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Abstract—In this paper we analyze the reliability and 

availability features in several commodity chip multiprocessors
(CMPs) and find that they have numerous single points of failure. 
Failures in some system components, e.g., interconnect, cache 
controller and memory controller logic, leave CMPs susceptible to 
error even if the computation is dual modular redundant (DMR) 
or triple modular redundant (TMR). Furthermore, even though 
some replicated resources are present in CMPs, they can not be 
used effectively for providing system-level protection because of 
the lack of fault isolation in shared components.  We describe a 
CMP design that can provide system-level error protection.  The 
proposed design provides mode configuration features in 
hardware to tolerate errors in any component.  The proposed 
CMP has two modes: a high performance mode where most of the 
resources are applied towards performance and a high-
availability mode that uses resources, in a redundant manner, to 
provide tolerance against errors.  Our design requires minimal 
hardware changes and can retain the commodity economics and 
performance advantages of current CMPs.  

Index Terms— Availability, Computer fault tolerance, 
Reliability, System Recovery.

I. INTRODUCTION

echnology scaling is likely to make future processors more 
susceptible to hardware errors. Permanent or intermittent 

hardware faults, caused by defects in the silicon or 
metallization of process package and wear out over time, lead 
to “hard faults”.  Transient faults (or “soft errors”), which 
cause random bit values to change erroneously, may be caused 
by electrical noise (e.g., crosstalk) or external radiation (e.g., 
alpha radiation from impurities). Recent studies [1] [2] [3] 
have forecast between a two to nine-orders-of-magnitude 
increase in logic circuits’ soft error rates.

Continued technology scaling and diminishing 
uniprocessor power efficiency have also led to the emergence 
of Chip Multiprocessors (CMPs) as the predominant hardware 
paradigm. Recent and proposed microprocessor chip designs 
from all the key vendors (Intel, IBM, SUN, and AMD) are 
CMPs. One of the main benefits of CMPs is that on-chip 
components can be easily shared to improve resource 
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utilization. Common examples are multi-threaded cores, 
shared last level caches, and shared I/O interfaces.  The Sun 
Niagara includes eight multi-threaded cores, with a shared 
second-level cache, and integrated memory controllers and I/O 
interfaces [4].  Future designs are likely to have even more 
cores on a single chip with greater levels of system integration 
and resource sharing than in previous generations (e.g., Intel’s 
demonstration of an 80-core processor at Intel Development 
Forum, 2006).  

Increased integration and sharing in a CMP exacerbates 
the soft error problem, however, due to the additive effect of 
component FIT rates and potentially larger impact from a 
single error. A typical solution for handling soft errors in high 
availability systems is to replicate the computation and 
compare the results to detect an error [16, 29] and then do 
either backward or forward error recovery [30].  This method 
is based on the key assumption that the redundant computation 
threads are “fault-isolated” and a single soft error does not 
affect multiple redundant threads.  However, shared resources 
in CMPs pose a problem because they may violate this 
assumption unless special steps are taken.  

In this paper, we examine the fault isolation problem in a 
CMP for an illustrative high availability system architecture 
similar to the NonStop Advanced Architecture [16].  The first 
part of the paper characterizes recent CMP designs from key 
vendors and shows that current commodity CMP designs do 
not satisfy the “fault isolation” assumption and are susceptible 
to errors in certain system components – interconnect, cache 
controller and memory controller logic – even if a computation 
is performed in a dual modular redundant (DMR) or triple 
modular redundant (TMR) mode.  The point is that even 
though replicated cores are present in a single CMP, they are 
not sufficient for providing system level fault protection 
because of the lack of fault isolation in their shared 
components. For example, even if the cores in Intel Xeon MP 
[8] are used for redundant computation, a transient fault in the 
shared interface to the front side bus or the L2 cache bank 
controller logic can cause an undetected error.  

In the second part of the paper, we describe ongoing work 
on a new architecture that allows for configurable isolation to 
create “fault zones” with strict isolation properties that 
software can then intelligently allocate in order to satisfy
availability requirements.  The proposed CMP has two modes.  
A high performance mode applies most of the resources 
toward performance and can be used by applications that can 
tolerate soft errors.  A high-availability mode uses resources in 
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a redundant manner to provide tolerance against soft errors.  
“On demand” configurable isolation enables a high volume 
processor to provide high soft error coverage for mission 
critical applications with very low cost.  Mode reconfiguration 
takes place at boot time in most systems, although other 
alternatives are possible.  Our proposed design requires 
minimal hardware changes and retains the commodity 
economics and performance advantages of current CMPs.  As 
an added benefit, configurable isolation can also be used to 
reconfigure the system for graceful degradation in the event of 
hard faults or for product binning during testing.

