

Abstract—In this paper we analyze the reliability and

availability features in several commodity chip multiprocessors
(CMPs) and find that they have numerous single points of failure.
Failures in some system components, e.g., interconnect, cache
controller and memory controller logic, leave CMPs susceptible to
error even if the computation is dual modular redundant (DMR)
or triple modular redundant (TMR). Furthermore, even though
some replicated resources are present in CMPs, they can not be
used effectively for providing system-level protection because of
the lack of fault isolation in shared components. We describe a
CMP design that can provide system-level error protection. The
proposed design provides mode configuration features in
hardware to tolerate errors in any component. The proposed
CMP has two modes: a high performance mode where most of the
resources are applied towards performance and a high-
availability mode that uses resources, in a redundant manner, to
provide tolerance against errors. Our design requires minimal
hardware changes and can retain the commodity economics and
performance advantages of current CMPs.

Index Terms— Availability, Computer fault tolerance,
Reliability, System Recovery.

I. INTRODUCTION

echnology scaling is likely to make future processors more
susceptible to hardware errors. Permanent or intermittent

hardware faults, caused by defects in the silicon or
metallization of process package and wear out over time, lead
to “hard faults”. Transient faults (or “soft errors”), which
cause random bit values to change erroneously, may be caused
by electrical noise (e.g., crosstalk) or external radiation (e.g.,
alpha radiation from impurities). Recent studies [1] [2] [3]
have forecast between a two to nine-orders-of-magnitude
increase in logic circuits’ soft error rates.

Continued technology scaling and diminishing
uniprocessor power efficiency have also led to the emergence
of Chip Multiprocessors (CMPs) as the predominant hardware
paradigm. Recent and proposed microprocessor chip designs
from all the key vendors (Intel, IBM, SUN, and AMD) are
CMPs. One of the main benefits of CMPs is that on-chip
components can be easily shared to improve resource

Manuscript submitted January 2, 2007. This work was done at HP Labs,
Palo Alto, California. N. Aggarwal, J. E. Smith, and K.K. Saluja are with
University of Wisconsin-Madison, Madison, WI 53715 USA (e-mail:
naggarwal@wisc.edu, jes@ece.wisc.edu, saluja@engr.wisc.edu).

P. Ranganathan, N. P. Jouppi, and G. Krejci are with HP, Palo Alto, CA
94304 USA (email: partha.ranganathan@hp.com, norm.jouppi@hp.com,
george.krejci@hp.com)

utilization. Common examples are multi-threaded cores,
shared last level caches, and shared I/O interfaces. The Sun
Niagara includes eight multi-threaded cores, with a shared
second-level cache, and integrated memory controllers and I/O
interfaces [4]. Future designs are likely to have even more
cores on a single chip with greater levels of system integration
and resource sharing than in previous generations (e.g., Intel’s
demonstration of an 80-core processor at Intel Development
Forum, 2006).

Increased integration and sharing in a CMP exacerbates
the soft error problem, however, due to the additive effect of
component FIT rates and potentially larger impact from a
single error. A typical solution for handling soft errors in high
availability systems is to replicate the computation and
compare the results to detect an error [16, 29] and then do
either backward or forward error recovery [30]. This method
is based on the key assumption that the redundant computation
threads are “fault-isolated” and a single soft error does not
affect multiple redundant threads. However, shared resources
in CMPs pose a problem because they may violate this
assumption unless special steps are taken.

In this paper, we examine the fault isolation problem in a
CMP for an illustrative high availability system architecture
similar to the NonStop Advanced Architecture [16]. The first
part of the paper characterizes recent CMP designs from key
vendors and shows that current commodity CMP designs do
not satisfy the “fault isolation” assumption and are susceptible
to errors in certain system components – interconnect, cache
controller and memory controller logic – even if a computation
is performed in a dual modular redundant (DMR) or triple
modular redundant (TMR) mode. The point is that even
though replicated cores are present in a single CMP, they are
not sufficient for providing system level fault protection
because of the lack of fault isolation in their shared
components. For example, even if the cores in Intel Xeon MP
[8] are used for redundant computation, a transient fault in the
shared interface to the front side bus or the L2 cache bank
controller logic can cause an undetected error.

