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ABSTRACT 5
] s
Modern recommender systems usually embed users and items into § [ | - Supervised AN |
a learned vector space representation. Similarity in this space is £ Disentanglement & [}
used to generate recommendations, and recommendation methods g P — g
are agnostic to the structure of the embedding space. Motivated £ <

by the need for recommendation systems to be more transparent
and controllable, we postulate that it is beneficial to assign mean-
ing to some of the dimensions of user and item representations.
Disentanglement is one technique commonly used for this pur-
pose. We present a novel supervised disentangling approach for
recommendation tasks. Our model learns embeddings where at-
tributes of interest are disentangled, while requiring only a very
small number of labeled items at training time. The model can then
generate interactive and critiquable recommendations for all users,
without requiring any labels at recommendation time, and with-
out sacrificing any recommendation performance. The resulting
recommendation provides users levers to manipulate, critique and
fine-tune recommendations, and gives insight into why particular
recommendations are made. Given only user-item interactions at
recommendation time, we show that it identifies user tastes with
respect to the attributes that have been disentangled, allowing for
users to manipulate recommendations across these attributes.
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1 INTRODUCTION

Recommender systems have become essential tools for exploring
content such as music, videos, films, news, merchandise and much

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °21, 1-5 November 2021, 2021, Online

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

[ ] o

) Attribute: Romance

Users who like: .: action movies 0: romantic movies . : comedy movies

Figure 1: The above figure demonstrates the effect of super-
vised disentanglement for a toy example of 3-dimensional
latent space. The plot on LHS shows that though similar
users are closer in the embedding space, the dimensions of
the latent representation are uninterpretable. With super-
vised disentanglement we are able to associate some mean-
ing to the dimensions. By adjusting the values in the cor-
responding dimensions, users will have control over their
recommendations.

more, distributed on apps and websites over the word wide web. The
vast majority of these recommender systems act as black boxes and
do not allow the user to provide immediate feedback or control the
recommendations. In this work we aim to create a new method for
providing recommendations that is more transparent, interpretable
while empowering the user by providing more control and the
ability to explore and critique the recommendations.

Recommender systems inherently depend on some kind of rep-
resentation of users (and items). In state-of-the-art models, these
typically come in the form of embeddings, i.e., items are repre-
sented with n-dimensional vectors generated by matrix factoriza-
tion [13, 14], or from the internal hidden state of a deep network
(e.g., the hidden state of an RNN trained to predict the next song in
a playlist given the last n songs the user has listened to [8]).

While such representations are necessary for optimal recommen-
dation, they have several limitations. For instance, the user cannot
tune the recommendations. Standard embeddings cannot, for ex-
ample, generate recommendations similar to a recipe the system
already suggested, but with an ingredient replaced or removed at
the user’s request. Similarly, it is difficult to accurately explain rec-
ommendations, as they live in a latent space where each factor has
limited interpretability. User control is desirable for a recommender
system, be it through a visual interface or a conversational one,
as it facilitates direct user feedback to influence recommendations.
This feedback process is often referred to as critiquing [2].
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We take a step towards flexible critiquing by training user and
item representations using supervised disentanglement. As demon-
strated in Figure 1 supervised disentanglement helps in associating
certain aspects of recommendations to the dimensions of learnt
user and item representations. Specifically, our model learns rep-
resentations for users and items that: (i) give users fine-grained
control over aspects of recommendations to support critiques (ii)
provide users with explanations as to why a given recommendation
is made. While novel in the recommendation domain, our work is
inspired by disentangled representations in other domains. Related
approaches have been used to manipulate generative image models
[3] or generate text controlling certain attributes [10].

Variational Autoencoders (VAEs), particularly f-VAEs [9], are
generally used to learn disentangled representations. There are two
types of disentangling VAEs: unsupervised and supervised. In the
former, the representations are disentangled to explanatory factors
of variation in an unsupervised manner, i.e., without assuming
additional information on the existence (or not) of specific aspects.
The lack of supervision often results in inconsistency and instability
[17]. In supervised disentangling a small subset of data is assumed to
have side-information (i.e. a label or a tag) that is used to disentangle
into meaningful factors [17, 18]. As critiquing requires user control
using familiar terms/attributes, we follow this path, noting that in
most recommendation settings there is sufficient side-information.