II. RELIABILITY FEATURES IN COMMODITY CMPS 

We analyzed the  reliability and availability features 
of five commodity CMP architectures from key vendors –
AMD Opteron [8], SUN Niagara [4], Intel Xeon [10], Intel 
Montecito [11] and IBM POWER [12] [13].  We divided each 
of the CMPs into different components and then characterized 
whether they satisfied key requirements for fault tolerance as 
specified by White et al. [14]: redundancy, fault isolation, fault 
detection and online repair.  For brevity, we present a brief 
summary of the analysis here. 
Cores – Inside the core, transient fault detection is mainly 
restricted to register files.  An exception is Montecito where 
there is built-in lockstep support with internal soft error 
checking capabilities.  There is no fault isolation in Opteron, 
Xeon and Niagara; an error originating in any core can 
propagate to all the other cores through the shared system 
components. Power5 and Montecito provide some degree of 
isolation for cores in different logical or electrical partitions, 
respectively.  In summary, all the commodity CMP 
architectures are vulnerable to soft errors, except Montecito in 
its lockstep configuration.
Caches – Most architectures are resilient to errors in the cache 
array and provide ECC or parity checking at all cache levels.  
However, Opteron and Xeon can not tolerate errors that are 
not correctable by ECC alone, for example multi-bit errors.  
Niagara, Power5 and Montecito have more redundancy and 
fault isolation and can tolerate important classes of multi-bit 
errors.  These CMPs share at least one level of the cache 
hierarchy either across cores or contexts.  However, none of 
the commodity CMPs can tolerate errors in the associated 
cache circuitry or interconnect.  For example, if all L2 cache 
banks are shared, and addresses are interleaved among the 
banks, a transient failure in the cache controller state machine 
could lead to erroneous setting of a coherence bit.  Note that 
ECC on the coherence state bit would not prevent this error 
because the fault is in the cache controller logic and not the 
actual coherence bit.  Such an error could affect an entire 
socket. 
Memory – Memory is perhaps the most fault tolerant resource 
in commodity CMP systems.  All the conditions for fault 
tolerance are satisfied in the memory arrays.  This also reflects 
the fact that historically memory is the most error prone 
component in a system.  All the architectures have 

sophisticated techniques like chip kill, background scrubbing, 
and DIMM sparing to tolerate failures.  However, there is no 
tolerance to failures in memory access control circuitry. A 
failure in any memory controller or anywhere in the 
interconnect would affect all the cores.  For example, in a 
design like the Xeon, an error in one memory controller in the 
shared NorthBridge can affect multiple cores.  On the other 
hand, in Opteron the failure of an on-chip memory controller 
can be potentially isolated to the cores in that chip. 

In summary, we found that existing transient fault 
detection is limited to storage arrays such as register files, 
cache and memory arrays.  Also, the lack of system level fault 
isolation is the biggest problem.  Shared components do not 
have adequate fault isolation because a fault in one of the 
shared components can affect all the cores on the chip.  This is 
true even if programs are being run in a Dual Modular 
Redundant (DMR) or Triple Modular Redundant (TMR) 
configuration.  Instead it is preferable to have architectures 
where the effects of faults can be isolated to individual threads.  
CMP designs should provide the ability to tradeoff high error 
coverage with high performance.

III. PROPOSED CMP DESIGN  

In this section we describe a CMP design with features for 
providing system-level soft error protection.  These features
allow the system to be configured into two modes: a high 
performance mode and a high availability mode.  In the high 
performance mode, the CMP resources are shared for 
maximum utilization. In high availability mode, the degree of 
resource sharing is configured to provide selective isolation.  
This allows the resources to be used in a redundant manner
and to prevent correlated errors. Mode reconfiguration can 
take place at boot time in most systems, though other 
alternatives using ACPI [29] are possible.

Although the proposed method can be implemented in 
various CMP designs, we use one representative system as an 
illustrative example.  Figure 1(a) shows a conventional CMP 
architecture with 8 cores (P0...P7) and private level-1 caches, 
an 8-way banked shared level-2 cache, 4 memory controllers, 
and coherent links (such as Hypertransport [8]) to other 
sockets or I/O hubs.  For this discussion we assume a 
bidirectional ring interconnect between cores and banks.  (The 
proposed techniques can also apply to more complex 2-D 
arrangements such as meshes).  Although a classic “dance 
hall” layout is shown for simplicity (with all the cores on one 
side and the shared cache banks on the other side), designs 
with banks and cores interleaved are also within the scope of 
the proposed method.  

