Google

Google Security Engineering Technical Report
31 January, 2024

Al-powered patching: the future of automated

vulnerability fixes

Jan Nowakowski, Jan Keller

jnowakowski@google.com, jakl@google.com

As Al continues to advance at rapid speed, so has its ability to
unearth hidden security vulnerabilities in all types of software.
Every bug uncovered is an opportunity to patch and strengthen
code—but as detection continues to improve, we need to be
prepared with new automated solutions that bolster our abil-
ity to fix those bugs. That’s why our Secure Al Framework
(SAIF) [1]] includes a fundamental pillar addressing the need to
“automate defenses to keep pace with new and existing threats.”

This paper shares lessons from our experience leveraging Al
to scale our ability to fix bugs, specifically those found by sani-
tizers in C/C++, Java, and Go code. By automating a pipeline to
prompt Large Language Models (LLMs) to generate code fixes
for human review, we have harnessed our Gemini [2]] model
to successfully fix 15% of sanitizer bugs discovered during
unit tests, resulting in hundreds of bugs patched. Given the
large number of sanitizer bugs found each year, this seemingly
modest success rate will with time save significant engineer-
ing effort. We expect this success rate to continually improve
and anticipate that LLMs can be used to fix bugs in various
languages across the software development lifecycle.

LLMs vs. sanitizer bugs

LLMs are well known for their ability to produce language
based on patterns and training. Since code is a type of language,
LLMs have also proven adept at tackling coding problems. In
this vein, we aimed the generative abilities of LLMs at memory
safety bugs that were found by sanitizers, a class of tools first
introduced by Google in 2012 [3]] and now widely used across
the industry to test code as it runs.

While Google has promoted the shift to memory-safe lan-
guages, like Rust, that are more secure by design, many unde-
tected vulnerabilities persist in legacy code and continue to be
uncovered by sanitizers. These tools catch elusive bugs that
traditional pre-commit testing misses, thereby revealing issues
in production code that could lead to crashes, data corruption,
and even exploitable vulnerabilities that allow an attacker to

execute arbitrary code.

Since the bugs are uncovered after code is merged, sanitizer
testing creates a queue of bugs that are not blocking immedi-
ate forward progress, which means their median time-to-fix is
longer than bugs detected before code is merged. Any large
software company will have an ongoing queue of these bugs
to address, and continued improvements to Al-powered bug-
finding [4] will only exacerbate this issue, making Al-powered
bug-fixing essential to keep pace.

To harness LLMs to generate the code needed to fix these
bugs, we built an automated bug-finding-to-fixing pipeline.

An LLM-powered pipeline
An end-to-end solution needs a pipeline to:

Find vulnerabilities

Isolate and reproduce them

Use LLMs to create fixes

Test the fixes

Surface the best fix for human review and submission

NS

Our Al-powered pipeline to automate vulnerability fixing

© ) ) o)

1 2 3 4 5

Find Use LLMs
vulnerabilities to create fixes

Surface the best fix
for human review
and submission

Isolate and Test the fixes

reproduce them

Figure 1: Al-powered patching pipeline

Large companies generate enough sanitizer bugs to justify
the effort to automate this process, but each step could also
be carried out manually in smaller contexts. The following


mailto:jnowakowski@google.com, jakl@google.com

Google

discussion addresses our approach and points out alternative
considerations for other situations.

Step 1: Finding sanitizer bugs

The process of detecting and reproducing sanitizer bugs is
environment-specific, but for the purposes of this LLM pipeline,
there are two main considerations:

* Preserve all information from the test run, particularly the
stack trace, as it might be useful for prompting the LLM
to determine the fix.

* Ensure the service can run easily reproducible tests—
both to catch non-deterministic bugs that need multiple
attempts to surface, and so that tests can be rerun to be
sure an error hasn’t already been fixed if there’s a delay
between detection and a fix attempt.

At Google, our detection service is language agnostic and
runs during off-peak hours to find sanitizer bugs in all C/C++,
Java, and Go projects.

Step 2: Reproducing and isolating bugs

LLMs do not have infinite “memory,” known as context length,
so the prompt for the LLM is limited in length. That means we
needed to isolate the specific code that needs fixing to create
a concise prompt for the LLM. Since most files fit within our
LLM’s context length limits, we chose to isolate relevant code at
the file level, choosing the most likely file to need modification
and including its entire contents in the prompt. If developers
do not have access to a model with sufficient context length,
prompts could instead use smaller pieces of code such as single
functions or class definitions.

The code that triggers the sanitizer is not necessarily the
same code that needs to be modified to correct the error, so to
determine the file to isolate, we initially tried a simple heuristic
of selecting the first file on the stack trace that is in the same
directory as the test file. We tested whether we could ask the
LLM itself to tell us which file from the stack trace should be
fixed based on the sanitizer error, but that did not work as well
as we had hoped (though with proper training, an LLM could,
in principle, do this successfully).

