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Abstract

A centrally differentially private algorithm maps raw data to differentially private outputs.
In contrast, a locally differentially private algorithm may only access data through public in-
teraction with data holders, and this interaction must be a differentially private function of the
data. We study the intermediate model of pan-privacy. Unlike a locally private algorithm, a
pan-private algorithm receives data in the clear. Unlike a centrally private algorithm, the al-
gorithm receives data one element at a time and must maintain a differentially private internal
state while processing this stream.

First, we show that pure pan-privacy against multiple intrusions on the internal state is
equivalent to sequentially interactive local privacy. Next, we contextualize pan-privacy against
a single intrusion by analyzing the sample complexity of uniformity testing over domain [k].
Focusing on the dependence on k, centrally private uniformity testing has sample complexity
Θ(
√
k), while noninteractive locally private uniformity testing has sample complexity Θ(k). We

show that the sample complexity of pure pan-private uniformity testing is Θ(k2/3). By a new
Ω(k) lower bound for the sequentially interactive setting, we also separate pan-private from
sequentially interactive locally private and multi-intrusion pan-private uniformity testing.
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1 Introduction

Differential privacy [24] promises that a randomized algorithm’s output distribution is relatively
insensitive to small changes in its input data. This insensitivity hides the presence or absence of
individual data elements and provides privacy for the contributors of that data. Rigorous privacy
guarantees have driven increasing adoption of differential privacy by industry [8, 10, 21, 29],
government [1]), and academic researchers [37, 34].

In central differential privacy [24], the algorithm receives a database in the clear, and privacy
only constrains the algorithm’s eventual output. Central privacy therefore offers the highest
utility – for example, the lowest error or sample complexity – but weakest privacy guarantee.
In particular, in many real-world applications the input database is acquired over time, and
raw data is kept until the time arrives to produce (differentially private) outputs. A user may
worry that raw data sitting with a trusted algorithm operator may still be at risk of exfiltration
by subpoena, “mission creep” by the operator that contravenes users’ original wishes, or a
change in operator ownership. Since central privacy makes no guarantees about the intermediate
representation of the data during processing, it offers no protection against these events.

One solution to this family of problems is local differential privacy [24, 32]. Locally differen-
tially private algorithms do not receive a database in the clear. Instead, data remains distributed
among users, and the algorithm must learn about the data by interacting with these users in a
public yet privacy-preserving way. Because users are in charge of randomizing their communi-
cations in the protocol, they no longer need to trust an algorithm operator. Unfortunately, this
strong privacy guarantee often incurs a significant utility cost. For example, one can compute
the sum of n bits to O(1/ε) additive error under ε-central privacy but, for constant ε, must
incur Ω(

√
n) error under ε-local privacy [18].

We study pan-privacy [26] as a middle ground in this tradeoff between privacy and utility. A
pan-private algorithm receives a stream of raw data (for example, the gradual data acquisition
process mentioned above). Pan-privacy has two requirements. First, while processing the data
a pan-private algorithm must maintain an internal state that is differentially private against
any single intrusion. Second, a pan-private algorithm must ultimately produce a differentially
private output.

Central, pan-, and local privacy therefore correspond to different trust models. If a user
trusts the algorithm operator to not only perform the computation in question but to responsibly
steward raw data in the future, then central privacy is a sufficient guarantee. If a user currently
trusts the operator, but also wants to protect themselves against unknown future complications
in data stewardship, pan-privacy suffices. For a user who does not trust the operator at all, only
local privacy is enough.

1.1 Contributions

We give several results about the relative merits of these models. Taken together, they suggest
pan-privacy as a middle ground for both privacy and utility between the central and local
models.

1. Through constructive transformations in both directions, we show that pure pan-privacy
against multiple intrusions is equivalent to sequentially interactive local privacy (Section 3).

2. We give matching (in k) upper and lower bounds showing that uniformity testing — the
problem of distinguishing uniform and non-uniform distributions through sample access
— has pure pan-private sample complexity Θ(k2/3). The best known locally private uni-
formity tester achieves Θ(k) sample complexity by reducing uniformity testing to binary
testing [5], while the optimal centrally private uniformity tester gets Θ(

√
k) without re-

ducing the problem domain at all [4]. Our pan-private uniformity tester intermediates
between these approaches by reducing uniformity testing over [k] to, roughly, uniformity
testing over [k2/3] (Section 4). Our lower bound adapts the approach used by Diakonikolas
et al. [20] to prove testing lower bounds under memory and communication restrictions
(Section 5.1).
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3. By a new lower bound, again adapting the memory-restricted lower bound of Diakonikolas
et al. [20], we show that sequentially interactive locally private uniformity testing has
sample complexity Θ(k) (Section 5.2).

We briefly elaborate on the first contribution. We view this result as dictating the scope of
when (pure) pan-privacy is reasonable. If a user requires privacy against multiple intrusions,
then the operator suffers no utility loss by using an algorithm that is locally private instead of
an algorithm that is pan-private against multiple intrusions. However, there are cases where
a user may be satisfied with pan-privacy against a single intrusion. To see why, we use the
following simple result.

Fact 1. Suppose a user’s data is element st of an (ε, δ)-pan-private algorithm A’s stream. We
say an intrusion occurs at time t if the intrusion occurs immediately after A updates its internal
state to it after seeing element st. If

1. the first intrusion (possibly of many) occurs at time t′ ≥ t, or

2. all intrusions occur at times t′ < t,

then the intruder’s view is an (ε, δ)-differentially private function of st.

Proof. Pan-privacy guarantees that it is an (ε, δ)-differentially private function of st. In Case
1, the adversary only sees a post-processing of it. Differential privacy’s resilience to post-
processing (see e.g. Proposition 2.1 in Dwork and Roth’s survey [27]) implies that this view
is (ε, δ)-differentially private in st. In Case 2, the adversary’s view is independent of st, so
(ε, δ)-differential privacy is immediate.

By Fact 1, if A is pan-private against a single intrusion, then it guarantees privacy for users
who either contribute data before the first intrusion or after all intrusions. However, pan-privacy
is not sufficient to protect a user’s privacy if the operator has already been compromised and
may be compromised again. The key parameter for pan-privacy is therefore the user’s trust in
the operator when the user contributes their data. This motivates the trust model described in
the introduction: if a user trusts the operator today, but wants to “future-proof” themselves for
tomorrow, then pan-privacy is a reasonable privacy guarantee.

1.2 Related Work

We start with previous work on pan-privacy. Dwork et al. [26] introduced pan-privacy and gave
pan-private algorithms for several different counting problems over streams. They also gave
two lower bounds. First they separated pan-privacy against one and two intrusions by show-
ing that estimating the number of distinct elements in a stream is much harder with multiple
intrusions. Second, they gave a problem, inner product counting, that separates pan-privacy
from noninteractive local privacy. Mir et al. [36] extended these results to new counting prob-
lems and dynamic streams. They also showed that pan-private algorithms cannot approximate
distinct element count to additive accuracy o(

√

|X |) for data universe X . This improved upon

the Ω(
√

|X |/ log(|X |)) lower bound given by McGregor et al. [33] for two-party differential pri-
vacy (a weaker guarantee than pan-privacy), which was the first separation between central and
pan-privacy. Dwork et al. [25] also studied pan-privacy, albeit under the additional constraint
of continual observation, which requires the algorithm to provide accurate answers after every
stream element. They and Chan et al. [17] gave both upper and lower bounds for counting
problems under continual observation.

Our work departs from the above in a few ways. First, we generalize previous results on pan-
privacy against two intrusions by showing that it is equivalent to a different model, sequentially
interactive local privacy. Second, the testing problems we study focus on learning from samples
generated by some distribution, as opposed to previous work on adversarial streaming problems.
This distributional quality necessitates different lower bound techniques.
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In uniformity testing, a line of work [28, 39, 40] has established that uniformity testing

(without privacy) has sample complexity Θ
(√

k
α2

)

where k is the domain size and α is the

total variation distance parameter (for more information on testing, see the survey by Canonne
[14]). Acharya et al. [4] showed that ε-centrally private uniformity testing has sample complexity

Θ
(√

k
α2 +

√
k

α
√
ε
+ k1/3

α4/3ε2/3
+ 1

αε

)

. Acharya et al. [5] showed that noninteractive ε-locally private

uniformity testing has sample complexity Θ
(

k
α2ε2

)

. Acharya et al. [6] proved similar results
with special attention to the amount of public randomness. A comparison of our results to this
previous work appears in Figure 1.

In the data structures community, several works have studied history independence [35, 38,
11]. A history independent data structure is one whose memory representation reveals no more
information than its abstract representation does. For example, without history independence,
the abstract representation of a dictionary may only reveal keys and values while the memory
representation also reveals insertion order. Pan-privacy instead aims to guarantee that the
abstract representation is a differentially private function of the input data.

Setting Previous Work This Work

Non-private Θ
(√

k
α2

)

[28, 39, 40] –

ε-central privacy Θ
(√

k
α2 +

√
k

α
√
ε
+ k1/3

α4/3ε2/3
+ 1

αε

)

[4] –

ε-pan-privacy –
–

O
(

k2/3

α4/3ε2/3
+

√
k

α2 +
√
k

αε

)

Ω
(

k2/3

α4/3ε2/3
+

√
k

α2 + 1
αε

)

SI ε-local privacy O
(

k
α2ε2

)

[5] Ω
(

k
α2ε2

)

NI ε-local privacy Θ
(

k
α2ε2

)

[5] –

Figure 1: A comparison of the uniformity testing sample complexity bounds given in this and
previous work. “SI” is sequentially interactive and “NI” is noninteractive. Before this work, no
pan-private bounds were known, and it was not known that O

(

k
α2ε2

)

is tight for sequentially
interactive protocols.

2 Preliminaries

2.1 Central Differential Privacy

A randomized algorithm A satisfies central differential privacy if it maps raw databases to
outcomes such that the distribution over outcomes is relatively insensitive to small changes in
the database. This insensitivity, which hides the presence or absence of any one user, provides
the privacy guarantee.

Definition 1 (Central differential privacy [24]). Given data universe X and two databases
D,D′ ∈ Xn, D and D′ are neighbors if they differ in ≤ 1 element. Given algorithm A : Xn → Y ,
A is (ε, δ)-differentially private if for all subsets S ⊂ Y ,

PA [A(D) ∈ S] ≤ eεPA [A(D′) ∈ S] + δ.

For this work, it is important to note that centrally private algorithms enjoy trusted (central)
access to the entire raw database. In particular, they may perform arbitrary computations on
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raw data before releasing a private output. Pan- and locally private algorithms have restricted
forms of access to the data.

2.2 Pan-privacy

A pan-private algorithm operates in a different setting with different guarantees. Here, the
algorithm A receives the database as a stream, one element at a time, and updates its internal
state after seeing each element. The element is then deleted from A’s memory, and A continues
processing the stream1. The entirety of A’s knowledge about the stream so far is thus contained
in this internal state. At the end of the stream, A produces an output as its final answer.
Pan-privacy mandates that A’s internal state and final answer must be differentially private
functions of the stream on a per-element basis.

Definition 2 (Pan-privacy [26]). Let X be a data universe, and let S = XN be the set of streams
from X . Two streams s, s′ ∈ S are neighbors if there exist x and x′ ∈ X such that replacing a
single instance of x ∈ s with x′ produces s′.

A pan-private algorithm consists of an internal algorithm AI and an output algorithm AO.
A maps streams to internal states by repeated application of AI , which maps an internal state
and element of X to an internal state, AI : I × X → I. At some time the stream ends and A
publishes a final output AO(i) where i is the internal state of A at the end of the stream. For
stream s, let AI(s) denote the internal state of A after processing s, and let s≤t denote the first
t elements of stream s. A is (ε, δ)-pan-private if, for any neighboring streams s and s′, any
time t, and any set E ⊂ I ×O

PA [(AI(s≤t),AO(AI(s))) ∈ E] ≤ eεPA
[

(AI(s
′
≤t),AO(AI(s

′))) ∈ E
]

+ δ. (1)

This paper will focus on pure pan-privacy, where δ = 0. We shorthand this as ε-pan-privacy.