A very straightforward approach is a design with a 
number of fully independent microprocessors fabricated on the 
same die (Figure 1(b)).  Each has its own memory controller 
and I/O connections.  For high availability, sets of independent 
cores are configured into a DMR or TMR mode.  However 
this architecture has a number of disadvantages.  Hard 
partitioning of cache resources (inhibiting any sharing) when 



in the high performance mode significantly reduces overall 
system performance [5], and this method has not been used in 
proposed CMP designs [4, 33, 34].  Similarly, valuable pin 
bandwidth is inefficiently used. This makes such a design 
unattractive for high volume applications that have lower 
availability requirements, and it reduces the independent-
microprocessor approach to a niche design that would be 
economically unfeasible.

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

(a)

B0

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P0
L1 D1

B1

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P1
L1 D1

B7

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P7
L1 D1

B0

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0
L1 D1

B1

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P1
L1 D1

B7

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P7
L1 D1

(b)
Figure 1. CMP architecture designs. (a) Baseline 
conventional system architecture and (b) A system with 
full isolation. 

We propose the addition of simple hardware to the 
baseline CMP to enable in-field boot time configuration of the 
system. This provides the combination of enhanced fault 
isolation in a high availability configuration and negligible 
performance loss when in a high performance, non-fault 
tolerant configuration.  A block diagram of the proposed 
organization is shown in Figure 2.  The components are “color 
coded” where color domains act as units of fault containment. 
Hardware is configured to limit errors caused by a fault to a 
single color domain. Any error in a color-shared component 
affects computation only on the cores mapped to that color and 
prevents correlated errors that are undetectable by voting with 
a redundant computation in another color.  To ensure that an 
error in one color domain does not propagate to all the other 
color domains on the CMP, we propose “configurable 
isolation” for interconnect, caches and memory controllers. 
We define configurable isolation as techniques that allow the 
system to be configured with different levels of isolation by 
controlling resource sharing.  

The proposed architecture offers various capabilities.  The
number of colors (isolation domains) is not restricted to two 
and can be increased either to provide more redundancy or 
smaller granularity of fault containment.  For example, three

colors can be used with a voter in a Triple Modular Redundant 
(TMR) configuration.  Furthermore, the number of colors need 
not be static, and if the level of protection required changes 
then the number of colors can be reconfigured by system 
software.  The proposed approach is suitable for integration 
both in Backward Error Recovery systems (in a DMR 
configuration in concert with check pointing solutions similar 
to Revive [19], SafetyNet [20] or [21]), or Forward Error 
Recovery systems (in a TMR configuration).  The proposed 
design not only provides fault isolation without losing the 
benefits of sharing, it also offers the ability to reconfigure in 
the event of hard faults for graceful degradation. 
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Figure 2. Proposed architecture (two color configuration)

Below, we consider the application of the proposed 
method to implement a NonStop-like DMR [16] configuration
as an illustrative example.  Resources from two colors define a 
DMR process pair, with computations in the red domain 
replicated in the green domain when higher availability is 
required.  The microprocessor can be reconfigured to the 
higher-availability configuration by setting a small number of 
control points in the design.  This allows systems to support 
“availability on demand” in-field.

Note that this capability only requires small changes to the 
ring and bank addressing, while the rest of the CMP is 
unchanged.  The ring interconnect in Figure 2 has been cut 
apart and reconfigured to create two logically independent 
rings by activating cross links.  Because the ring is expected to 
be placed down the center of the chip, the cross links should 
be less than a millimeter long, and their activation requires the 
insertion of a multiplexer at the input of a ring interface 
incoming data port.  Thus cross links and input multiplexers 
are a small additional fixed cost in terms of area and power, 
which does not significantly increase the cost of the design in 
cases were higher availability is not desired.  The cross-links 
are also expected to be shorter than the ring segments between 
cores.  Thus the cross-connects should be able to operate at 
least as fast as a core to core or bank to bank ring segment.  In 
combination with partitioning of the inter-core interconnect, in 
high availability mode the interleave among level 2 cache 
banks uses one fewer bit, interleaving references among half 
the banks, keeping references within the same color.

In high availability configurations, voters that compare the 
redundant computation can be implemented in a number of 
different ways.  For highest availability, voters can be 



implemented in I/O hubs connected to a red and green link 
adapter, similar to the hardware voters in the Nonstop 
Advanced Architecture [16].  For lower-cost lower availability 
solutions, the voter can be implemented in software 
hypervisors that communicate between the colored partitions 
through the I/O system [18]. Similar to the NonStop system, 
physical memory can be partitioned between the logical 
processors using unique virtual to physical memory mapping. 