In the second part of the paper, we describe ongoing work
on a new architecture that allows for configurable isolation to
create “fault zones” with strict isolation properties that
software can then intelligently allocate in order to satisfy
availability requirements. The proposed CMP has two modes.
A high performance mode applies most of the resources
toward performance and can be used by applications that can
tolerate soft errors. A high-availability mode uses resources in

Motivating Commodity Multi-Core Processor
Design for System-level Error Protection

Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi,
James E. Smith, Kewal K. Saluja, and George Krejci

T

a redundant manner to provide tolerance against soft errors.
“On demand” configurable isolation enables a high volume
processor to provide high soft error coverage for mission
critical applications with very low cost. Mode reconfiguration
takes place at boot time in most systems, although other
alternatives are possible. Our proposed design requires
minimal hardware changes and retains the commodity
economics and performance advantages of current CMPs. As
an added benefit, configurable isolation can also be used to
reconfigure the system for graceful degradation in the event of
hard faults or for product binning during testing.

II. RELIABILITY FEATURES IN COMMODITY CMPS

We analyzed the reliability and availability features
of five commodity CMP architectures from key vendors –
AMD Opteron [8], SUN Niagara [4], Intel Xeon [10], Intel
Montecito [11] and IBM POWER [12] [13]. We divided each
of the CMPs into different components and then characterized
whether they satisfied key requirements for fault tolerance as
specified by White et al. [14]: redundancy, fault isolation, fault
detection and online repair. For brevity, we present a brief
summary of the analysis here.
Cores – Inside the core, transient fault detection is mainly
restricted to register files. An exception is Montecito where
there is built-in lockstep support with internal soft error
checking capabilities. There is no fault isolation in Opteron,
Xeon and Niagara; an error originating in any core can
propagate to all the other cores through the shared system
components. Power5 and Montecito provide some degree of
isolation for cores in different logical or electrical partitions,
respectively. In summary, all the commodity CMP
architectures are vulnerable to soft errors, except Montecito in
its lockstep configuration.
Caches – Most architectures are resilient to errors in the cache
array and provide ECC or parity checking at all cache levels.
However, Opteron and Xeon can not tolerate errors that are
not correctable by ECC alone, for example multi-bit errors.
Niagara, Power5 and Montecito have more redundancy and
fault isolation and can tolerate important classes of multi-bit
errors. These CMPs share at least one level of the cache
hierarchy either across cores or contexts. However, none of
the commodity CMPs can tolerate errors in the associated
cache circuitry or interconnect. For example, if all L2 cache
banks are shared, and addresses are interleaved among the
banks, a transient failure in the cache controller state machine
could lead to erroneous setting of a coherence bit. Note that
ECC on the coherence state bit would not prevent this error
because the fault is in the cache controller logic and not the
actual coherence bit. Such an error could affect an entire
socket.
Memory – Memory is perhaps the most fault tolerant resource
in commodity CMP systems. All the conditions for fault
tolerance are satisfied in the memory arrays. This also reflects
the fact that historically memory is the most error prone
component in a system. All the architectures have

sophisticated techniques like chip kill, background scrubbing,
and DIMM sparing to tolerate failures. However, there is no
tolerance to failures in memory access control circuitry. A
failure in any memory controller or anywhere in the
interconnect would affect all the cores. For example, in a
design like the Xeon, an error in one memory controller in the
shared NorthBridge can affect multiple cores. On the other
hand, in Opteron the failure of an on-chip memory controller
can be potentially isolated to the cores in that chip.

In summary, we found that existing transient fault
detection is limited to storage arrays such as register files,
cache and memory arrays. Also, the lack of system level fault
isolation is the biggest problem. Shared components do not
have adequate fault isolation because a fault in one of the
shared components can affect all the cores on the chip. This is
true even if programs are being run in a Dual Modular
Redundant (DMR) or Triple Modular Redundant (TMR)
configuration. Instead it is preferable to have architectures
where the effects of faults can be isolated to individual threads.
CMP designs should provide the ability to tradeoff high error
coverage with high performance.