In the end, we chose to train a small, custom ML model to
select which file to fix, using thousands of similar bugs from
the past as training data. That model returns a score for each
file indicating the likelihood that the file contains the code that
needs to be modified to fix the error. This score determines the
fix strategy: which files to prompt the LLM to try to fix, and in
which order and permutations.

Al-powered patching

Step 3: Generating fixes with LLMs

From our experience, it was not worth spending lots of time
on prompt engineering for individual bugs in this context—
the results weren’t significantly different given the effort and
resources needed. We used several slightly different prompts
depending on the LLM queried, but all of them followed this
structure:

You are a Senior Software Engineer tasked
with fixing sanitizer errors. Please fix them.
... code

... LOC pointed to by the stack trace
... code

Figure 2: Example prompt used in the experiment

In particular, we found this prompt to return better results
than the approach of: “Here is the stack trace, here is the code,
please fix.” At the moment, it seems difficult for LLMs to
connect the dots between the code and stack trace, since the
latter has function names that could be abstract; the models
performed better when shown exactly where something went
wrong.

But which model?

We began our experiment using a base LLM trained on text
and code, and a smaller, coding-specific T5X [5]-based model
trained on different tasks, which achieved around 5% success-
ful fixes as a baseline. After exploring several options, we
found the best results were generated by a Gemini-based model
trained on a number of coding tasks, including a training dataset
with several thousand examples of previous sanitizer fixes. This
model, which is similar in capabilities as the publicly available
Gemini Pro [6], enabled us to automatically fix 15% of vulner-
abilities in the experiment, and we look forward to pushing this
number even higher.

Other large corporations likely also have internal code-
specific models, while smaller companies can use the T5X
framework, Parameter Efficient Prompt Tuning [7]] of existing
LLMs, or publicly. available LLMs such as Gemini (available
via Bard [8]], Google AI Studio [9], and Google Cloud Vertex
AI [10]). For those that do not have resources or training data
to fine-tune an LLM to their codebase, an option is to use few-
shot prompting [[11] to show the model how a. few similar bugs
were fixed in their code in the past. With the speed at which



Google

the field is progressing, a primary consideration is building a
pipeline that easily incorporates new models—for example, by
providing the model’s name as a command line parameter.

Step 4: Testing the LLM-generated fixes

To test the LLM’s solutions, we needed an automated way to
create commits from their generated output in order to run au-
tomated tests on the modified code. LLMs, especially those
not trained for coding, often add extraneous details to the code
they produce. While sometimes helpful, such as for commit
messages, these details can complicate the process of gener-
ating and testing a patch. To address this issue, you can use
few-shot prompting to give the LLM examples of your desired
output structure, and/or request that generated code is enclosed
by special symbols to help filter for the correct lines.

In addition, since LLMs may not output the entire file or
function after modifying it, we needed to locate the insertion
point for the code modifications. One way to do this is to
prompt the LLM to include several lines of code before and
after the modification, so simple text analysis can match the
right location based on the unchanged lines.

With these two methods, the LLM’s generated solution re-
sults in an automated commit that’s ready for testing and san-
itizer checks to catch coding errors or potential Al hallucina-
tions. Based on these tests, we found that different models
performed better on different types of errors, so we constructed
the pipeline to prompt several models sequentially, giving each
model a few attempts before moving on to the next model if no
solution was found.

Step 5: Surfacing the best fixes for human
review and approvals

These tests and sanitizer checks are only a first step to ad-
dress the possibility of hallucinations. At the current state of
technology, an ML-generated fix—even if it passes all of the
tests—must be reviewed by humans. For additional safety, we
employed a double human filter on top of the automated analy-
sis: in the first round, we rejected approximately 10-20% of the
generated commits as either false positives that did not actually
fix the problem or bad solutions that reduced the code quality.
We then sent the remaining generated commits to code owners
for final validation.

Approximately 95% of the commits sent to code owners
were accepted without discussion. This was a higher acceptance
rate than human-generated code changes, which often provoke
questions and comments. This could be in part because we
had thoroughly filtered out bad suggestions by the time they
reached the final review stage. But we also want to highlight
the possibility that reviewers may have had greater trust in

Al-powered patching

the solutions because they were generated by technology. To
address this possibility, developers should be made aware of
the potential errors LLMs can produce and be instructed to
evaluate the suggestions rigorously.