Pan-privacy thus protects against an adversary that sees any single internal state of A as
well as its final output. The second requirement implies that any pan-private algorithm is
also centrally private; the key additional contribution of pan-privacy is the maintenance of the
differentially private internal state. To generalize Definition 2 to c > 1 intrusions, we can replace
inequality 1 with

PA
[

(AI(st)
tc
t=t1 ,AO(AI(s))) ∈ E

]

≤ eεPA
[

(AI(s
′
t)

tc
t=t1 ,AO(AI(s

′))) ∈ E
]

+ δ

where E ⊂ Ic ×O.
We note that our definition of pan-privacy differs from the original. This stems from slightly

different goals. The original work of Dwork et al. [26] focused on tracking statistics of a stream
of unknown length and allowed for the possibility that the stream could end unexpectedly. They
also allowed for multiple outputs by the algorithm. We instead analyze problems from a sample
complexity perspective and focus on the number of samples needed to solve a problem pan-
privately. This leads us to consider streams of fixed length (determined by the algorithm as
the required sample complexity) and a single output (the answer to the problem in question).
Additionally, Dwork et al. [26] studied streams where each element is a (user, value) pair and a
neighboring stream may replace all values contributed by any one user. We remove the notion of
a user and simply view a stream as a sequence of elements. We therefore guarantee element-level
rather than user-level privacy2. Nonetheless, the basic idea of pan-privacy – its privacy against
an adversary who sees a single internal state and the output – remains intact.

1As is standard in pan-privacy, we assume that the process of receiving an element and updating the state is
atomic: the adversary cannot intrude on the internal state between the reception of a new stream element and the
internal state update. Without this assumption, nothing prevents the adversary from possibly seeing a data point in
the clear, and differential privacy is impossible.

2Note that this allows the closest comparison with existing centrally and locally private uniformity testers, which
all employ element-level privacy.
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2.3 Local Differential Privacy

A locally differentially private algorithm satisfies a still more restrictive privacy guarantee. Un-
like pan-private algorithms, locally private algorithms never see any data in the clear. Instead,
a locally private algorithm is a public interaction between users, each of whom privately holds
a single data element. Since our main point of comparison is pan-private algorithms, we view
these users as stream elements. A pan-private algorithm sees each stream element, but a locally
private algorithm only sees the randomizer output produced by each stream element. However,
this is a difference only in presentation, and a user obtains the same kind of local privacy guar-
antee whether we view them as a user or a stream element. Up to this difference, our local
differential privacy definitions generally imitate those given by Joseph et al. [30].

Definition 3. An (ε, δ)-randomizer R : X → Y is an (ε, δ)-differentially private function taking
a single data point as input.

Because communication occurs only through randomizers, the overall record of public inter-
action is private. We more formally study this interaction in terms of its transcript.

Definition 4. A transcript π is a vector of tuples (Rt, yt) indicating the randomizer used and
output produced at each time t.

We can then view a locally private protocol as a coordinating mechanism that takes a
transcript and selects a randomizer for the next stream element.

Definition 5. Let Sπ denote the collection of transcripts and SR the collection of randomizers.
Then a protocol A is a function A : Sπ → SR mapping transcripts to randomizers.

A locally private protocol generally includes some post-processing of the transcript to gener-
ate some final output. Since this post-processing is still a function of the transcript, we abstract
it away and focus only on the transcript. Next, we distinguish between different notions of
interactivity for locally private protocols.

Definition 6 ([23]). If locally private protocol A makes all randomizer assignments before the
stream begins (i.e., each randomizer choice Rt is independent of the transcript so far conditioned
on t) then A is noninteractive. If A makes these assignments adaptively as the stream progresses,
then A is sequentially interactive.

The most general model of local privacy allows full interactivity: users may produce ar-
bitrarily many outputs in arbitrary sequences. In particular, a protocol may re-query past
participants. This is analogous to processing a stream with multiple passes. Since we focus
on pan-privacy in the single-pass model, we will compare it to noninteractive and sequentially
interactive locally private protocols, which can only query each participant at most once. We
now formally define local differential privacy.

Definition 7. A protocol A is (ε, δ)-locally differentially private if its transcript is an (ε, δ)-
differentially private function of the user data. If δ = 0, we say A is ε-locally differentially
private.

In particular, a sequentially interactive protocol is (ε, δ)-locally differentially private if and
only if each randomizer used is an (ε, δ)-randomizer.

3 Pan-privacy and Local Privacy

We first show that any algorithm that is pure pan-private against multiple intrusions has a locally
private equivalent (Theorem 1). The main idea is that the operator of a pan-private algorithm
A2P cannot know when two intrusions will occur. In particular, if the two intrusions occur at
times t and t+1 — respectively, immediately after A2P processes st and st+1 — then failure to
randomize the internal state between t and t + 1 may reveal element st+1. The operator must
therefore re-randomize the state at every time step.

5



We briefly sketch the proof of Theorem 1 (full proofs of this and other results appear in
the Appendix). First, we observe that any A2P that is ε-pan-private against two intrusions
can be modified into an algorithm A1P that maintains all of its internal states thus far and
still remain ε-pan-private against one intrusion (Lemma 1). Because this single intrusion may
come at the end of the stream, the complete list of internal states during the stream must be
an ε-differentially private function of the stream. We can therefore simulate this procedure in
the sequentially interactive local model and have the transcript generate this complete list of
internal states (Lemma 2).

In the other direction, we convert any ε-sequentially interactive locally private protocolAL to
A2P , which is ε-pan-private against two intrusions. A2P simulates AL and stores the transcript
so far as its internal state. Since this transcript is an ε-differentially private function of the data
(recall that the transcript for AL is public), A2P is ε-pan-private against an arbitrary number
of intrusions onto its internal state.

Theorem 1. For every A2P that is ε-pan-private against two intrusions and generates output
distribution O given input stream s, there exists AL that is sequentially interactive ε-locally
private and generates transcript distribution O given s, and vice-versa.

Proof. ⇒ (pan to local): We start by converting from pan-privacy against two intrusions to
pan-privacy against one intrusion while preserving all internal states.

Lemma 1. Suppose A2P is ε-pan-private against two intrusions, and let I2,t be the random
variable for the internal state of A2P after stream element t. Then there exists A1P that is
ε-pan-private against one intrusion such that, for analogously defined I1,t, for any stream s≤t,
the concatenation I2,1 ◦ I2,2 · · · ◦ I2,t is distributed identically to I1,t.

Proof. We first define A1P . For j ∈ {1, 2}, define ij,t to be the realized internal state of AjP

after seeing the tth stream element. Each internal state i1,t of A1P is a concatenation of internal
states i2,1 ◦ · · · ◦ i2,t, and for any internal state i of A1P we let i−1 denote the most recently
concatenated state. For example, for i = i2,1 ◦ · · · ◦ i2,t, i−1 = i2,t

3. We then define the internal
algorithm of A1P by A1P,I(i, x) = i ◦ A2P,I(i−1, x). Finally, we define the output algorithm of
A1P by A1P,O(i) = A2P,O(i−1). As a result, A1P,O(A1P,I(s)) = A2P,O(A2P,I(s)), and A1P and
A2P have identical output distributions.

We will prove this result for discrete state spaces; a similar approach works for continuous
state spaces if we replace probability mass functions with densities. To prove ε-pan-privacy of
A1P against one intrusion, it suffices to fix neighboring streams s and s′, internal state set i,
output state set o, stream position t, and show

PA1P [A1P,I(s≤t) = i]PA1P [A1P,O(A1P,I(s)) = o | A1P,I(s≤t) = i]

PA1P

[

A1P,I(s′≤t) = i
]

PA1P

[

A1P,O(A1P,I(s′)) = o | A1P,I(s′≤t) = i
] ≤ eε.

First, by the definition of A1P , it suffices to show

PA1P [A1P,I(s≤t) = i]PA2P

[

A2P,O(A2P,I(s)) = o | A2P,I(s≤t) = i−1
]

PA1P

[

A1P,I(s′≤t) = i
]

PA2P

[

A2P,O(A2P,I(s′)) = o | A2P,I(s′≤t) = i−1
] ≤ eε. (2)

Suppose streams s and s′ differ at time t∗, i.e. st∗ 6= s′t∗ . If t∗ > t, then we immediately have

PA1P [A1P,I(s≤t) = i] = PA1P

[

A1P,I(s′≤t) = i
]

, and
PA2P [A2P,O(A2P,I (s))=o|A2P,I(s≤t)=i−1]
PA2P [A2P,O(A2P,I (s′))=o|A2P,I(s′≤t

)=i−1]
≤ eε

follows from the ε-pan-privacy of A2P . Thus Inequality 2 holds.

The remaining case is when t∗ ≤ t. Here,
PA2P [A2P,O (A2P,I(s))=o|A2P,I (s≤t)=i−1]
PA2P [A2P,O(A2P,I (s′))=o|A2P,I(s′≤t

)=i−1]
= 1, and

we need to upper bound
PA1P [A1P,I (s≤t)=i]
PA1P [A1P,I (s′

≤t
)=i]

. Since A1P,I(s≤t) is conditionally independent of

3We assume that it is possible to separate a concatenation into states of A2P after the fact. This assumption is
easily (but less neatly) removed using a separator character ⊥.
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A1P,I(s≤t∗−1) given A1P,I(s≤t∗), it suffices to show that
PA1P [A1P,I (s≤t∗ )=i]
PA1P

[

A1P,I (s′
≤t∗

)=i
] ≤ eε. Recall that

Ij,t is the random variable for the internal state of Aj after seeing the tth stream element. Then

it is equivalent to show
PA1P [I1,t∗=i|S≤t∗=s≤t∗]
PA1P [I1,t∗=i|S≤t∗=s′

≤t∗]
≤ eε.

We introduce some additional notation to prove this claim. i is an internal state for A1P

and is therefore a concatenation of internal states for A2P . Let ia denote the ath state in the
concatenation i, and let ia:b = ia ◦ ia+1 ◦ · · · ◦ ib, the concatenation of states ia through ib. Then
PA1P [I1,t∗=i|S≤t∗=s≤t∗ ]
PA1P

[

I1,t∗=i|S≤t∗=s′
≤t∗

]

=
PA1P [I1,t∗−1 = i1:t∗−1 | S≤t∗ = s≤t∗ ] · PA2P [I2,t∗ = it∗ | S≤t∗ = s≤t∗ , I2,t∗−1 = it∗−1]

PA1P

[

I1,t∗−1 = i1:t∗−1 | S≤t∗ = s′≤t∗

]

· PA2P

[

I2,t∗ = it∗ | S≤t∗ = s′≤t∗ , I2,t∗−1 = it∗−1

]

=
PA2P [I2,t∗ = it∗ | S≤t∗ = s≤t∗ , I2,t∗−1 = it∗−1]

PA2P

[

I2,t∗ = it∗ | S≤t∗ = s′≤t∗ , I2,t∗−1 = it∗−1

]

=
PA2P [I2,t∗ = it∗ | St∗ = st∗ , I2,t∗−1 = it∗−1]

PA2P [I2,t∗ = it∗ | St∗ = s′t∗ , I2,t∗−1 = it∗−1]

where the second equality uses the fact that s<t∗ = s′<t∗ , and the third equality uses I2,t∗ ’s
conditional independence from S≤t∗−1 given I2,t∗−1. Now, since I2,t∗−1 and St∗ are independent,

we multiply by 1 =
PA2P [I2,t∗−1=it∗−1|St∗=st∗ ]
PA2P [I2,t∗−1=it∗−1|St∗=s′

t∗ ]
to get

PA2P [I2,t∗ = it∗ | St∗ = st∗ , I2,t∗−1 = it∗−1]

PA2P [I2,t∗ = it∗ | St∗ = s′t∗ , I2,t∗−1 = it∗−1]
=

PA2P [I2,t∗ = it∗ , I2,t∗−1 = it∗−1 | St∗ = st∗ ]

PA2P [I2,t∗ = it∗ , I2,t∗−1 = it∗−1 | St∗ = s′t∗ ]
≤ eε

since A2P is ε-pan-private against two intrusions.