III. PROPOSED CMP DESIGN

In this section we describe a CMP design with features for
providing system-level soft error protection. These features
allow the system to be configured into two modes: a high
performance mode and a high availability mode. In the high
performance mode, the CMP resources are shared for
maximum utilization. In high availability mode, the degree of
resource sharing is configured to provide selective isolation.
This allows the resources to be used in a redundant manner
and to prevent correlated errors. Mode reconfiguration can
take place at boot time in most systems, though other
alternatives using ACPI [29] are possible.

Although the proposed method can be implemented in
various CMP designs, we use one representative system as an
illustrative example. Figure 1(a) shows a conventional CMP
architecture with 8 cores (P0...P7) and private level-1 caches,
an 8-way banked shared level-2 cache, 4 memory controllers,
and coherent links (such as Hypertransport [8]) to other
sockets or I/O hubs. For this discussion we assume a
bidirectional ring interconnect between cores and banks. (The
proposed techniques can also apply to more complex 2-D
arrangements such as meshes). Although a classic “dance
hall” layout is shown for simplicity (with all the cores on one
side and the shared cache banks on the other side), designs
with banks and cores interleaved are also within the scope of
the proposed method.

A very straightforward approach is a design with a
number of fully independent microprocessors fabricated on the
same die (Figure 1(b)). Each has its own memory controller
and I/O connections. For high availability, sets of independent
cores are configured into a DMR or TMR mode. However
this architecture has a number of disadvantages. Hard
partitioning of cache resources (inhibiting any sharing) when

in the high performance mode significantly reduces overall
system performance [5], and this method has not been used in
proposed CMP designs [4, 33, 34]. Similarly, valuable pin
bandwidth is inefficiently used. This makes such a design
unattractive for high volume applications that have lower
availability requirements, and it reduces the independent-
microprocessor approach to a niche design that would be
economically unfeasible.

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

(a)

B0

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P0
L1 D1

B1

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P1
L1 D1

B7

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P7
L1 D1

B0

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0
L1 D1

B1

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P1
L1 D1

B7

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P7
L1 D1

(b)
Figure 1. CMP architecture designs. (a) Baseline
conventional system architecture and (b) A system with
full isolation.

We propose the addition of simple hardware to the
baseline CMP to enable in-field boot time configuration of the
system. This provides the combination of enhanced fault
isolation in a high availability configuration and negligible
performance loss when in a high performance, non-fault
tolerant configuration. A block diagram of the proposed
organization is shown in Figure 2. The components are “color
coded” where color domains act as units of fault containment.
Hardware is configured to limit errors caused by a fault to a
single color domain. Any error in a color-shared component
affects computation only on the cores mapped to that color and
prevents correlated errors that are undetectable by voting with
a redundant computation in another color. To ensure that an
error in one color domain does not propagate to all the other
color domains on the CMP, we propose “configurable
isolation” for interconnect, caches and memory controllers.
We define configurable isolation as techniques that allow the
system to be configured with different levels of isolation by
controlling resource sharing.

The proposed architecture offers various capabilities. The
number of colors (isolation domains) is not restricted to two
and can be increased either to provide more redundancy or
smaller granularity of fault containment. For example, three

colors can be used with a voter in a Triple Modular Redundant
(TMR) configuration. Furthermore, the number of colors need
not be static, and if the level of protection required changes
then the number of colors can be reconfigured by system
software. The proposed approach is suitable for integration
both in Backward Error Recovery systems (in a DMR
configuration in concert with check pointing solutions similar
to Revive [19], SafetyNet [20] or [21]), or Forward Error
Recovery systems (in a TMR configuration). The proposed
design not only provides fault isolation without losing the
benefits of sharing, it also offers the ability to reconfigure in
the event of hard faults for graceful degradation.

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

Figure 2. Proposed architecture (two color configuration)

Below, we consider the application of the proposed
method to implement a NonStop-like DMR [16] configuration
as an illustrative example. Resources from two colors define a
DMR process pair, with computations in the red domain
replicated in the green domain when higher availability is
required. The microprocessor can be reconfigured to the
higher-availability configuration by setting a small number of
control points in the design. This allows systems to support
“availability on demand” in-field.