Our contribution is a novel recommendation model based on
supervised disentanglement, modifying the -VAE loss to learn rep-
resentations that explicitly capture tangible aspects of the user
preference (and item) representation in an independent set of fac-
tors. Specifically, we present a disentangling S-VAE collaborative
filtering model that provides: (i) fine-grained control over recom-
mendations (ii) explanation of recommendations, (iii) supervised
disentangling using a small fraction of labeled items , (iv) state-of-
the-art recommendation accuracy.

2 RELATED WORK

Autoencoders and Recommendation Deep learning based Au-
toencoder architectures have been extensively adopted for col-
laborative filtering and recommendation models [16, 26, 32]. In
particular [26, 32] adopt denoising autoencoder architectures for
this purpose, while [16] use variational autoencoders. Such models
often produce state-of-the-art recommendation performance. The
latent representations learnt by such architectures are generated
through highly nonlinear functions. As a result, it makes standard
VAE-based models difficult to control, and they cannot be used to
generate explanations of recommendations.

Disentanglement To improve the explainability and controlla-
bility of VAEs, disentangling the hidden representations was intro-
duced. One of the first approaches was the f-VAE [1, 9, 29], which
essentially enforces a stronger KL divergence between encoding
dimensions by way of an additional constraint on the VAE objective.
For instance, in the computer vision domain, f-VAE allows image
representations to be disentangled across factors such as the color
of an object, size of an object, or background color. Such represen-
tations are thus also more explainable as compared to VAEs.
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One of the drawbacks of f-VAE is that the disentanglement
factors cannot be controlled and are relatively unstable particu-
larly when the factors of variance are subtle [17]. f-VAE results
reported in the literature are achieved using many repeated runs
[1,9, 11, 25]. This instability when using unsupervised -VAE has
also been proven theoretically [17]. Therefore subsequent works
have proposed supervised disentanglement [18]. Either a good set
of disentangling dimensions is selected using multiple runs and
label information [4], or a supervised loss function is added in the
B-VAE objective function [18]. Supervised disentangling methods
provide control and are explainable, hence our model is inspired by
these techniques adapting them to the recommendation domain.

Similar approaches have also been applied when disentangling
image representations with standard VAEs (f = 1) by utilizing a
discriminator to condition the representation with respect to the
explicit features of variations. For instance, Fadder Networks [15]
use a discriminator to create representations that are invariant to
the supervised features. These features are then concatenated with
the representation generated by the autoencoder. A similar VAE-
based architecture with a discriminator has been used to control
sentiment and tense in text generation [10]. The disentangled fea-
tures are explicitly modeled using feedback from a discriminator
that aims to detect their presence.

Critiquing A number of methods that use side information to
enable critiquing in recommender systems have been recently in-
troduced. These models allow users to tune the recommendations
received across a set of provided attributes/dimensions. Notable re-
cent models are augmented with a classifier (or second decoder) of
the features over which to control the recommendation [19, 20, 31].
Adjusting the features at the classifier’s output modifies the internal
hidden state of the model, and leads to the filtering of recommen-
dations to those that either exhibit or do not exhibit the requested
attribute. However, this method of critiquing is quite different from
our approach: Our method allows for a gradual adjustment of the
degree to which the attributes are present in recommendations.
Moreover, [19, 20, 31] models are limited to refining recommenda-
tions by disabling an aspect, whereas ours can reinforce an aspect as
well. Second, our approach only requires a small fraction of labeled
data, while this past work requires a fully labeled dataset.

Unsupervised disentanglement was also recently used to identify,
and potentially use, factors of variation from purely collaborative
data (i.e., data generated by user interactions with items) [22]. The
main aim of this method is to increase recommendation perfor-
mance. Note that this method does not allow for seamless critiquing
as it is essentially an un-supervised disentangling method. As a
consequence it is not clear what aspects of the data are disentan-
gled, and a relatively elaborate intermediate step is required to
identify the factors that have been. Moreover unsupervised disen-
tangling methods are unstable to repeated runs and small changes
in the data [18], hence it cannot be guaranteed that the same at-
tributes will be disentangled, making such methods impractical for
real-world use cases.

3 VARIATIONAL AUTOENCODERS

At an intuitive level, user preferences can be seen as a combination
of preferences over semantically meaningful attributes (, such as
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funny movies, or more nuanced such as 30’s film-noir) combined
with latent factors, all can be learned using collaborative filtering
with a VAE.