Next, we show how to convert this pan-private algorithm A1P into an equivalent locally
private algorithm AL.

Lemma 2. Let A1P be an ε-pan-private algorithm as described in Lemma 1. Then there ex-
ists a sequentially interactive ε-locally private algorithm AL whose transcript distribution Πt is
identical to the A1P ’s state distribution It at each time t.

Proof. At each time t, A1P computes a function A1P (it−1, st) of its current state and the current
element in the stream and concatenates it to its current state. We define AL to use A1P (it−1, ·)
as a randomizer, add the result A1P (it−1, st) to the transcript, and continue.
AL is sequentially interactive because we take a single pass through the stream. Furthermore,

because A1P is ε-pan-private and maintains all previous states, the transcript Πt of AL is an
ε-differentially private function of the user data. Thus AL is ε-locally private. Finally, recalling
that Definition 4 defined a transcript to record not only outputs but the randomizers used as
well, let Π−R

t denote Πt with the randomizers omitted. Then for any input stream s, Π−R
t is

distributed identically to It.

We now combine Lemma 1 and Lemma 2: any A2P that is ε-pan-private against two intru-
sions yields a sequentially interactive ε-locally private AL such that for any input stream s and
time t, I2,t is distributed identically to Π−R,−1

t , the most recent addition to the transcript.
⇐ (local to pan): Let AL : Π → R be a sequentially interactive ε-locally private protocol

mapping transcripts to randomizers, and let AI : I × X → I be A2P ’s internal algorithm with
initial state ∅. We define AI(∅, x1) = (∅,AL(∅),AL(∅)(x1)) and define other internal states i by
AI(i, x) = i ◦ (AL(i),AL(i)(x)), the concatenation of the existing state i and the (randomizer,
output) pair (AL(i),AL(i)(x)). Thus It = Πt at each time t. Finally, we define the output
algorithm to be the identity function AO(i) = i.

7



Since AL is ε-locally private, its final transcript Π is an ε-differentially private function of the

stream: for any transcript realization π and neighboring streams s and s′,
PAL

[Π=π|S=s]

PAL
[Π=π|S=s′] ≤ eε.

Letting I∗ be a random variable for the final internal state ofA2P , it follows that
PA2P

[I∗=π|S=s]

PA2P
[I∗=π|S=s′] ≤

eε. Thus the final internal state I of A2P is also an ε-differentially private function of the stream.
Moreover, because it is a transcript, I∗ includes a record of all previous internal states. Thus
the additional view of any two internal states (in fact, any number of internal states) is still an
ε-differentially private function of the stream: fixing times t1, . . . , tc and corresponding internal
states π1, . . . , πc,

PA2P [It1 = π1, . . . , Itc = πc, I
∗ = i | S = s]

PA2P [It1 = π1, . . . , Itc = πc, I∗ = i | S = s′]
≤ eε.

Finally, since the output of A2P is the final state I∗, A2P is ε-pan-private against arbitrarily
many (and, in particular, two) intrusions.

4 Uniformity Testing

We now turn to upper bounds for pan-privacy against a single intrusion. Our benchmark
problem is uniformity testing. In uniformity testing, a tester receives i.i.d. sample access to an
unknown discrete distribution p over [k] and must determine with nontrivial constant probability
whether p is uniform or α-far from uniform in total variation distance. Below, let Uk denote the
uniform distribution over [k].

Definition 8 (Uniformity testing). An algorithm A is a uniformity tester on m samples if,
given m i.i.d. samples from p,

1. when p = Uk, with probability ≥ 2/3 A outputs “uniform”, and

2. when ||p− Uk||TV ≥ α, with probability ≥ 2/3 A outputs “non-uniform”.

The specific choice of 2/3 is arbitrary. The important point is that there is a constant
separation between output probabilities, which can be amplified to 2/3 with a constant number
of repetitions. We therefore focus on achieving any such constant separation. Details for this
standard perspective appear in Appendix 7.

4.1 Warmup: SimplePanTest

We start with a suboptimal uniformity tester SimplePanTest. SimplePanTest is a warmup
and eventual building block for a better algorithm PanTest (Section 4.2).

Like many uniformity testers, SimplePanTest computes a statistic on the data and com-
pares it to a threshold. The statistic is designed to be small when p is uniform and large if p is
α-far from uniform. For SimplePanTest, our statistic is

Z ′ =
k
∑

i=1

(Hi −m/k)2 −Hi

m/k

where m is the number of samples and H is a noisy histogram over [k] where bin i counts the
number of occurrences of element i in the stream. H contains Laplace noise added to each bin
both before and after the stream. The first addition of noise ensures the privacy of the internal
states during the stream, while the second addition of noise is for the privacy of the final output.
Pseudocode for SimplePanTest appears below; values for m and TU are determined in the
proof of Lemma 3.

Inspired by similar statistics in non-private testing [2, 16, 3], Cai et al. [13] originally studied
Z ′ for centrally private identity testing. However, they lower bounded its variance and argued
that high variance makes it a suboptimal centrally private tester. We instead upper bound its
variance and show that Z ′ yields a nontrivial pan-private uniformity tester.
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Algorithm 1 Pan-private uniformity tester SimplePanTest

Require: privacy parameter ε, domain [k]
Set sample size m′ ∼ Poisson (m) and threshold TU

Initialize private histogram H ← Lap
(

1
ε

)k ∈ R
k

for stream elements st = s1, . . . , sm′ do

Hst ← Hst + 1
end for

H ← H + Lap
(

1
ε

)k ∈ R
k

Z ′ ←∑k
i=1

(Hi−m/k)2−Hi

m/k

if Z ′ > TU then

Output “non-uniform”
else

Output “uniform”
end if

Our argument is simple. First, we upper bound the variance of Z ′. We then apply Cheby-
shev’s inequality to upper bound Z ′ when p is uniform and lower bound Z ′ when p is α-far from
uniform. These bounds drive our choice of the threshold TU . We then compute the number of
samples m required to separate these quantities on either side of TU . Since the proof largely
consists of straightforward calculations, we defer it to Section 8 in the Appendix.

Lemma 3. For m = Ω
(

k3/4

αε +
√
k

α2

)

, SimplePanTest is an ε-pan-private uniformity tester on

m samples.

Note from the pseudocode for SimplePanTest that we actually draw m′ ∼ Poisson (m)
samples, notm. This “Poissonization” trick is important for the analysis used to prove Lemma 9.
Since Poisson (m) concentrates aroundm [15], a uniformity tester on Poisson (m) samples implies
a uniformity tester on a constant factor more samples with a constant decrease in success
probability (see Section D.4 in the survey of Canonne [14] for a more detailed discussion of
Poissonization).

4.2 Optimal pan-private tester: PanTest

We now use SimplePanTest as a building block for a more complex tester PanTest. At
a high level, PanTest splits the difference between local and central uniformity testers. We
briefly recap these approaches for context.

Centrally private uniformity testers compute a fine-grained statistic depending on the em-
pirical counts of each element i ∈ [k]. Specific methods include χ2-style statistics [13], collision-
counting [7], and empirical total variation distance from Uk [4], but all of these methods depend
on accurate counts for each i ∈ [k]. Cai et al. [13] observed that adding Laplace noise to each
such count before analyzing the statistic is centrally private. The cost is a large decrease in
accuracy. This is unfortunate in our pan-private setting, as pan-privacy appears to force the
same kind of per-count noise. Intuitively, a pan-private tester might benefit by maintaining a
coarser statistic — i.e., one that tracks fewer counts — that is easier to maintain privately.

The best known4 locally private uniformity tester, due to Acharya et al. [5], uses an extreme
version of this coarser strategy. Their approach randomly halves the domain [k] into sets U and
U c and compares the number of samples falling into each. They prove that if p is sufficiently
non-uniform to start, then p(U) and p(U c) will also be non-uniform — albeit to a much smaller
degree — with constant probability. This reduces uniformity testing to a simpler binary testing

4Note that existing lower bounds, including the one in this paper, have not ruled out the possibility that a fully

interactive locally private uniformity tester obtains better sample complexity.
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problem that, because of its much smaller domain, is more amenable to local privacy. However,
it does so at the cost of a large reduction in testing distance, which makes the core distinguishing
problem harder. Thus both locally private and pan-private versions of this approach have sample
complexity Ω(k). Intuitively, because pan-privacy does not force as much noise as local privacy,
a pan-private algorithm might benefit by maintaining a finer statistic.

PanTest capitalizes on both of these ideas. First, it randomly partitions [k] into n groups
G1, . . . , Gn of size Θ(k/n). It then runs SimplePanTest to test uniformity of the induced
distribution over [n], treating samples falling in each Gj as samples of j ∈ [n].

PanTest thus intermediates between the central and local approaches. It chooses n =

n(α, ε, k) according to k2/3ε4/3

α4/3 . When k2/3ε4/3

α4/3 < 2, n(α, ε, k) = 2 and PanTest uses the half-

partition approach from local privacy. When k2/3ε4/3

α4/3 > k, then n(α, ε, k) = k and PanTest uses

the unpartitioned approach from central privacy. Finally, when k2/3ε4/3

α4/3 ∈ [2, k], n(α, ε, k) =

⌊k2/3ε4/3

α4/3 ⌋ and PanTest takes a middle ground. These choices enable PanTest to calibrate
the noise contributed by privately maintaining different counts with the testing distance α
Making this tradeoff work relies crucially on the O

(

1
α

)

dependence on distance achieved by

SimplePanTest in its k3/4 term. In contrast, the Ω
(

k
α2

)

dependence of the best known
locally private uniformity tester yields no improvement with this approach. Pseudocode for
PanTest appears below.

Algorithm 2 Improved pan-private uniformity tester PanTest

Require: privacy parameter ε, domain [k]

if k2/3ε4/3

α4/3 < 2 then

n← 2
else if k2/3ε4/3

α4/3 > k then

n← k
else

n← ⌊k2/3ε4/3
α4/3 ⌋

end if

Randomly partition [k] into n groups G1, . . . , Gn of size Θ(k/n)
Run SimplePanTest(ε, [n]), treating each element st ∈ Gj as j ∈ [n]

For this reduction to work, the aforementioned decrease in testing distance between [k] and
[n] must not be too large. We show this in Lemma 4, which generalizes a similar result of Acharya
et al. [5] for the special case of a partition into two subsets. As pointed out by a reviewer, this
generalization is not new (see Theorem 3.2 from Acharya et al. [6]), but we include a proof in
Section 8 of the Appendix for completeness.

Lemma 4. Let p be a distribution over [k] such that ||p− Uk||TV = α and let G1, . . . , Gn be a
uniformly random partition of [k] into n > 1 subsets of size Θ(k/n). Define induced distribution
pn over [n] by pn(j) =

∑

i∈Gj
p(i) for each j ∈ [n]. Then, with probability ≥ 1

954 over the
selection of G1, . . . , Gn,

||pn − Un||TV = Ω
(

α
√

n
k

)

.

Due to the 1/954 success probability of Lemma 4, we have a smaller (but still constant)
separation between output probabilities. We thus use the amplification argument discussed after
Definition 8 to get Theorem 2. The guarantee combines Lemma 4 with Lemma 3, substituting
n for k and α

√

n
k for α.