Note that this capability only requires small changes to the
ring and bank addressing, while the rest of the CMP is
unchanged. The ring interconnect in Figure 2 has been cut
apart and reconfigured to create two logically independent
rings by activating cross links. Because the ring is expected to
be placed down the center of the chip, the cross links should
be less than a millimeter long, and their activation requires the
insertion of a multiplexer at the input of a ring interface
incoming data port. Thus cross links and input multiplexers
are a small additional fixed cost in terms of area and power,
which does not significantly increase the cost of the design in
cases were higher availability is not desired. The cross-links
are also expected to be shorter than the ring segments between
cores. Thus the cross-connects should be able to operate at
least as fast as a core to core or bank to bank ring segment. In
combination with partitioning of the inter-core interconnect, in
high availability mode the interleave among level 2 cache
banks uses one fewer bit, interleaving references among half
the banks, keeping references within the same color.

In high availability configurations, voters that compare the
redundant computation can be implemented in a number of
different ways. For highest availability, voters can be

implemented in I/O hubs connected to a red and green link
adapter, similar to the hardware voters in the Nonstop
Advanced Architecture [16]. For lower-cost lower availability
solutions, the voter can be implemented in software
hypervisors that communicate between the colored partitions
through the I/O system [18]. Similar to the NonStop system,
physical memory can be partitioned between the logical
processors using unique virtual to physical memory mapping.

IV. EVALUATION AND RESULTS

We evaluated the impact of hard faults and subsequent
reconfiguration on the computing capacity of the system over
its lifetime. We compare three architectures: 1) shared -- a
completely shared system similar to proposed CMPs (Figure
1a), 2) fully isolated -- a completely private system with full
isolation (Figure 1b), and 3) configurable isolation -- the
proposed architecture with reconfiguration and configurable
isolation (Figure 2). All three are assumed to be in a DMR
configuration.

Because the proposed architecture does not contain any
modification to the cores, the most important workload
characteristic is the size of the working set and its effect on
cache behavior. We constructed three workloads with large,
mixed, and small memory footprints using SPEC benchmarks.
Over the course of a simulation run, as cores become unusable
due to hard faults, benchmarks are dropped from the
workloads, reflecting the loss of computing capability.

The fault model is based on state of the art technology and
is derived from detailed (confidential) models from processor
vendors. The fault model was calibrated by HP-internal fault
analysis experiments. The fault data includes failures in time
(FIT) rates and distributions for hard and soft errors per
component. The system is divided into five different fault
zones (that represent the granularity of reconfigurations):
core and L1 cache, L2 circuitry, L2 banks, memory controller
circuitry, and link controller.

On the shared system any hard fault leads to system
failure. This means that after a failure, the throughput of such
a system goes to zero for all workloads. On the fully isolated
system any single fault leads to the loss of throughput from a
process pair in a DMR configuration. For example, even a
fault in the bank associated with a core leads to that core being
unusable. On a configurable isolated system, a reconfigurable
fault (for example, in a memory controller) leads to loss of
performance over all the process pairs, but not the loss of a
workload. Only when a core fails, a benchmark (both copies)
is dropped from the workload. The entire system becomes
unusable in the configurable isolated architecture only when
the penultimate component of any type fails (for example, 7th
core, 3rd memory controller, 7th cache bank in a system
similar to the baseline).

To make evaluation feasible, we use a two phase
simulation methodology for simulating the performance of
different processor configurations for various fault arrival
scenarios. First, we use a full system simulator to exhaustively

simulate the possible system configurations (using more than
one machine year) and compute the throughput of all
configurations (subject to policies described below). Second,
we perform Monte Carlo simulation using a detailed
component-level fault model. By running the Monte Carlo
simulation for 10,000 runs we simulate fault injection in a total
of 10,000 systems with each run comprising 100,000 simulated
hours (approximately 11 years).