IV. EVALUATION AND RESULTS

We evaluated the impact of hard faults and subsequent 
reconfiguration on the computing capacity of the system over 
its lifetime. We compare three architectures: 1) shared -- a 
completely shared system similar to proposed CMPs (Figure 
1a), 2) fully isolated -- a completely private system with full 
isolation (Figure 1b), and 3) configurable isolation -- the 
proposed architecture with reconfiguration and configurable 
isolation (Figure 2).  All three are assumed to be in a DMR 
configuration.

Because the proposed architecture does not contain any 
modification to the cores, the most important workload 
characteristic is the size of the working set and its effect on 
cache behavior.  We constructed three workloads with large, 
mixed, and small memory footprints using SPEC benchmarks.  
Over the course of a simulation run, as cores become unusable
due to hard faults, benchmarks are dropped from the 
workloads, reflecting the loss of computing capability.  

The fault model is based on state of the art technology and 
is derived from detailed (confidential) models from processor 
vendors. The fault model was calibrated by HP-internal fault 
analysis experiments.  The fault data includes failures in time
(FIT) rates and distributions for hard and soft errors per 
component.  The system is divided into five different fault 
zones (that represent the granularity of reconfigurations):   
core and L1 cache, L2 circuitry, L2 banks, memory controller 
circuitry, and link controller.  

On the shared system any hard fault leads to system 
failure.  This means that after a failure, the throughput of such 
a system goes to zero for all workloads.  On the fully isolated
system any single fault leads to the loss of throughput from a 
process pair in a DMR configuration.  For example, even a 
fault in the bank associated with a core leads to that core being 
unusable.  On a configurable isolated system, a reconfigurable 
fault (for example, in a memory controller) leads to loss of
performance over all the process pairs, but not the loss of a 
workload.  Only when a core fails, a benchmark (both copies) 
is dropped from the workload.  The entire system becomes 
unusable in the configurable isolated architecture only when 
the penultimate component of any type fails (for example, 7th
core, 3rd memory controller, 7th cache bank in a system 
similar to the baseline). 

To make evaluation feasible, we use a two phase 
simulation methodology for simulating the performance of 
different processor configurations for various fault arrival 
scenarios.  First, we use a full system simulator to exhaustively 

simulate the possible system configurations (using more than 
one machine year) and compute the throughput of all 
configurations (subject to policies described below).  Second, 
we perform Monte Carlo simulation using a detailed 
component-level fault model.  By running the Monte Carlo 
simulation for 10,000 runs we simulate fault injection in a total 
of 10,000 systems with each run comprising 100,000 simulated 
hours (approximately 11 years).

Large Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

(a)

Mixed Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

(b)

Small Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

(c)
Figure 3.  Normalized performance from Monte-Carlo 
hard fault simulation over an 11-year period of time.  
Results for three architectures – a baseline conventional 
system with full sharing, the proposed system, with 
configurable isolation, and a system with full isolation. 
Evaluated workloads include a) large memory workload, 
b) mixed memory workload and c) small memory 
workload.



All simulations were done using a full system x86/x86-64 
simulator (based on AMD SimNowTM) which can boot an 
unmodified Windows or Linux OS and execute complex 
application programs.  More details about the simulator are in 
Falcon et al [31].  We use a timing model with a memory 
hierarchy similar to that supported by an AMD Opteron 280 
processor, except with smaller L2 cache sizes to match the 
working set of the workloads.  More details regarding the 
simulation methodology can be found in Aggarwal et al [32].

Figures 3(a), (b), and (c) summarize the baseline results 
for the large, mixed, and small memory workloads,
respectively.  As expected, the shared system performs the 
worst, with a dramatic degradation in average performance 
(30-35%) during the first two years, and degradation close to 
50% by the end of five years.  The fully-isolated configuration 
is much more resilient to failures and provides more gradual 
performance degradation.  Over five years, the net 
performance loss is only 10-15%.  The results for the large 
memory workload (Figure 3a) are particularly interesting.  
Here, the completely isolated configurations, by virtue of 
having private caches, initially under-perform the shared 
configuration.  However, compared to the fully-shared system, 
the fully-isolated system becomes performance competitive at 
around 2 years (at the crossover point in the curves in Figure 
3a).

The configurable isolation system consistently achieves 
the best performance across all the workloads. With 
configurable isolation, resources can still be shared within a 
given fault zone.  Additionally, the ability to dynamically 
repartition the resources leads to the best graceful degradation 
across all three workloads. 
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Figure 4.  Number of normalized component replacements 
as a function of performance. The three architectures 
(mixed workload) are compared, assuming components are 
replaced (a) when performance dips below 90%, (b) when 
performance dips below 75%, and (c) when performance 
dips below 50%.  

