MemoryProtection against use-after-free vulner-
abilities. http://community.hpe.com/t5/Security-

Research/Efficacy-of-MemoryProtection-against-

use-after-free/ba-p/6556134#.VsFYB8v8vCK, July
2014.

[9] Electric Fence. http://elinux.org/index.php?title=

Electric_Fence&oldid=369914, January 2015.

[10] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. TISSEC (2009).

[11] AKRITIDIS, P. Cling: A Memory Allocator to Mitigate Dangling
Pointers. In USENIX Security (2010), pp. 177–192.

[12] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS Performance Evaluation Review
(2012), vol. 40, ACM, pp. 53–64.

[13] BERGER, E. D., AND ZORN, B. G. DieHard: probabilistic mem-
ory safety for unsafe languages. ACM SIGPLAN Notices 41, 6
(2006), 158–168.

[14] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. Recon-
sidering custom memory allocation. ACM SIGPLAN Notices 48,
4S (2013), 46–57.

[15] CABALLERO, J., GRIECO, G., MARRON, M., AND NAPPA, A.
Undangle: early detection of dangling pointers in use-after-free
and double-free vulnerabilities. In International Symposium on
Software Testing and Analysis (2012), ACM, pp. 133–143.

[16] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GROSS, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In USENIX Security (2015), pp. 161–176.

17

https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://support.microsoft.com/en-us/kb/286470
https://support.microsoft.com/en-us/kb/286470
http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/mc-manual.html
https://rustbyexample.com/scope/move.html
https://rustbyexample.com/scope/move.html
https://www.spec.org/cpu2006/Docs/readme1st.html#Q21
https://www.spec.org/cpu2006/Docs/readme1st.html#Q21
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://elinux.org/index.php?title=Electric_Fence&oldid=369914
http://elinux.org/index.php?title=Electric_Fence&oldid=369914

[17] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-Control-Data Attacks Are Realistic Threats. In
USENIX Security (2005), vol. 5.

[18] CHEN, X., SLOWINSKA, A., AND BOS, H. Who allocated my
memory? Detecting custom memory allocators in C binaries. In
WCRE (2013), pp. 22–31.

[19] CHEN, X., SLOWINSKA, A., AND BOS, H. On the detection
of custom memory allocators in C binaries. Empirical Software
Engineering (2015), 1–25.

[20] CORPORATION, I. 5-Level Paging and 5-Level EPT.
https://software.intel.com/sites/default/files/

managed/2b/80/5-level_paging_white_paper.pdf, May
2017.

[21] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P.
PointGuard: protecting pointers from buffer overflow vulnerabil-
ities. In USENIX Security (2003), vol. 12, pp. 91–104.

[22] DEMOTT, J. UaF: Mitigation and Bypass. https:

//bromiumlabs.files.wordpress.com/2015/01/

demott_uaf_migitation_and_bypass2.pdf, January
2015.

[23] DHURJATI, D., AND ADVE, V. Efficiently detecting all dangling
pointer uses in production servers. In Dependable Systems and
Networks (2006), IEEE, pp. 269–280.

[24] HU, H., SHINDE, S., ADRIAN, S., CHUA, Z. L., SAXENA, P.,
AND LIANG, Z. Data-Oriented Programming: On the Expressive
of Non-Control Data Attacks. In IEEE S&P (2016).

[25] JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W.,
CHENEY, J., AND WANG, Y. Cyclone: A Safe Dialect of C. In
USENIX ATC (2002), pp. 275–288.

[26] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In OSDI
(2014), pp. 147–163.

[27] LEE, B., SONG, C., JANG, Y., WANG, T., KIM, T., LU, L.,
AND LEE, W. Preventing Use-after-free with Dangling Pointers
Nullification. In NDSS (2015).

[28] LVIN, V. B., NOVARK, G., BERGER, E. D., AND ZORN, B. G.
Archipelago: trading address space for reliability and security.
ACM SIGOPS Operating Systems Review 42, 2 (2008), 115–124.

[29] NAGARAKATTE, S. personal communication, June 2017.