Large Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

(a)

Mixed Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

(b)

Small Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

(c)
Figure 3. Normalized performance from Monte-Carlo
hard fault simulation over an 11-year period of time.
Results for three architectures – a baseline conventional
system with full sharing, the proposed system, with
configurable isolation, and a system with full isolation.
Evaluated workloads include a) large memory workload,
b) mixed memory workload and c) small memory
workload.

All simulations were done using a full system x86/x86-64
simulator (based on AMD SimNowTM) which can boot an
unmodified Windows or Linux OS and execute complex
application programs. More details about the simulator are in
Falcon et al [31]. We use a timing model with a memory
hierarchy similar to that supported by an AMD Opteron 280
processor, except with smaller L2 cache sizes to match the
working set of the workloads. More details regarding the
simulation methodology can be found in Aggarwal et al [32].

Figures 3(a), (b), and (c) summarize the baseline results
for the large, mixed, and small memory workloads,
respectively. As expected, the shared system performs the
worst, with a dramatic degradation in average performance
(30-35%) during the first two years, and degradation close to
50% by the end of five years. The fully-isolated configuration
is much more resilient to failures and provides more gradual
performance degradation. Over five years, the net
performance loss is only 10-15%. The results for the large
memory workload (Figure 3a) are particularly interesting.
Here, the completely isolated configurations, by virtue of
having private caches, initially under-perform the shared
configuration. However, compared to the fully-shared system,
the fully-isolated system becomes performance competitive at
around 2 years (at the crossover point in the curves in Figure
3a).

The configurable isolation system consistently achieves
the best performance across all the workloads. With
configurable isolation, resources can still be shared within a
given fault zone. Additionally, the ability to dynamically
repartition the resources leads to the best graceful degradation
across all three workloads.

Normalized component replacements as a function of
performance- Baseline

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10
%

D
eg

ra
da

ti
on

25
%

D
eg

ra
da

ti
on

50
%

D
eg

ra
da

ti
on

10
%

D
eg

ra
da

ti
on

25
%

D
eg

ra
da

ti
on

50
%

D
eg

ra
da

ti
on

10
%

D
eg

ra
da

ti
on

25
%

D
eg

ra
da

ti
on

50
%

D
eg

ra
da

ti
on

Large Memory Mixed Memory Small Memory

N
or

m
al

iz
ed

 c
om

p
on

en
t

re
p

la
ce

m
en

ts

Shared Full Isolation Configurable Isolation

Figure 4. Number of normalized component replacements
as a function of performance. The three architectures
(mixed workload) are compared, assuming components are
replaced (a) when performance dips below 90%, (b) when
performance dips below 75%, and (c) when performance
dips below 50%.

Figure 4 provides an alternate view of the benefits of
configurable isolation. For each of the three approaches, the
number of component replacements is shown. It is assumed
that the system continues to stay operational until the

performance dips below a certain threshold after which the
entire multi-core component is replaced (and the performance
is re-initialized to that of the no-fault configuration). The
simulation then continues for the remainder of the 100,000
hours with the new system. We consider three cases where the
performance threshold is set to (a) 90% (b) 75%, and (c) 50%
of initial performance. The total number of replacements
(across 10000 Monte Carlo runs) for fully isolated and
configurable isolated system is normalized with respect to the
total number of replacements for a fully shared system. In a
fully shared system every fault leads to system replacement
because the performance drops to 0. These results show that
the architecture with configurable isolation dramatically
reduces the need to replace components across all three
workloads irrespective of the performance thresholds.

V. FUTURE WORK

There are several enhancements to the configurable
isolation architecture that provide additional benefits. For
example, as discussed earlier, we assumed a single process per
core. Some of the performance degradation from losing a
component in a given fault zone can potentially be mitigated
by overloading processes on remaining components in that
fault zone. Similarly, when remapping fault zones, we assume
arbitrary remapping of the fault zones and assignment of
processes to cores. One can conceive of using more advanced
policies that are aware of workload requirements and latency
effects to improve performance. For example, prior work on
heterogeneous multi-core architectures has demonstrated
significant benefits from intelligently mapping workloads to
available hardware resources.