Theorem 2. For m = Ω
(

k2/3

α4/3ε2/3
+

√
k

α2 +
√
k

αε

)

, PanTest is an ε-pan-private uniformity tester

on m samples.
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Proof. Privacy: PanTest only interacts with the data through SimplePanTest, so Pan-

Test inherits SimplePanTest’s pan-privacy guarantee.
Sample complexity: Substituting n for k and α

√

n
k for α in Lemma 3, we require

m = Ω

(

n1/4
√
k

αε
+

k

α2
√
n

)

. (3)

We consider the three cases for k2/3ε4/3

α4/3 . Together, these cases exhaust the possible relationships
among α, k, and ε, with a different highest-order term in each. This leads to the three terms in
our bound.

First, if k2/3ε4/3

α4/3 ∈ [2, k], then n = ⌊k2/3ε4/3

α4/3 ⌋. By Equation 3 it is enough for

m = Ω

(

k1/6ε1/3
√
k

α1/3αε
+

k

α2 · k1/3ε2/3

α2/3

)

= Ω

(

k2/3

α4/3ε2/3

)

.

Next, if k2/3ε4/3

α4/3 > k, then n = k, and Equation 3 necessitates m = Ω
(

k3/4

αε +
√
k

α2

)

. The

condition k2/3ε4/3

α4/3 > k gives ε4

α4 > k, so ε
α > k1/4, and then multiplying both sides by

√
k

αε gives
√
k

α2 > k3/4

αε .Thus it suffices for m = Ω
(√

k
α2

)

.

Finally, if k2/3ε4/3

α4/3 < 2, then n = 2 and by Equation 3 we require m = Ω
(√

k
αε + k

α2

)

.

k2/3ε4/3

α4/3 < 2 implies ε < 2α√
k
, so multiplying both sides by k

α2ε yields k
α2 < 2

√
k

αε and
√
k

αε = Ω
(

k
α2

)

.

Thus it suffices for m = Ω
(√

k
αε

)

.

5 Lower Bounds

We now turn to lower bounds. Our first result gives a tight (in k) Ω
(

k2/3

α4/3ε2/3

)

lower bound for ε-

pan-private testing (Section 5.1). Our second result extends the previous Ω
(

k
α2ε2

)

lower bound
for noninteractive (ε, δ)-locally private uniformity testing ([5]) to the sequentially interactive
case (Section 5.2).

Both of our lower bounds adapt the approach used by Diakonikolas et al. [20] to prove test-
ing lower bounds under memory restrictions and communication restrictions. Like Diakonikolas
et al. [20], we consider the problem of distinguishing between two distributions. If uniform ran-
dom variable X is 0 then the distribution is uniform. If X is 1 then each element has probability
mass slightly perturbed from uniform such that the distribution is α-far from uniform in total
variation distance. Our argument then proceeds by upper bounding the mutual information
between the random variable X and the algorithm’s internal state (in the pan-private case) or
transcript (in the locally private case). Controlling this quantity lower bounds the number of
samples required to identify X . This gives the final uniformity testing sample complexity lower
bounds.

The main difference in our lower bounds is that Diakonikolas et al. [20] restrict their algorithm
to use an internal state with b bits of memory. This memory restriction immediately implies that
the internal state’s entropy (and thus its mutual information with any other random variable)
is also bounded by b. In our case, we must use our privacy restrictions to replace this result.
Doing so constitutes the bulk of our arguments.

Finally, we note that these results add to lines of work conceptually connecting restricted
memory to pan-privacy [26, 36] and connecting restricted communication to local privacy [33,
5, 22, 6, 31].

5.1 Pan-private Lower Bound

We start with the pan-private lower bound. While we state our result using α ≤ 1/2, the choice
of 1/2 is arbitrary: the same argument works for any α bounded below 1 by a constant. A short
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primer on the information theory used in our argument appears in Appendix 9.

Theorem 3. For ε = O(1) and α ≤ 1/2, any ε-pan-private uniformity tester requires m =

Ω
(

k2/3

α4/3ε2/3
+

√
k

α2 + 1
αε

)

samples.

Proof. First, recall the centrally private lower bound [4]:

m = Ω

(√
k

α2
+

√
k

α
√
ε
+

k1/3

α4/3ε2/3
+

1

αε

)

.

We will prove m = Ω
(

k2/3

α4/3ε2/3

)

in the pan-private case. k2/3

α4/3ε2/3
dominates the third term

above and also dominates the second term for ε = O(1), so this produces our final lower bound.
We start with the lower bound construction used by Diakonikolas et al. [20], which itself

uses the Paninski lower bound construction [39]. Let X be a uniform random bit determining
which of two distributions over [2k] generates the samples. For both X = 0 and X = 1 we draw
Y1, . . . , Yk ∈ {±1} i.i.d. uniformly at random. If X = 0, p = U2k. If instead X = 1, then we

pair the bins as {1, 2}, {3, 4}, . . . , {2k− 1, 2k} and define p(2j − 1) =
1+Yjα

2k and p(2j) =
1−Yjα

2k .
Thus if X = 0 then p is uniform, and if X = 1 each pair i of bins is biased toward one of the bins
according to Yj . Equivalently, we can view each sample St ∼ p as a pair (Jt, Vt) where Jt ∈ [k]
determines the bin pair chosen and Vt ∈ {0, 1} determines which of the bin pair is chosen. Thus
Jt ∼ Uk, and Vt ∼ Ber

(

1
2

)

if X = 0 or Vt ∼ Ber ([1 + αYjt ]/2) if X = 1, where Ber (·) denotes
the Bernoulli distribution.

To avoid confusion with the mutual information I(·), denote by Mt the random variable
for the internal state of the algorithm after seeing sample St. Our goal is to upper bound the
mutual information between X and the internal state after m samples,

I(X ;Mm) =

m
∑

t=1

I(X ;Mt)− I(X ;Mt−1)

≤
m
∑

t=1

I(X ;Mt−1, St)− I(X ;Mt−1)

=

m
∑

t=1

I(X ;St |Mt−1)

=

m
∑

t=1

I(X ;Vt |Mt−1, Jt) (4)

where the last equality uses St = (Jt, Vt) and the independence of X and Jt
We now have a narrower goal: we choose an arbitrary term in the sum in Equation (4) and

upper bound it. For neatness, we use the convention that H2(p) is the entropy of a Ber (p)
random variable. When subscripting we abuse notation and let a ∼ A denote a sample a from
the distribution for random variable A. The following reproduces (and slightly expands) the first
part of the argument given by Diakonikolas et al. [20]. It largely reduces to rewriting mutual
information in terms of binary entropy and expanding conditional probabilities.

We start by rewriting the chosen term I(X ;Vt |Mt−1, Jt) as

= Em∗∼Mt−1
[Ej∼Jt [H(Vt |Mt−1 = m∗, Jt = j)]]

− Em∗∼Mt−1
[Ej∼Jt [Ex∼X [H(Vt |Mt−1 = m∗, Jt = j,X = x)]]]

= Em∗∼Mt−1
[Ej∼Jt [H2(P [Vt = 0 |Mt−1 = m∗, Jt = j])]]

− Em∗∼Mt−1
[Ej∼Jt [P [X = 1 |Mt−1 = m∗, Jt = j]H2(P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1])]]

− Em∗∼Mt−1
[Ej∼Jt [P [X = 0 |Mt−1 = m∗, Jt = j]H2(P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0])]]
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where the second equality uses H2(p) = H2(1− p). Let βm∗,j
t−1 = P [X = 1 |Mt−1 = m∗, Jt = j].

Since Jt is a uniform draw from [k] independent of Mt−1, we now continue the above chain of
equalities as

= Em∗∼Mt−1





1

k

k
∑

j=1

H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j])





− Em∗∼Mt−1





1

k

k
∑

j=1

βm∗,j
t−1 H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1])





− Em∗∼Mt−1





1

k

k
∑

j=1

(1 − βm∗,j
t−1 )H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0])



 . (5)

Now recall that Vt ∼ Ber
(

1
2

)

when X = 0 and Vt ∼ Ber ([1 + αYJt ]/2) when X = 1. Then we
can rewrite P [Vt = 0 |Mt−1 = m∗, Jt = j] as

= βm∗,j
t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j] + (1− βm∗,j

t−1 )P [Vt = 0 | X = 0,Mt−1 = m∗, Jt = j]

= βm∗,j
t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j, Yj = 1]P [Yj = 1 |Mt−1 = m∗]

+ βm∗,j
t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j, Yj = −1]P [Yj = −1 |Mt−1 = m∗]

+ (1 − βm∗,j
t−1 )P [Vt = 0 | X = 0]

= βm∗,j
t−1

(

P [Yj = 1 |Mt−1 = m∗] · 1− α

2
+ P [Yj = −1 |Mt−1 = m∗] · 1 + α

2

)

+
1− βm∗,j

t−1

2

= βm∗,j
t−1 E

[

1− αYj

2
|Mt−1 = m∗

]

+
1− βm∗,j

t−1

2

=
βm∗,j
t−1 (1− αE [Yj |Mt−1 = m∗]

2
+

1− βm∗,j
t−1

2
=

1− αβm∗,j
t−1 E [Yj |Mt−1 = m∗]

2
.

where the first equality uses the independence of Yj from X and Jt as well as the independence
of Vt from Mt−1 and Jt conditioned on X = 0, and the second equality uses the independence
of Vt and Mt−1 conditioned on X, Jt = j, and Yj . Thus

P [Vt = 0 |Mt−1 = m∗, Jt = j] =
1− αβm∗,j

t−1 E [Yj |Mt−1 = m∗]

2
.

Using the work above, we can also rewrite

P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1] =
1− αE [Yj |Mt−1 = m∗]

2

and

P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0] =
1

2
.

In the following chain of equalities, for space we let E be the event that Mt−1 = m∗. Now we
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can return to Equation 5 and, since H2(
1
2 ) = 1, get

(5) = Em∗∼Mt−1





1

k

k
∑

j=1

(

H2

(

1− αβm∗,j
t−1 E [Yj | E]

2

)

− βm∗,j
t−1 H2

(

1− αE [Yj | E]

2

)

− (1− βm∗,j
t−1 )

)





= Em∗∼Mt−1





1

k

k
∑

j=1

(

βm∗,j
t−1

[

1−H2

(

1− αE [Yj | E]

2

)]

−
[

1−H2

(

1− αβm∗,j
t−1 E [Yj | E]

2

)])





≤ Em∗∼Mt−1





1

k

k
∑

j=1

[

1−H2

(

1− αE [Yj | E]

2

)]





= Em∗∼Mt−1





1

k

k
∑

j=1

[

1−H2

(

1 + αE [Yj | E]

2

)]



 (6)

where the inequality uses H2, β
m∗,j
t−1 ≤ 1 and the equality uses H2

(

1
2 − b

)

= H2

(

1
2 + b

)

. We now

control the terms withH2. The Taylor series forH2(p) near 1/2 isH2(p) = 1− 1
2 ln(2)

∑∞
n=1

(1−2p)2n

n(2n−1) ,

so for a < 1/2

1−H2

(

1

2
+ a

)

<
∞
∑

n=1

(2a)2n

n2
= 4a2

∞
∑

n=1

(2a)2n−2

n2
< 4a2

∞
∑

n=1

1

n2
=

2a2π2

3
.

Substituting 1−H2

(

1
2 + a

)

< 2π2a2

3 into Inequality 6 and tracing back to Equation 4,

I(X ;Vt |Mt−1, Jt) <
π2α2

6k
Em∗∼Mt−1





k
∑

j=1

E [Yj |Mt−1 = m∗]2



 (7)

We now depart from the argument of Diakonikolas et al. [20]. Our new goal is to upper
bound

A = Em∗∼Mt−1





k
∑

j=1

E [Yj |Mt−1 = m∗]2





= Em∗∼Mt−1





k
∑

j=1

(2P [Yj = 1 |Mt−1 = m∗]− 1)
2





= Em∗∼Mt−1





k
∑

j=1

(

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
− 1

)2




by Bayes’ rule and P [Yj = 1] = 1/2. To upper bound this sum, we choose an arbitrary j

and show that
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] is close to 1. We pause to recap what we’ve accomplished and

what remains. Note that proving
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] ≈ 1 “looks like” a privacy statement: we are

claiming that the state distribution Mt−1 looks similar when its input distribution is slightly
different. However, there is still a gap between a difference in input distribution and a difference
in input. We close this gap in the following lemma, which relies on pan-privacy.