Figure 4 provides an alternate view of the benefits of 
configurable isolation.  For each of the three approaches, the 
number of component replacements is shown.  It is assumed 
that the system continues to stay operational until the 

performance dips below a certain threshold after which the 
entire multi-core component is replaced (and the performance 
is re-initialized to that of the no-fault configuration).  The 
simulation then continues for the remainder of the 100,000 
hours with the new system.  We consider three cases where the 
performance threshold is set to (a) 90% (b) 75%, and (c) 50% 
of initial performance.  The total number of replacements 
(across 10000 Monte Carlo runs) for fully isolated and 
configurable isolated system is normalized with respect to the 
total number of replacements for a fully shared system.  In a 
fully shared system every fault leads to system replacement 
because the performance drops to 0.  These results show that 
the architecture with configurable isolation dramatically 
reduces the need to replace components across all three 
workloads irrespective of the performance thresholds.

V. FUTURE WORK

There are several enhancements to the configurable 
isolation architecture that provide additional benefits.  For 
example, as discussed earlier, we assumed a single process per 
core.  Some of the performance degradation from losing a 
component in a given fault zone can potentially be mitigated 
by overloading processes on remaining components in that 
fault zone.  Similarly, when remapping fault zones, we assume 
arbitrary remapping of the fault zones and assignment of 
processes to cores.  One can conceive of using more advanced 
policies that are aware of workload requirements and latency 
effects to improve performance.  For example, prior work on 
heterogeneous multi-core architectures has demonstrated 
significant benefits from intelligently mapping workloads to 
available hardware resources.  

An interesting advantage of configurable isolation is the 
ability to reconfigure dynamically the system availability 
guarantees.  The proposed approach allows the system to be 
configured to a spectrum of choices from no fault isolation to 
multiple smaller fault zones.  For example, in utility-
computing environments, a server can be provisioned as a 
payroll server with high levels of availability turned on, and 
then later can be redeployed as a web server with lower levels 
of availability.  Additionally, although we have focused 
primarily on isolation advantages of the proposed architecture 
from a fault perspective, equally important are benefits from a 
performance and security point of view.  For example, in cases 
where a high-priority workload and a low-priority workload 
both compete for shared resources (e.g., the L2 cache), the 
proposed architecture can provide performance isolation, to 
ensure quality-of-service guarantees. Furthermore, this 
architecture can enable tradeoffs between availability and 
performance, which is a useful characteristic in utility 
computing environments.

VI. RELATED WORK

Much of the recent architecture research in fault tolerant 
systems has focused on tolerating errors originating in the 
core, for example, DIVA [22], SRT [9], SRTR [23], AR-SMT 



[24], CRTR [6], DRM [25], structural duplication [26], 
banking lifetime [27], TRUSS [7] and several others that use 
the extra cores or contexts [15] available in a CMP.  Most of 
these require extensive modifications to existing chip designs 
and/or the addition of new hardware structures. Furthermore, 
the issues regarding detection and recovery from errors in on-
chip components such as bank controller or memory controller 
logic are not well addressed by solutions that focus on 
transient failures in the core. 

To the best of our knowledge, ours is the first proposal to 
characterize the impact of logic faults in other components like 
bank controllers, interconnect and memory controllers at 
system level in a CMP and present a solution to deal with these 
faults.  Other system level recovery solutions for SMPs like 
NonStop [16] and zSeries [28] handle errors in the 
interconnection network and the cache coherence protocol but 
do not deal with the lack of fault isolation in CMPs. 

VII. CONCLUSIONS

Future processors are going to be increasingly susceptible 
to hardware errors.  The impact of soft errors on a CMP is 
likely to be severe because there is a lack of system level fault 
isolation in the shared resources.  We found that current CMPs 
are susceptible to transient faults even in a DMR or TMR 
configuration.  We argue that all components of the chip must 
be protected.  The goals of a commodity CMP design include 
the retention of performance advantages while at the same time 
providing mechanisms to optionally tradeoff high error 
coverage with high performance.

We describe a CMP design that can provide system level 
soft error protection and the ability to reconfigure in the event 
of hard faults for graceful degradation. The proposed design 
provides configurable hooks in the hardware so that the chip 
can be configured to tolerate soft errors in any component.  
Our design requires minimal hardware changes and retains the 
commodity economics and performance advantages of current 
CMPs.
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