An interesting advantage of configurable isolation is the
ability to reconfigure dynamically the system availability
guarantees. The proposed approach allows the system to be
configured to a spectrum of choices from no fault isolation to
multiple smaller fault zones. For example, in utility-
computing environments, a server can be provisioned as a
payroll server with high levels of availability turned on, and
then later can be redeployed as a web server with lower levels
of availability. Additionally, although we have focused
primarily on isolation advantages of the proposed architecture
from a fault perspective, equally important are benefits from a
performance and security point of view. For example, in cases
where a high-priority workload and a low-priority workload
both compete for shared resources (e.g., the L2 cache), the
proposed architecture can provide performance isolation, to
ensure quality-of-service guarantees. Furthermore, this
architecture can enable tradeoffs between availability and
performance, which is a useful characteristic in utility
computing environments.

VI. RELATED WORK

Much of the recent architecture research in fault tolerant
systems has focused on tolerating errors originating in the
core, for example, DIVA [22], SRT [9], SRTR [23], AR-SMT

[24], CRTR [6], DRM [25], structural duplication [26],
banking lifetime [27], TRUSS [7] and several others that use
the extra cores or contexts [15] available in a CMP. Most of
these require extensive modifications to existing chip designs
and/or the addition of new hardware structures. Furthermore,
the issues regarding detection and recovery from errors in on-
chip components such as bank controller or memory controller
logic are not well addressed by solutions that focus on
transient failures in the core.

To the best of our knowledge, ours is the first proposal to
characterize the impact of logic faults in other components like
bank controllers, interconnect and memory controllers at
system level in a CMP and present a solution to deal with these
faults. Other system level recovery solutions for SMPs like
NonStop [16] and zSeries [28] handle errors in the
interconnection network and the cache coherence protocol but
do not deal with the lack of fault isolation in CMPs.

VII. CONCLUSIONS

Future processors are going to be increasingly susceptible
to hardware errors. The impact of soft errors on a CMP is
likely to be severe because there is a lack of system level fault
isolation in the shared resources. We found that current CMPs
are susceptible to transient faults even in a DMR or TMR
configuration. We argue that all components of the chip must
be protected. The goals of a commodity CMP design include
the retention of performance advantages while at the same time
providing mechanisms to optionally tradeoff high error
coverage with high performance.

We describe a CMP design that can provide system level
soft error protection and the ability to reconfigure in the event
of hard faults for graceful degradation. The proposed design
provides configurable hooks in the hardware so that the chip
can be configured to tolerate soft errors in any component.
Our design requires minimal hardware changes and retains the
commodity economics and performance advantages of current
CMPs.

ACKNOWLEDGMENT

We are grateful to Paolo Faraboschi for his invaluable
help with the simulator. We would also like to thank Prasun
Agarwal, Luiz Barroso, Wendy Bartlett, Dave Garcia, Daniel
Ortega, John Sontag, Bill Tian, and Shyam Thoziyoor for their
input. SimNowTM is an AMD trademark.

REFERENCES

[1] http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
[2] Borkar, S., "Challenges in Reliable System Design in the Presence of

Transistor Variability and Degradation", IEEE Micro, vol. 25, no. 6,
Nov.-Dec. 2005, pp. 10-16

[3] Shivakumar, P. Keckler, S.W., Moore, C.R., Burger, D., "Exploiting
Microarchitectural Redundancy for Defect Tolerance", the 21st
International Conference on Computer Design (ICCD), October, 2003.

[4] Kongetira, P., Aingaran, K., Olukotun, K., "Niagara: A 32-Way
Multithreaded Sparc Processor", IEEE Micro, 2005.

[5] Jaleel, A., Mattina, M., Jacob, B., "Last level cache (LLC) performance
of data mining workloads on a CMP - a case study of parallel
bioinformatics workloads", HPCA 2006.

[6] Gomaa, M. et al., "Transient-fault recovery for chip multiprocessors",
ISCA 2003.

[7] Gold, B. T. et al., "TRUSS: a reliable, scalable server architecture",
IEEE Micro, Nov-Dec 2005.