Lemma 5.

∣

∣

∣

P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] − 1

∣

∣

∣ = O
(

αεt
k

)

.

Proof. We will prove this claim by showing that both the numerator and denominator of
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] fall into a bounded range. This implies that the whole fraction is near 1.
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First consider the case X = 0. Then the Yj are irrelevant, so
∣

∣

∣

P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] − 1

∣

∣

∣
= 0.

Next, consider the case X = 1. It will be useful to consider an equivalent method of sampling
the stream S. At each time step t, we first sample a bin pair Jt ∼U [k] uniformly at random
from the k bin pairs. Having sampled bin pair j, with probability 1 − α we take a uniform
random draw from {2j − 1, 2j}. With the remaining probability α, if Yj = 1 then we sample
2j− 1, and if Yj = −1 then we sample 2j. Note that this method is equivalent because if Yj = 1
then P [sample 2j − 1] = 1

k · 1−α
2 + α

k = 1+α
2k and P [sample 2j] = 1−α

2k , with these equalities
swapped for Yj = −1. With this view of sampling, let Eα

j,t = 1 if Jt = j and we sample from

the α mixture component and Eα
j,t = 0 otherwise. Finally, let Nα

j,t =
∑t

t′=1 E
α
j,t′ , the number

of samples from the α mixture component of bin pair j through the first t stream elements.
We pause to justify bothering with this alternate view. We use it because the original

ratio
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] is comparing the views of Mt−1 depending on Yj . It is not obvious how

to directly use pan-privacy to reason about this comparison because Yj is a property of the
distribution generating the samples (stream elements) rather than the samples themselves. In
contrast, pan-privacy is a guarantee formulated in terms of the samples. By defining the Eα

j,t

and Nα
j,t above we better connect Yj to the actual samples received. The alternate view therefore

makes using pan-privacy easier.

We first analyze the denominator of
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] . We can rewrite it as

P [Mt−1 = m∗] =
t−1
∑

q=0

P
[

Mt−1 = m∗ | Nα
j,t−1 = q

]

· P
[

Nα
j,t−1 = q

]

. (8)

Fix some q ∈ {0, 1, . . . , t−1}. Let Sj,≤t∗ be the random variable for the bin pairs and component
of j sampled through time t∗, i.e. Sj,≤t∗ = {(Jt, Eα

j,t)}t
∗

t=1. Note that this means the tuple (j′, 1)
is possible only when j′ = j. Define Sαj,q,t to be the set of realizations of Sj,≤t with exactly q
samples from the α component of bin pair j. Then

P
[

Mt−1 = m∗ | Nα
j,t−1 = q

]

=
∑

s∈Sα
j,q,t−1

P [Mt−1 = m∗ | Sj,≤t−1 = s] · P
[

Sj,≤t−1 = s | Nα
j,t−1 = q

]

=
∑

s∈Sα
j,q,t−1

1
(

t−1
q

)

kt−1−q
· P [Mt−1 = m∗ | Sj,≤t−1 = s] (9)

where the second equality uses the fact that, conditioned on Nα
j,t−1 = q, there are

(

t−1
q

)

kt−1−q

equiprobable realizations of Sj,≤t−1. Note that we are now reasoning directly about the stream’s
effect on the state Mt−1. This is much closer to the application of pan-privacy that we set out
to achieve.

Consider a length-(t − 1) realization s ∈ Sαj,q,t−1. Recall that each index of s takes one of
j + 1 possible values: (1, 0), (2, 0), . . . , (k, 0), or (j, 1). Let s′ ∈ Sα

j,0,t−1 be a realization such
that the Hamming distance dH(s, s′) = q, i.e. s and s′ differ in exactly q indices. Then because
Mt−1 is an ε-differentially private function of the stream, by group privacy (see e.g. Theorem
2.2 in the survey of Dwork and Roth [27])

P [Mt−1 = m∗ | Sj,≤t−1 = s] ≤ eqεP [Mt−1 = m∗ | Sj,≤t−1 = s′] .

Moreover, there are exactly kq such s′ for each such s. Denote this set of s′ by Ts,q. We can
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now continue

(9) =
∑

s∈Sα
j,q,t−1

1

kq

∑

s′∈Ts,q

1
(

t−1
q

)

kt−1−q
· P [Mt−1 = m∗ | Sj,≤t−1 = s]

≤
∑

s∈Sα
j,q,t−1

∑

s′∈Ts,q

eqε
(

t−1
q

)

kt−1
· P [Mt−1 = m∗ | Sj,≤t−1 = s′]

=
∑

s′∈Sα
j,0,t−1

eqε

kt−1
· P [Mt−1 = m∗ | Sj,≤t−1 = s′]

=
∑

s′∈Sα
j,0,t−1

eqε · P [Mt−1 = m∗ | Sj,≤t−1 = s′] · P
[

Sj,≤t−1 = s′ | Nα
j,t−1 = 0

]

= eqεP
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

where the first inequality uses the above group privacy guarantee; the second equality uses the
fact that, for a given s′ ∈ Ts,q, there are exactly

(

t−1
q

)

length-(t−1) realizations s with q samples

from the α mixture component from bin pair j and dH(s, s′) = q; and the last equality uses the
fact that Mt−1 and Nα

j,t−1 are independent conditioned on Sj,≤t−1. Note that this expression
depending only on the conditioning for Nα

j,t−1 = 0 is useful because it will give us a “fixed point”
to relate the numerator and denominator analyses. By expressing both quantities with respect
to this condition, we can better compare them (and in particular, obtain a cancellation in the
final ratio).

Returning to Equation 8

P [Mt−1 = m∗] =
t−1
∑

q=0

P
[

Mt−1 = m∗ | Nα
j,t−1 = q

]

· P
[

Nα
j,t−1 = q

]

we get

P [Mt−1 = m∗] ≤
t−1
∑

q=0

eqεP
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

· P
[

Nα
j,t−1 = q

]

= P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
t−1
∑

q=0

eqεP
[

Nα
j,t−1 = q

]

= P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

· E
[

eεN
α
j,t−1

]

. (10)

To analyze this last quantity, recall that we defined random variable Eα
j,t as the indicator variable

for drawing stream element t from the α mixture component of bin pair j. Then

E
[

eεNj,t−1

]

= E

[

e
∑t−1

i=1
εEα

j,i

]

=

t−1
∏

i=1

E

[

eεE
α
j,i

]

=
[(

1− α

k

)

e0 +
α

k
eε
]t−1

=

[

1 +
α(eε − 1)

k

]t−1

.

Since 1 + x ≤ ex, [1 + α(eε−1)
k ]t−1 ≤ e

α(eε−1)(t−1)
k . We analyze this quantity in cases.

In the first case, α(eε−1)(t−1)
k ≥ 1. Then t > k

α(eε−1) , and since ε = O(1) there exists constant

C such that t > C k
αε . t ≤ m so m > C k

αε . However, by the non-private uniformity testing

lower bound, I(X ;Mm) = Ω(1) requires m = Ω
(√

k
α2

)

. This means we have some constant C′

such that

m > C′
(√

k

α2

)1/3
(

k

αε

)2/3

= Ω
(

k5/6

α4/3ε2/3

)

(11)

which suffices for our overall lower bound.
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All that remains is the second case, α(eε−1)(t−1)
k < 1. Then since ex ≤ 1 + 2x for x ∈ [0, 1],

e
α(eε−1)(t−1)

k ≤ 1 + 2α(eε−1)(t−1)
k . Again using ε = O(1), there exists constant C1 such that

[

1 + α(eε−1)
k

]t−1

≤ e
α(eε−1)(t−1)

k ≤ 1 + C1
αε(t−1)

k . Thus we return to Equation 10 and get

P [Mt−1 = m∗] ≤ P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
(

1 + C1
αε(t−1)

k

)

.

If we repeat this process using the other direction of group privacy, we get

P [Mt−1 = m∗] ≥ P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

[

1 +
α(e−ε − 1)

k

]t−1

.

k ≥ 2, ε > 0, and α ≤ 1, so α(e−ε−1)
k ∈ (−1, 0). Thus

[

1 + α(e−ε−1)
k

]t−1

≥ 1+ α(e−ε−1)(t−1)
k . By

ε = O(1), we get a constant C2 such that
[

1 + α(e−ε−1)
k

]t−1

≥ 1− C2
αε(t−1)

k . Tracing back,

P [Mt−1 = m∗] ≥ P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
(

1− C2
αε(t−1)

k

)

.

Returning to the beginning of our proof, we can repeat the argument for the numerator of
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] :

P [Mt−1 = m∗ | Yj = 1] =

t−1
∑

q=0

P
[

Mt−1 = m∗ | Nα
j,t−1 = q, Yj = 1

]

· P
[

Nα
j,t−1 = q | Yj = 1

]

=

t−1
∑

q=0

P
[

Mt−1 = m∗ | Nα
j,t−1 = q, Yj = 1

]

· P
[

Nα
j,t−1 = q

]

since Nα
j,t and Yj are independent. Fixing a q, we rewrite P

[

Mt−1 = m∗ | Nα
j,t−1 = q, Yj = 1

]

=
∑

s∈Sα
j,q,t−1

P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] · P
[

Sj,≤t−1 = s | Nα
j,t−1 = q

]

=
∑

s∈Sα
j,q,t−1

1
(

t−1
q

)

kt−1−q
· P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] (12)

where the first equality uses the independence of Mt−1 and Nα
j,t−1 conditioned on Sj,t−1 as well

as the independence of Sj,≤t−1 and Yj , and the second equality uses the same counting argument
as in the denominator case. Next, ε-pan-privacy gives

P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] ≤ eqεP [Mt−1 = m∗ | Sj,≤t−1 = s′, Yj = 1]

and so

(12) =
∑

s∈Sα
j,q,t−1

1

kq

∑

s′∈Ts,q

1
(

t−1
q

)

kt−1−q
· P [Mt−1 = m∗ | Sj,t−1 = s, Yj = 1]

≤
∑

s∈Sα
j,q,t−1

∑

s′∈Ts,q

eqε
(

t−1
q

)

kt−1
P [Mt−1 = m∗ | Sj,t−1 = s′, Yj = 1]

=
∑

s′∈Sα
j,q,t−1

eqε

kt−1
· P [Mt−1 = m∗ | Sj,t,−1 = s′, Yj = 1]

=
∑

s′∈Sα
j,0,t−1

eqε · P [Mt−1 = m∗ | Sj,≤t−1 = s′, Yj = 1] · P
[

Sj,≤t−1 = s′ | Nα
j,t−1 = 0, Yj = 1

]

= eqεP
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]
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where the last equality uses the independence of Sj,≤t−1 and Yj conditioned on Nα
j,t−1 = 0 and

the independence of Mt−1 and Yj and Nα
j,t−1 conditioned on Sj,≤t−1. In turn we get

P [Mt−1 = m∗ | Yj = 1] ≤ P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

t−1
∑

q=0

eqεP
[

Nα
j,t−1 = q

]

which is the same quantity as in Equation 10. The same analysis thus gives

P [Mt−1 = m∗ | Yj = 1] ≤ P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
(

1 + C1
αε(t− 1)

k

)

as in the denominator case, and

P [Mt−1 = m∗ | Yj = 1] ≥ P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
(

1− C2
αε(t− 1)

k

)

.

Summing up, both P [Mt−1 = m∗] and P [Mt−1 = m∗ | Yj = 1] lie in the interval

[

P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
(

1− C2
αε(t− 1)

k

)

,P
[

Mt−1 = m∗ | Nα
j,t−1 = 0

]

·
(

1 + C1
αε(t− 1)

k

)]

.