For example, humans sometimes add temporary code
changes with “TODOs” to return to after addressing higher
priority tasks. If these examples are not filtered from the train-
ing data, the LLM will learn those patterns and suggest similar
provisional fixes. We also saw generated suggestions where the
code was “fixed” by removing a test that was failing. In another
example, the suggested solution made the code run sequentially
and added a comment specifying, “cannot run in parallel be-
cause it causes a data race.” As with anything else, we can
improve the quality of LLM-generated fixes by improving the
quality of the sample solutions used for training.

Results

At the time of writing, we’ve accepted several hundred of these
LLM-generated commits into Google’s codebase, with another
several hundred in the process of being validated and submitted.
Instead of a software engineer spending an average of two hours
to create each of these commits, the necessary patches are now
automatically created in seconds.

Perhaps unsurprisingly, we’ve seen the best success rate in
fixing errors stemming from the use of an uninitialized value,
a relatively simple fix. But the LLM-generated fixes didn’t
target only simple errors. They also, for example, effectively
initialized matrices and images using the appropriate library
methods. In order of the highest fix success rate, the most
commonly fixed sanitizer errors fell into four types:

1. Using uninitialized values

2. Data races

3. Buffer overflows

4. Temporal memory errors (e.g. use-after-scope)

Though a 15% success rate might sound low, many thou-
sands of new bugs are found each year, and automating the
fixes for even a small fraction of them saves months of engi-
neering effort—meaning that potential security vulnerabilities
are closed even faster. We expect improvements to continue
pushing that number higher.

Looking ahead

While these initial results are promising, this is just a first
step toward a future of Al-powered, automated bug patching.
We’re currently working on expanding capabilities to include
multi-file fixes and to integrate multiple bug sources into the
pipeline.



Google

The potential extends beyond just sanitizer fixes. This tech-
nology can be applied to any bug caught after code submis-
sion, whether unearthed by fuzzing, triggered by a dependency
change, or turned up by any process that produces an analyzable
error, such as a stack trace. This means bugs across the soft-
ware lifecycle will become fair game for not only automated
detection, but also automated patching using LLMs to generate
the fixes. As described in the SAIF implementation guide [[12],
using Al to automate time-consuming tasks, reduce toil, and
speed up defensive mechanisms is an important part of building
a safer Al future.

If you’re interested in trying a similar pipeline in your organi-
zation, you can start by manually prompting an available LLM
to fix a sanitizer error and using the model’s suggestions as a
starting point for the fix. If you have enough bugs to warrant
building an automated pipeline, each step described above can
be gradually converted from manual entry to an automated step,
including fine-tuning an LLM to your specific codebase. We’re
eager to see what the future holds for unlocking the potential for
Al to create end-to-end, automated bug detection and patching
solutions.

Acknowledgements

Thank you to Ilya Cherny and Antoine Baudoux who worked
with the authors to implement this pipeline.

References
[1] https://safety.google/cybersecurity-advancements/saif|
[2] https://deepmind.google/technologies/gemini.
[3] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker.
https://www.usenix.org/system/files/conference/atc

12/atc12-final39.pdf, 2012.

[4] https://security.googleblog.com/2023/08/ai-powered-£
uzzing-breaking-bug-hunting.html.

[5] https://github.com/google-research/t5x.

[6] https://deepmind.google/technologies/gemini/#capabilit

ies,

[7]1 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for
parameter-efficient prompt tuning. https://arxiv.org/abs/2104.0
8691, 2021.

[8] http://bard.google.com.
[9] https://makersuite.google.com.
[10]

https://cloud.google.com/vertex-ail

(11]

Tom B. Brown et al. Language models are few-shot learners. https:
//arxiv.org/abs/2005.1416%, 2020.

Al-powered patching

[12] https://services.google.com/fh/files/blogs/google_secu
re_al_framework_approach.pdf.

Jan Nowakowski is a Machine Learning Software Engineer and Jan Keller is
a Technical Program Manager. Both work in the field of machine learning for
security.


https://safety.google/cybersecurity-advancements/saif
https://deepmind.google/technologies/gemini
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://github.com/google-research/t5x
https://deepmind.google/technologies/gemini/#capabilities
https://deepmind.google/technologies/gemini/#capabilities
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
http://bard.google.com
https://makersuite.google.com
https://cloud.google.com/vertex-ai
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://services.google.com/fh/files/blogs/google_secure_ai_framework_approach.pdf
https://services.google.com/fh/files/blogs/google_secure_ai_framework_approach.pdf

	LLMs vs. sanitizer bugs
	An LLM-powered pipeline
	Step 1: Finding sanitizer bugs
	Step 2: Reproducing and isolating bugs
	Step 3: Generating fixes with LLMs
	But which model?

	Step 4: Testing the LLM-generated fixes
	Step 5: Surfacing the best fixes for human review and approvals

	Results
	Looking ahead
	Acknowledgements