[30] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC, S.
Watchdog: Hardware for safe and secure manual memory man-
agement and full memory safety. ACM SIGARCH Computer Ar-
chitecture News 40, 3 (2012), 189–200.

[31] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. CETS: compiler enforced temporal safety for
C. ACM Sigplan Notices 45, 8 (2010), 31–40.

[32] NAGARAKATTE, S. G. Practical low-overhead enforcement of
memory safety for C programs. University of Pennsylvania, 2012.
Doctoral dissertation.

[33] NECULA, G. C., MCPEAK, S., AND WEIMER, W. CCured:
Type-safe retrofitting of legacy code. ACM SIGPLAN Notices 37,
1 (2002), 128–139.

[34] ROGERS, A., CARLISLE, M. C., REPPY, J. H., AND HENDREN,
L. J. Supporting dynamic data structures on distributed-memory
machines. TOPLAS 17, 2 (1995), 233–263.

[35] SAHITA, R. L., SHANBHOGUE, V., NEIGER, G., EDWARDS, J.,
OUZIEL, I., HUNTLEY, B. E., SHWARTSMAN, S., DURHAM,
D. M., ANDERSON, A. V., LEMAY, M., ET AL. Method and
apparatus for fine grain memory protection, Dec. 31 2015. US
Patent 20,150,378,633.

[36] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND
VYUKOV, D. AddressSanitizer: A fast address sanity checker.
In USENIX ATC (2012), pp. 309–318.

[37] SHUTEMOV, K. A. [RFC, PATCHv1 00/28] 5-level pag-
ing. http://lkml.iu.edu/hypermail/linux/kernel/

1612.1/00383.html, Dec 2016.

[38] SIMPSON, M. S., AND BARUA, R. K. MemSafe: ensuring the
spatial and temporal memory safety of C at runtime. Software:
Practice and Experience 43, 1 (2013), 93–128.

[39] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In IEEE S&P (2013), IEEE, pp. 48–62.

[40] TICE, C., ROEDER, T., COLLINGBOURNE, P., CHECKOWAY,
S., ERLINGSSON, Ú., LOZANO, L., AND PIKE, G. Enforcing
forward-edge control-flow integrity in gcc & llvm. In USENIX
Security (2014).

[41] VAN DER KOUWE, E., NIGADE, V., AND GIUFFRIDA, C. Dan-
gSan: Scalable Use-after-free Detection. In EuroSys (2017),
pp. 405–419.

[42] YOUNAN, Y. FreeSentry: protecting against use-after-free vul-
nerabilities due to dangling pointers. In NDSS (2015).

18

https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://bromiumlabs.files.wordpress.com/2015/01/demott_uaf_migitation_and_bypass2.pdf
https://bromiumlabs.files.wordpress.com/2015/01/demott_uaf_migitation_and_bypass2.pdf
https://bromiumlabs.files.wordpress.com/2015/01/demott_uaf_migitation_and_bypass2.pdf
http://lkml.iu.edu/hypermail/linux/kernel/1612.1/00383.html
http://lkml.iu.edu/hypermail/linux/kernel/1612.1/00383.html

	Introduction
	Lock-and-Key Schemes
	Explicit Lock-and-Key: Change the Lock
	Explicit Lock-and-Key: Revoke the Keys
	Implicit Lock-and-Key: Revoke the Keys
	Implicit Lock-and-Key: Change the Lock
	Summary of Lock and Key Schemes

	Baseline Oscar Design
	Measurement Methodology
	Results

	Lowering Overhead Of Shadows
	Performance Evaluation
	Runtime Overhead Comparison
	Memory Overhead Comparison

	Extending Oscar for Server Applications
	Supporting shadows + fork()
	Custom Memory Allocators
	Case Study: malloc-like custom memory allocator in memcached
	Special case: Region-based allocators

	Discussion
	Virtual Address Space Considered Hard to Fill
	Hardware Extensions
	Compatibility

	Related Work
	Dhurjati and Adve (2006)
	Other Deterministic Protection Schemes
	Hardening
	Limiting the Damage from Exploits

	Limitations and Future Work
	Conclusion
	Acknowledgements