Thus

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
≤ 1 + C1

αε(t−1)
k

1− C2
αε(t−1)

k

= 1 +
C1 + C2

1− C2
αε(t−1)

k

· αε(t− 1)

k

= 1 +O

(

αεt

k

)

where the last equality uses αε(t−1)
k < 1

2C2
(otherwise, we get m = Ω

(

k
αε

)

and can use the
argument given in Equation 11). Similarly,

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
≥ 1− C2

αε(t−1)
k

1 + C1
αε(t−1)

k

= 1− C1 + C2

1 + C1
αε(t−1)

k

· αε(t− 1)

k

= 1−O

(

αεt

k

)

and the claim follows.

Lemma 5 gives A ≤ α2ε2t2

k , so α2A
k ≤ α4ε2t2

k2 . Returning to Equation 7 and using t ≤ m,

I(X ;Vt | Mt−1, Jt) = O
(

α4ε2m2

k2

)

. Then we trace back to Equation 4 and get I(X ;Mm) =

O
(

α4ε2m3

k2

)

. Finally, a uniformity tester requires I(X ;Mm) = Ω(1), so m = Ω
(

k2/3

α4/3ε2/3

)

.

5.2 Locally Private Lower Bound

We now move to the locally private lower bound. We state our result for ε-locally private
algorithms, but this is without loss of generality by the work of Bun et al. [12] and Cheu et al.
[19], which demonstrates an equivalence between (ε, δ)- and (ε, 0)-local privacy for reasonable
parameter ranges.
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At a high level, the main difference the pan-private and sequentially interactive lower bounds
is that the locally private algorithm does not see any sample St. Instead, the algorithm sees a
randomizer output based on St. We can therefore use past work quantifying the information
loss between a randomizer’s input and output [23] to bound information learned more tightly
than under pan-privacy. This partially explains, for example, the locally private lower bound’s
different dependence on ε. Replacing the memory upper bound used by Diakonikolas et al. [20]
with the local privacy restriction also requires a different argument than in the pan-private case.

Theorem 4. For ε = O(1), any sequentially interactive ε-locally private uniformity tester
requires m = Ω

(

k
α2ε2

)

samples.

Proof. Let Mt be the random variable for the message sent by user t with sample St, and let M1:t

be the concatenation of messages sent through time t. We start by distinguishing our approach
for this lower bound from its pan-private analogue. Recall that in the pan-private lower bound
we expressed the mutual information between the distribution parameter X and the internal
state after m samples Mm as I(X ;Mm) =

∑m
t=1 I(X ;St | Mt−1). Here, we want to control

the mutual information between X and the transcript through m samples, I(X ;M1:m). A key
difference in the local setting is that the algorithm does not see any sample St. Instead, the
algorithm sees a randomizer output based on St. We should therefore expect some information
loss between the sample and its randomizer output. We formalize this using existing local
privacy work (Lemma 6) and get I(X ;M1:m) <

∑m
t=1 O(ε2) · I(X ;St | M1:t−1). This partially

explains the locally private lower bound’s different dependence on ε.
More formally, by the chain rule for mutual information, I(X ;M1:m) =

∑m
t=1 I(X ;Mt |

M1:t−1). Choose one term I(X ;Mt | M1:t−1) and fix a value m for M1:t−1. We can rewrite
I(X ;Mt |M1:t−1 = m) as

= EX|M1:t−1=m [DKL (Mt | X,M1:t−1 = m||Mt |M1:t−1 = m)]

= P [X = 0 |M1:t−1 = m]DKL (Mt | X = 0,M1:t−1 = m||Mt |M1:t−1 = m)

+ P [X = 1 |M1:t−1 = m]DKL (Mt | X = 1,M1:t−1 = m||Mt |M1:t−1 = m) . (13)

M1:m is generated by a sequentially interactive ε-locally private protocol. We can therefore use
the following result from Duchi et al. [23].

Lemma 6 (Theorem 1 [23]). Let Q be the output distribution for an ε-local randomizer in a
sequentially interactive protocol. For any two input distributions P1 and P2, the induced output
distributions Q1 and Q2 have

DKL (Q1||Q2) +DKL (Q2||Q1) ≤ 4(eε − 1)2||P1 − P2||2TV .

Here, we let P1 be the distribution for St | M1:t−1 = m, P2 for St | X = 0,M1:t−1 = m,
and P3 for St | X = 1,M1:t−1 = m. Q1 is then the distribution for Mt | M1:t−1 = m, Q2 for
Mt | X = 0,M1:t−1 = m, and Q3 for Mt | X = 1,M1:t−1 = m. Lemma 6 then gives

(13) ≤ 4(eε − 1)2
[

P [X = 0 |M1:t−1 = m] ||P1 − P2||2TV + P [X = 1 |M1:t−1 = m] ||P1 − P3||2TV

]

≤ 2(eε − 1)2[P [X = 0 |M1:t−1 = m]DKL (P1||P2) + P [X = 1 |M1:t−1 = m]DKL (P1||P3)]

= 2(eε − 1)2I(X ;St |M1:t−1 = m)

where the second inequality uses Pinsker’s inequality (Lemma 12 in the Appendix). Now we
can quantify the loss in information between the sample St and the private message Mt:

I(X ;M1:m) =

m
∑

t=1

I(X ;Mt |M1:t−1)

≤
m
∑

t=1

2(eε − 1)2I(X ;St |M1:t−1)

≤
m
∑

t=1

2(eε − 1)2I(X ;Vt |M1:t−1, Jt) (14)
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and, by the same reasoning as in the proof of Theorem 3,

I(X ;Vt |M1:t−1, Jt) = O





α2

k
EM1:t−1





k
∑

j=1

E [Yj |M1:t−1]
2









= O





α2

k

k
∑

j=1

EM1:t−1

[

E [Yj |M1:t−1]
2
]



 . (15)

Next, we choose a term j of the sum in Equation 15 and upper bound it. We first rewrite it
to incorporate Y−j = (Y1, Y2, . . . , Yj−1, Yj+1, . . . , Yk), i.e. the random variable for all Yj′ where
j′ 6= j. Incorporating Y−j will be useful for controlling dependencies between messages and the
Yj later in the argument. Let Uj denote the set of possible realizations for Y−j . Then we expand

EM1:t−1

[

E [Yj |M1:t−1]
2
]

= EM1:t−1











∑

u∈Uj

P [Y−j = u |M1:t−1]E [Yj |M1:t−1, Y−j = u]





2






and use Cauchy-Schwarz to upper bound the squared sum by




∑

u∈Uj

P [Y−j = u |M1:t−1]E [Yj |M1:t−1, Y−j = u]
2



 ·





∑

u∈Uj

P [Y−j = u |M1:t−1]





= EY−j

[

E [Yj |M1:t−1, Y−j ]
2
]

· 1.

Returning to Equation 15 gives

I(X ;Vt |M1:t−1, Jt) = O





α2

k

k
∑

j=1

EM1:t−1,Y−j

[

E [Yj |M1:t−1, Y−j ]
2
]





and in turn we rewrite the RHS inside O (·) as

α2

k

t−1
∑

i=1

k
∑

j=1

(

EM1:i,Y−j

[

E [Yj |M1:i, Y−j ]
2
]

− EM1:i−1,Y−j

[

E [Yj |M1:i−1, Y−j ]
2
])

. (16)

We now fix some i and want to upper bound

k
∑

j=1

(

EM1:i,Y−j

[

E [Yj |M1:i, Y−j ]
2
]

− EM1:i−1,Y−j

[

E [Yj |M1:i−1, Y−j ]
2
])

.

Choose one term j and define γj = P [Yj = 1 |M1:i, Y−j ]. Then we get

EM1:i,Y−j

[

E [Yj |M1:i, Y−j ]
2
]

= EM1:i,Y−j

[

(γj − (1− γj))
2
]

= EM1:i,Y−j

[

4γ2
j − 4γj + 1

]

= 4EM1:i,Y−j

[

γ2
j

]

− 4EM1:i,Y−j [γj ] + 1

= 4EM1:i,Y−j

[

γ2
j

]

− 1

where the last equality uses

4EM1:i,Y−j [γj ] = 4EM1:i,Y−j [P [Yj = 1 |M1:i, Y−j ]] = 4P [Yj = 1] = 2.

By similar reasoning, if we define ηj = P [Yj = 1 |M1:i−1, Y−j ] then we get

EM1:i−1,Y−j

[

E [Yj |M1:i−1, Y−j ]
2
]

= 4EM1:i−1,Y−j

[

η2j
]

− 1.
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Tracing back, our goal is now to upper bound

EM1:i,Y−j

[

E [Yj |M1:i, Y−j ]
2
]

− EM1:t−1,Y−j

[

E [Yj |M1:i−1, Y−j ]
2
]

= 4
(

EM1:i,Y−j

[

γ2
j

]

− EM1:i−1,Y−j

[

η2j
])

. (17)

Our analysis will be easier if we restrict the message space for M1, . . . ,Mi to be binary. We do
so by a result from Bassily and Smith [9]. This again relies on the local privacy of the protocol.

Lemma 7 (Theorem 4.1 [9]). Given a sequentially interactive ε-locally private protocol with
expected number of randomizer calls T , there exists an equivalent sequentially interactive ε-
locally private protocol with expected sample complexity eεT where each user sends a single bit
from a single randomizer call.

The cost of this transformation is an eε blowup in expected sample complexity and an
additional O(n log(log(n))) bits of public randomness. First, since we assumed ε = O(1), by
Markov’s inequality we can trade an arbitrarily small constant c decrease in overall success
probability for a constant (O(eε/c) = O(1)) blowup in sample complexity. Combined with our
assumption of arbitrary access to public randomness for locally private protocols, it is without
loss of generality to assume all of our M1, . . . ,Mi are binary.5

Returning to Equation 17, fix M1:i−1 and Y−j below. Then

EM1:i,Y−j

[

γ2
j

]

= P [Mi = 1] · P [Yj = 1 |Mi = 1]
2
+ P [Mi = 0] · P [Yj = 1 |Mi = 0]

2

=
[P [Mi = 1 | Yj = 1] · P [Yj = 1]]

2

P [Mi = 1]
+

[P [Mi = 0 | Yj = 1] · P [Yj = 1]]
2

P [Mi = 0]

= η2j

[

P [Mi = 1 | Yj = 1]2

P [Mi = 1]
+

P [Mi = 0 | Yj = 1]2

P [Mi = 0]

]

where the second equality uses Bayes’ rule. Now, using −2x+2y− 2(1− x) + 2(1− y) = 0 with
x = P [Mi = 1 | Yj = 1] and y = P [Mi = 1], we get

−2P [Mi = 1 | Yj = 1] + 2P [Mi = 1]− 2P [Mi = 0 | Yj = 1] + 2P [Mj = 0] = 0.

We can now add 0 inside the bracketed term to get

η2j

[

P [Mi = 1 | Yj = 1]
2

P [Mi = 1]
+

P [Mi = 0 | Yj = 1]
2

P [Mi = 0]

]

= η2j [A+B]

where

A =
P [Mi = 1 | Yj = 1]2 − 2P [Mi = 1 | Yj = 1]P [Mi = 1] + 2P [Mi = 1]2

P [Mi = 1]

=
(P [Mi = 1 | Yj = 1]− P [Mi = 1])

2

P [Mi = 1]
+ P [Mi = 1]

and

B =
P [Mi = 0 | Yj = 1]

2 − 2P [Mi = 0 | Yj = 1]P [Mi = 0] + 2P [Mi = 0]
2

P [Mi = 0]

=
(P [Mi = 0 | Yj = 1]− P [Mi = 0])

2

P [Mi = 0]
+ P [Mi = 0] .