[8] Keltcher, C.N., McGrath, K.J., Ahmed, A., and Conway, P., "The AMD
Opteron processor for multiprocessor servers", IEEE Micro, 2003.

[9] Reinhardt, S. K. et al., "Transient fault detection via simultaneous
multithreading", ISCA 2000

[10] www.intel.com/business/bss/products/server/ras.pdf
[11] McNairy, C., Bhatia, R., "Montecito: a dual-core, dual-thread Itanium

processor", IEEE Micro, 2005.
[12] http://www03.ibm.com/systems/p/hardware/whitepapers/power5_ras.ht

ml
[13] Bossen, D. C., Kitamorn, A., Reick, K. F. and Floyd, M. S., "Fault-

tolerant design of the IBM pSeries 690 system using POWER4
processor technology", IBM Journal of Research and Development,
2002.

[14] White, R.V., Miles, F.M., "Principles of fault tolerance", Applied
Power Electronics Conference and Exposition, 1996.

[15] Mukherjee, S. S. et al., "Detailed design and evaluation of redundant
multithreading alternatives", ISCA, May 2002.

[16] Bernick, D., Bruckert, B., Vigna, P. D., Garcia, D., Jardine, R., Klecka,
J., Smullen, J., "NonStop® Advanced Architecture", DSN, 2005.

[17] Huh, J., Burger, D., Keckler, S.W., "Exploring the Design Space of
Future CMPs", PACT', 2001.

[18] Bressoud, T. C. and Schneider, F. B., "Hypervisor-based fault
tolerance", ACM Trans. Comput. Syst. 14, 1 (Feb. 1996), 80-107.

[19] Nakano et al., "ReViveI/O: Efficient Handling of I/O in Highly-
Available Rollback-Recovery Servers", HPCA 2006.

[20] Sorin, D. J. et al., "SafetyNet: improving the availability of shared
memory multiprocessors with global checkpoint/recovery", ISCA,
2002.

[21] Masubuchi, Y. et al., "Fault recovery mechanism for multiprocessor
servers", In Proceedings of the 27th International Symposium on Fault-
Tolerant Computing, pages 184–193, 1997.

[22] Austin, T. M., "DIVA: A reliable substrate for deep submicron
microarchitecture design", MICRO 1999.

[23] Vijaykumar, T. N. et al., "Transient-fault recovery using simultaneous
multithreading", ISCA 2002.

[24] Rotenberg, E., "AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors", In Proceedings of the 29th International
Symposium on Fault-Tolerant Computing, June 1999.

[25] Srinivasan, J., et al., "The Case for Lifetime Reliability-Aware
Microprocessors", ISCA 2004.

[26] Srinivasan, J., et al., "Exploiting Structural Duplication for Lifetime
Reliability Enhancement", ISCA 2005.

[27] Lu, Z. et al., "Banking chip lifetime: Opportunities and
implementation", High Performance Computing Reliability Issues,
2005.

[28] M.L., Fair et al., "Reliability, Availability, and Serviceability (RAS) of
the IBM eServer z990", IBM Journal of Research and Development,
Nov, 2004.

[29] http://www.acpi.info/
[30] Anderson, T., Lee, A., "Fault-tolerance - Principles and Practice",

Prentice Hall, Eaglewood Cliffs, 1981.
[31] Falcon, A. Faraboschi, P., and Ortega, D., "Combining Simulation and

Virtualization through Dynamic Sampling". ISPASS-2007.

[32] Aggarwal, N., Ranganathan, P., Jouppi, N. P., and Smith J. E., "Using
configurable isolation to achieve high availability systems using
commodity multi-core processors", to appear in ISCA 2007.

[33] Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A.,
Qadeer, S., Sano, B., Smith, S., Stets, R., and Verghese, B., “Piranha:
A scalable architecture based on single-chip multiprocessing.” In
Proceedings of the 27th International Symposium on Computer
Architecture, June 2000.

[34] Tendler, J. M., Dodson, J. S., Fields Jr., J. S., Le, H., and Sinharoy, B.,
“IBM Power4 system microarchitecture”, IBM Journal of Research and
Development, 46(1):5–26, 2002.