5Note that this step relies on the fact that, in sequentially interactive protocols, the number of randomizer calls
is the same as the sample complexity. For fully interactive protocols, the number of randomizer calls may arbitrarily
exceed the sample complexity. However, using the transformation given by Joseph et al. [30], our argument also
extends to any O(1)-compositional fully interactive protocol.
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Thus we may rewrite η2j [A+B] as

η2j

[

1 +
(P [Mi = 1 | Yj = 1]− P [Mi = 1])

2

P [Mi = 1]
+

(P [Mi = 0 | Yj = 1]− P [Mi = 0])
2

P [Mi = 0]

]

. (18)

For neatness, let C = P [Mi = 1 | Yj = 1, Ji = j] and D = P [Mi = 1 | Yj = −1, Ji = j]. Recall
that Ji denotes which of k bin pairs is chosen in step i. Then

P [Mi = 1 | Yj = 1] = P [Mi = 1 | Yj = 1, Ji 6= j] · P [Ji 6= j | Yj = 1]

+ P [Mi = 1 | Yj = 1, Ji = j] · P [Ji = j | Yj = 1]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j] +

C

k

since Ji is independent of Yj and P [Ji = j] = 1
k . Similarly,

P [Mi = 1] = P [Mi = 1 | Ji 6= j] · P [Ji 6= j] + P [Mi = 1 | Ji = j] · P [Ji = j]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j]

+
1

k
· (P [Mi = 1 | Ji = j, Yj = 1] · P [Yj = 1] + P [Mi = 1 | Ji = j, Yj = −1] · P [Yj = −1])

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j] +

1

k
(ηjC + (1− ηj)D)

where the second equality uses the fact that conditioned on M1:i−1, Y−j , and Ji 6= j, Mi is
independent of Yj . This is because conditioning on M1:i−1 alone may introduce dependence
among the different Yj′ , in which case Mi may not be independent of Yj even conditioned on
Ji 6= j. However, additionally conditioning on Y−j as we do here breaks this dependence between
Mi and Yj conditioned on Ji 6= j, as a sample from any bin pair other than j now no longer
adds information about Yj . This is why we introduced Y−j earlier.

We substitute these expressions for P [Mi = 1 | Yj = 1] and P [Mi = 1] and get

(P [Mi = 1 | Yj = 1]− P [Mi = 1])
2
=

[

(1− ηj)(C −D)

k

]2

= (P [Mi = 0 | Yj = 1]−P [Mi = 0])2

where the last equality follows from P [Mi = 0 | Yj = 1] = 1−P [Mi = 1 | Yj = 1] and P [Mi = 1] =
1− P [Mi = 0]. Returning to Equation 18, we have

η2j [A+B] = η2j

[

1 +

(

(1− ηi)(C −D)

k

)2(
1

P [Mi = 1]
+

1

P [Mi = 0]

)

]

= η2j

[

1 +

(

(1− ηi)(C −D)

k

)2

· 1

P [Mi = 1]P [Mi = 0]

]

(19)

since P [Mi = 1] + P [Mi = 0] = 1. We now analyze |C−D|
P[Mi=1] . It will be useful to recall the

sampling thought experiment used in the proof of Lemma 5: at each time t, we first uniformly
sample bin pair Jt ∼U [k] and then sample the bin from a mixture: having sampled bin pair j,
with probability 1 − α we take a uniform random draw from {2j − 1, 2j}. With the remaining
probability α, if Yj = 1 then we sample 2j − 1, and if Yj = −1 then we sample 2j. Finally, we
define Eα

j,t = 1 if Jt = j and we sample from the α mixture component and Eα
j,t = 0 otherwise.

Under this equivalent sampling method, we can rewrite

C = P [Mi = 1 | Yj = 1, Ji = j]

= P
[

Mi = 1 | Eα
j,i = 1, Yj = 1, Ji = j

]

P
[

Eα
j,i = 1 | Yj = 1, Ji = j

]

+ P
[

Mi = 1 | Eα
j,i = 0, Yj = 1, Ji = j

]

P
[

Eα
j,i = 0 | Yj = 1, Ji = j

]

= αP
[

Mi = 1 | Yj = 1, Eα
j,i = 1

]

+ (1− α)P
[

Mi = 1 | Eα
j,i = 0, Ji = j

]
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where the last equality uses the fact that Mi is independent of Ji conditioned on Eα
j,i = 1 and

Mi is independent of Yj conditioned on Eα
j,i = 0, M1:i−1, and Y−j . Similarly

D = αP
[

Mi = 1 | Yj = −1, Eα
j,i = 1

]

+ (1− α)P
[

Mi = 1 | Eα
j,i = 0, Ji = j

]

.

Thus we can rewrite

|C −D|
P [Mi = 1]

=
|α(P

[

Mi = 1 | Yj = 1, Eα
j,i = 1

]

− P
[

Mi = 1 | Yj = −1, Eα
j,i = 1

]

)|
P [Mi = 1]

≤ |α(e
ε − e−ε)P [Mi = 1] |

P [Mi = 1]

= O(αε)

where the inequality uses the ε-local privacy of Mi (recalling that we have been conditioning on
M1:i−1), and the equality uses ε = O(1). Similarly, we get

1− C = P [Mi = 0 | Yj = 1, Ji = j]

= αP
[

Mi = 0 | Yj = 1, Eα
j,i = 1

]

+ (1 − α)P
[

Mi = 0 | Eα
j,i = 0, Ji = j

]

and

1−D = αP
[

Mi = 0 | Yj = −1, Eα
j,i = 1

]

+ (1− α)P
[

Mi = 0 | Eα
j,i = 0, Ji = j

]

.

This gives us

|C −D|
P [Mi = 0]

=
|(1− C)− (1 −D)|

P [Mi = 0]

=
|α(P

[

Mi = 0 | Yj = 1, Eα
j,i = 1

]

− P
[

Mi = 0 | Yj = −1, Eα
j,i = 1

]

)|
P [Mi = 1]

≤ |α(e
ε − e−ε)P [Mi = 0]

P [Mi = 0]

= O(αε)

as well. Thus by Equation 19, η2j [A + B] = η2j + O
(

η2

j (1−ηi)
2α2ε2

k2

)

= η2j + O
(

α2ε2

k2

)

because

η2j (1− ηj)
2 < 1. Returning to Equation 17, we can now bound

EM1:i,Y−j

[

E [Yj |M1:i, Y−j ]
2
]

− EM1:t−1,Y−j

[

E [Yj |M1:i−1, Y−j ]
2
]

= O

(

α2ε2

k2

)

.

Since this analysis was for an arbitrary j, we get

k
∑

j=1

(

EM1:i,Y−j

[

E [Yj |M1:i, Y−j ]
2
]

− EM1:t−1,Y−j

[

E [Yj |M1:i−1, Y−j ]
2
])

= O

(

α2ε2

k

)

.

We substitute this into Equations 16 and 15 and get I(X ;Vt |M1:t−1, Jt) = O
(

α4ε2t
k2

)

. Finally,

substituting back into Equation 14 and using t ≤ m and ε = O(1), I(X ;M1:m) = O
(

α4ε4m2

k2

)

.

Since the output of a locally private algorithm is a function of the transcript, a uniformity tester
with sample complexity m requires I(X ;M1:m) = Ω(1). We therefore get sample complexity
m = Ω

(

k
α2ε2

)

.
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7 Constant Separation in Uniformity Testing

Recall that Definition 8 requires success probabilities of at least 2/3, i.e.

P [output uniform | p = Uk] ≥ 2/3 and P [output uniform | ||p− Uk||TV ≥ α] ≤ 1/3.

As long as we achieve constant separation, i.e. have

P [output uniform | p = Uk] ≥ c1 and P [output uniform | ||p− Uk||TV ≥ α] ≤ c2

for positive c1−c2 = Ω(1), we can amplify it to a 1/3 separation by repetition. After sufficiently
many repetitions, if p = Uk then the proportion of “uniform” answers will concentrate at or
above c1, and if ||p − Uk||TV ≥ α it will concentrate at or below c2. By a Chernoff bound,

r = Ω
(

1
(c1−c2)2

)

repetitions suffice to distinguish between these cases. Since this is still a

constant number of repetitions, our algorithms will focus on achieving any constant separation.

8 Uniformity Testing Upper Bound Proofs

Lemma 8. For m = Ω
(

k3/4

αε +
√
k

α2

)

, SimplePanTest is an ε-pan-private uniformity tester on

m samples.

Proof. Privacy: Let t be a time in the stream, let i be a possible internal state for SimplePan-
Test, and let o be a possible output. Let pI,s,t be the probability density function for the
internal state of SimplePanTest after the first t elements of stream s, and let pO,s,t|i be the
probability density function for the output given stream s such that the internal state at time
t was i. Finally, fix neighboring streams s and s′. Then to prove that SimplePanTest is

ε-pan-private, it suffices to show that
pI,s,t(i)·pO,s,t|i(o)

pI,s′,t(i)·pO,s′,t|i(o)
≤ eε.
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The final output of SimplePanTest is a deterministic function of its final internal state
(after the second addition of Laplace noise). The final internal state is after m samples, so it is
enough to choose arbitrary internal states i1 and i2 and show

pI,s,t(i1) · pI,s,m,t|i1(i2)

pI,s′,t(i1) · pI,s′,m,t|i1(i2)
≤ eε. (20)

We first recall a basic fact about differential privacy: if f is a real-valued function with sensitivity
∆f , i.e. a function whose output changes by at most ∆ between neighboring databases, then

adding Lap
(

∆f
ε

)

noise to the output of f is ε-differentially private (see e.g. Theorem 3.4 in the

survey of Dwork et al. [27]). Here, each bin of H is a 1-sensitive function and each sample alters

a single bin. Thus by the first application of Lap
(

1
ε

)

noise to each bin we get
pI,s,t(i1)
pI,s′,t(i1)

≤ eε.

Similarly, the second application of Lap
(

1
ε

)

noise to each bin implies
pI,s,m,t|i1

(i2)

pI,s′,m,t|i1
(i2)
≤ eε. To get

the overall claim, we split into two cases. If s≤t = s′≤t, then
pI,s,t(i1)
pI,s′,t(i1)

= 1. If instead s≤t 6= s′≤t,

then s>t = s′>t, so
pI,s,m,t|i1

(i2)

pI,s′,m,t|i1
(i2)

= 1. Thus Equation 20 holds.

Sample complexity: To better analyze Z ′, we decompose it as the sum of a non-private

χ2-statistic Z and a noise term Y ,

Z =

k
∑

i=1

(Ni −m/k)2 −Ni

m/k
and Y =

k
∑

i=1

[Yi + Y ′
i ]

2 + 2[Yi + Y ′
i ](Ni −m/k)− [Yi + Y ′

i ]

m/k
.

where Ni is the true stream count of item i and Yi, Y
′
i ∼ Lap

(

1
ε

)

are the first and second addition
of Laplace noise. This lets us rewrite Z ′ = Z + Y . In the uniform case, we will give a high-
probability upper bound for Z + Y , and in the non-uniform case we will give a high-probability
lower bound. Fortunately, Acharya et al. [3] prove several results about Z. We summarize these
results in Lemma 9.

Lemma 9 (Lemmas 2 and 3 from Acharya et al. [3]). If p = Uk and m = Ω
(√

k
α2

)

, then

E [Z] ≤ α2m
500 and Var [Z] ≤ α4m2

500000 . If ||p− Uk||TV ≥ α, then E [Z] ≥ α2m
5 and Var [Z] ≤ E[Z]2

100 .

We split into cases depending on p. For each case, Lemma 9 will control Z, and our task
will be to control Y .

Case 1: p = Uk. By Lemma 9, E [Z] ≤ α2m
500 and Var [Z] ≤ α4m2

500000 . By Chebyshev’s inequality,

P

[

Z >
(

1
500 + c

500
√
2

)

α2m
]

≤ 1
c2 .

Turning our attention to Y , define

A =

k
∑

i=1

[Yi + Y ′
i ]

2

m/k
, B =

k
∑

i=1

2[Yi + Y ′
i ](Ni −m/k)

m/k
, and C =

k
∑

i=1

Yi + Y ′
i

m/k
.

Then we can rewrite Y = A + B − C. We control each of A,B, and C in turn. First,

by the independence of all draws of noise, E [A] =
k2

E[[Yi+Y ′
i ]

2]
m = 2k2Var[Yi]

m = 4k2

ε2m because
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Var
[

Lap
(

1
ε

)]

= 2
ε2 . Next,

Var [A] =
k3

m2
Var

[

Y 2
i + 2YiY

′
i + Y ′2

i

]

=
k3

m2

(

E
[

(Y 2
i + 2YiY

′
i + Y ′2

i )2
]

− E
[

Y 2
i + 2YiY

′
i + Y ′2

i

]2
)

=
k3

m2

([

2E
[

Y 4
i

]

+ 6E
[

Y 2
i

]2
]

− 4E
[

Y 2
i

]2
)

=
2k3

m2

(

E
[

Y 4
i

]

+ E
[

Y 2
i

]2
)

=
2k3

m2

(

12

ε4
+

4

ε4

)

=
32k3

ε4m2

where we use E
[

Y 4
i

]

= ε
2

∫∞
0 x4e−εxdx = 12

ε4 by repeated integration by parts. With Chebyshev’s

inequality, P
[

A > 4k2

ε2m + 6ck
3/2

ε2m

]

< 1
c2 .

To bound B, we use E [B] = 0 and

Var [B] =
4k2

m2
· Var

[

k
∑

i=1

[Yi + Y ′
i ]
(

Ni −
m

k

)

]

=
4k2

m2
· E





(

k
∑

i=1

[Yi + Y ′
i ]
[

Ni −
m

k

]

)2




=
4k2

m2

∑

i1,i2∈[k]

E
[

(Yi1 + Y ′
i1)(Yi2 + Y ′

i2)
]

· E
[(

Ni1 −
m

k

)(

Ni2 −
m

k

)]

=
4k2

m2

k
∑

i=1

E
[

(Yi + Y ′
i )

2
]

· E
[

(

Ni −
m

k

)2
]

=
16k3

ε2m2

(

E
[

N2
1

]

− 2mE [N1]

k
+

m2

k2

)

=
16k3

ε2m2

(

Var [N1] + E [N1]
2 − 2m2

k2
+

m2

k2

)

=
16k2

ε2m

where the last two equalities use Ni ∼ Poisson
(

m
k

)

and Var
[

Poisson
(

m
k

)]

= m
k . Again applying

Chebyshev’s inequality gives P
[

B > 4c k
ε
√
m

]

< 1
c2 .

Similarly, E [C] = 0, and with Var [C] = k3

m2 · Var [Yi + Y ′
i ] =

4k3

ε2m2 , P
[

C < −2ck3/2

εm

]

≤ 1
c2 .

Combining the above bounds on Z,A,B, and C, with probability at least 1− 4
c2 ,

Z ′ ≤
(

1
500 + c

500
√
2

)

α2m+
4k2

ε2m
+ 6c

k3/2

ε2m
+ 4c

k

ε
√
m

+ 2c
k3/2

εm
.

Taking c = 4
√
2 and

TU = 1
100α

2m+ 4 k2

ε2m + 24
√
2k3/2

ε2m + 16
√
2 k
ε
√
m

+ 8
√
2k3/2

εm ,

P [Z ′ ≤ TU ] ≥ 7/8.
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Case 2: ||p − Uk||TV ≥ α. By Lemma 9, E [Z] ≥ α2m
5 and Var [Z] ≤ E[Z]2

100 . Chebyshev’s
inequality now gives

1− 1

c2
≤ P

[

Z ≥ E [Z]− c
√

Var [Z]
]

≤ P

[

Z ≥
(

1− c

10

)

E [Z]
]

≤ P

[

Z ≥
(

1− c

10

) α2m

5

]

where the last inequality requires c ≤ 10. Returning to the decomposition of Y used in Case 1,
A and C are unchanged and we can use our previous expressions for them (with appropriate sign

changes for lower bounds). Our last task is to lower bound B = 2k
m

∑k
i=1[Yi + Y ′

i ](Ni −m/k).
For any term i, Yi and Y ′

i are symmetric, so

P [[Yi + Y ′
i ](Ni −m/k) > 0] = P [[Yi + Y ′

i ](Ni −m/k) < 0]

and P [B ≥ 0] ≥ 1/2.
Summing up, with probability at least 1

2 − 3
c′2 ,

Z ′ ≥
(

1

5
− c′

50

)

α2m+ 4
k2

ε2m
− 6c′

k3/2

ε2m
− 2c′

k3/2

εm
.

Taking c′ = 2
√
3 and Tα = α2m

10 + 4 k2

ε2m − 12
√
3k3/2

ε2m − 4
√
3k3/2

εm , P [Z ′ ≥ Tα] ≥ 1
4 .

For Tα > TU , it is enough that Tα − TU > 0.

Tα − TU =
9

100
α2m−

(

12
√
3 + 24

√
2
) k3/2

ε2m
− 16

√
2

k

ε
√
m
−
(

4
√
3 + 8

√
2
) k3/2

εm
.

Dropping constants, we need α2m = Ω
(

k3/2

ε2m + k
ε
√
m

+ k3/2

εm

)

. We can drop the lower-order term

k3/2

εm and get α2m = Ω
(

k3/2

ε2m + k
ε
√
m

)

, i.e. m = Ω
(

k3/4

αε + k2/3

α4/3ε2/3

)

.

Putting it all together and recalling the assumption from Lemma 9, there exists constant c

such that if m > c
(

k3/4

αε + k2/3

α4/3ε2/3
+

√
k

α2

)

then

P [output “uniform” | ||p− Uk||TV ≥ α] ≤ 3/4 and P [output “uniform” | p = Uk] ≥ 7/8.

Thus we get a constant 1/8 separation. By the amplification argument outlined after Defini-
tion 8, SimplePanTest is a uniformity tester. Finally,

k2/3

α4/3ε2/3
=

(

k3/4

αε

)2/3

·
(√

k

α2

)1/3

≤ 2

3

(

k3/4

αε

)

+
1

3

(√
k

α2

)

by the AM-GM inequality, and our statement simplifies to m = Ω
(

k3/4

αε +
√
k

α2

)

.

Lemma 10. Let p be a distribution over [k] such that ||p−Uk||TV = α and let G1, . . . , Gn be a
uniformly random partition of [k] into n > 1 subsets of size Θ(k/n). Define induced distribution
pn over [n] by pn(j) =

∑

i∈Gj
p(i) for each j ∈ [n]. Then, with probability ≥ 1

954 over the
selection of G1, . . . , Gn,

||pn − Un||TV = Ω
(

α
√

n
k

)

.

Proof. It is equivalent to sample G1, . . . , Gn as follows: randomly partition [k] into n/2 same-
size subsets G′

1, . . . , G
′
n/2 (for neatness, we assume n is even), and then randomly halve each of

those to produce G1 and G2 (from G′
1), G3 and G4 (from G′

2), and so on. We use the following

lemma from Acharya et al. [5] to connect the distances induced by {G′
a}n/2a=1 and {Gb}nb=1. Here,

for a set S we let p(S) denote the total probability mass of set S, p(S) =
∑

s∈S p(s).
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Lemma 11 (Corollary 15 in Acharya et al. [5]). Let p be a distribution over [k] with ||p −
Uk||TV ≥ α, and let U be a random subset of [k] of size k/2. Then PU

[

|p(U)− 1/2| ≥ α√
5k

]

>
1

477 .

Slightly more generally, the proof of Lemma 11 shows that for any distribution p over [k]

and S ⊂ [k], if 1
2

∑

i∈S |p(i)− 1
k | ≥ α′, and we choose a random subset S′ ⊂ S of size |S|

2 , then

PS′

[

|p(S′)− p(S)
2 | ≥ α′√

5|S|

]

> 1
477 .

Fix the choice of G′
1, . . . , G

′
n/2. For each a ∈ [n/2], let αa = 1

2

∑

i∈G′
a
|p(i)− 1

k |, the portion

of ||p− Uk||TV contributed by G′
a. Replacing α′ with αa and |S| with k/(n/2) above, for each

a ∈ [n/2],

P

[∣

∣

∣

∣

p(G2a−1)−
p(G′

a)

2

∣

∣

∣

∣

≥ αa

√

n
10k

]

≥ 1

477
.

p(G2a−1) + p(G2a) = p(G′
a), so

P

[

|p(G2a−1)− p(G2a)| ≥ 2αa

√

n
10k

]

≥ 1

477
.

Then by triangle inequality

P

[∣

∣

∣

∣

p(G2a−1)−
1

n

∣

∣

∣

∣

+

∣

∣

∣

∣

p(G2a)−
1

n

∣

∣

∣

∣

≥ 2αa

√

n
10k

]

≥ 1

477

and in particular

E

[∣

∣

∣

∣

p(G2a−1)−
1

n

∣

∣

∣

∣

+

∣

∣

∣

∣

p(G2a)−
1

n

∣

∣

∣

∣

]

≥ 2αa

477

√

n

10k
.

For each b ∈ [n] define Yb = min
(∣

∣p(Gb)− 1
n

∣

∣ , α⌈b/2⌉
√

n
10k

)

. Let Y =
∑n

b=1 Yb. First, we
can lower bound E [Y ], over the choice of G′

1, . . . , G
′
n/2 and G1, . . . , Gn, as

E [Y ] =

n
∑

b=1

E

[

min

(∣

∣

∣

∣

p(Gb)−
1

n

∣

∣

∣

∣

, α⌈b/2⌉

√

n

10k

)]

≥
n
∑

b=1

α⌈b/2⌉

477

√

n
10k

= 2α
477

√

n
10k (21)

where the inequality uses the expectation lower bound above.
Second, by definition of Yb, max(Y ) ≤ ∑n

b=1 α⌈b/2⌉
√

n
10k = 2α

√

n
10k . Now assume for con-

tradiction that P
[

Y ≥ α
477

√

n
10k

]

< 1
954 . Then

E [Y ] < α
477

√

n
10k + max(Y )

954 ≤ 2α
477

√

n
10k .

Thus E [Y ] < 2α
477

√

n
10k , which contradicts Equation 21. It follows that our assumption is false,

and P
[

Y ≥ α
477

√

n
10k

]

≥ 1
954 . The final claim follows from

Y

2
=

1

2

n
∑

b=1

min

(∣

∣

∣

∣

p(Gb)−
1

n

∣

∣

∣

∣

, α⌈b/2⌉

√

n

10k

)

≤ 1

2

n
∑

b=1

∣

∣

∣

∣

p(Gb)−
1

n

∣

∣

∣

∣

= ||pn − Un||TV .
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9 Information Theory

Definition 9. Let X be a random variable with probability mass function pX . Then the entropy
of X, denoted by H(X), is defined as

H(X) =
∑

x

pX(x) log

(

1

pX(x)

)

,

and the conditional entropy of random variable X conditioned on random variable Y is defined
as H(X |Y ) = Ey [H(X |Y = y)].

Next, we can use entropy to define the mutual information between two random variables.

Definition 10. The mutual information between two random variables X and Y is defined as
I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X), and the conditional mutual information between
X and Y given Z is defined as I(X ;Y |Z) = H(X |Z)−H(X |Y Z) = H(Y |Z)−H(Y |XZ).

Definition 11. The Kullback-Leibler divergence between two random variables X and Y with
probability mass functions pX and pY is defined as

DKL (X ||Y ) =
∑

x

pX(x) log

(

pX(x)

pY (x)

)

.

Fact 2. Let X,Y, Z be random variables, we have

I(X ;Y |Z) = Ex,z[DKL ((Y |X = x, Z = z)||(Y |Z = z))].

Lemma 12 (Pinsker’s inequality). Let X and Y be random variables with probability mass
functions pX and pY . Then

√

2DKL (X ||Y ) ≥ 2||pX − pY ||TV .
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