Notation. Let past user-item interactions be captured in matrix
X € RIUXIT] where u € U is a user and i € T is an item. This
matrix contains a nonzero value at X;;; when user u interacted with
item i. When only binary user-item interaction data is available,
elements of X are 1 where an interaction occurred, and 0 otherwise.
Given a binary interaction matrix X, VAEs are commonly trained
using a bag-of-words representation: Each user u is represented
by the items they have interacted with, i.e., row x,, of matrix X.
The autoencoder is then trained to reproduce the input row at the
decoder output, with an intermediate d-dimensional embedding.

Encoder. A standard autoencoder is trained to reproduce the in-
put data in an output layer via a compressed latent representation.
The first part of the autoencoder which generates the latent rep-
resentation is termed the encoder. This training process ensures
that the encoding captures the most relevant information about in-
put X. In contrast, VAEs are based on a generative process: the
encoder’s aim is to estimate the parameters of the underlying
distribution that the input data are sampled from. Each user u
is modeled by sampling a d-dimensional latent representation z
from the decoder with a Gaussian prior with 0 mean and diagonal
co-variance matrix: p(z) = N(0, I;) where I; is a d X d diagonal
matrix. This process is data driven, with z being sampled from the
distribution provided by the encoder. The true distribution out of
which z is sampled is approximated by a parameterized function
q4(zlxu) = N(ug(xy), diag(og(xy)) as illustrated in Figure 2. Both
the estimate of the mean 44 (xy) and standard deviation oy (xy) are
computed by the encoder g (z|xy), which is implemented as a feed-
forward neural network parameterized by ¢ as also illustrated in

the figure.

Decoder. In a VAE, the decoder generates the probability distribu-
tion over the items 7 given z as an input: 7(z) o exp(fedec(z)). The
likelihood function used in recommender systems [7, 8, 27, 28] is
typically the multinomial likelihood:

po(xulz) = Z Xyi log 7i(z) (1)

In the recommendation setting, where relevance of the top-k items
is critical, the multinomial likelihood performs well: it pushes the
outputs of non-zero entries in x, towards higher values while
restricting the output where x,, has zeroes.

Learning. The objective optimized by a VAE with respect to the
model parameters of the encoder (¢) and decoder (0) is:

L0, 8) = Egytaps,) 08 po(xul2)] - KL (a(2lx)lp)  (2)

Intuitively, it is the negative reconstruction error, minus the Kullback-
Leibler divergence enforcing the posterior distribution of z to be
close to the Gaussian distribution (prior) p(z). The KL divergence
is typically computed between the representation generated by the
encoder q¢(z|xu) and the normal distribution p(z) = N(0, I;). The
diagonal co-variance matrix enforces a degree of independence
among the individual factors of the representation.
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B-VAE is a variant of VAE that has been successfully used for
learning interpretable representations of independent factors of
variance in data without supervision [9]. The idea is to strengthen
feature independence, increasing the weight of the KL divergence
term in the VAE objective with a parameter f > 1 (a normal VAE
being a special case where f = 1). ff balances the latent channel
capacity (i.e., reconstruction accuracy) against independence con-
straints. The objective function is thus:

L0, ) = Eqy i, logpoxal2)] - B+ KL (g5(zlx)Ip(z)) (3)

Supervised -VAE then adds an additional term to the loss func-
tion to encourage factors to have specific meaning. Importantly,
only a tiny fraction of preferences are required to have such labels.
We present supervised disentanglement in f-VAE next.

4 MODEL ARCHITECTURE

Our goal is to learn a representation of user preferences that allows
user control over recommendations across well-defined attributes.
To this end, we adapt $-VAEs. Specifically, if we have A attributes
over which control is desired, the f-VAE is trained such that A of
the d dimensions each map to one attribute. Then, changing the
factor corresponding to an attribute leads to controllable variations
in the recommended items.

Our supervision approach is a simple and yet very effective exten-
sion to VAEs for recommendation, adapted from [18]. Specifically,
we modify the f-VAE objective to incorporate a classification loss
over a subset of the factors ¢ that we aim to disentangle over. The
classification loss penalizes discrepancies between the prediction
coming from factor c¢; and the attribute of interest. This nudges
the disentanglement for that attribute (label) to happen over the
selected factor c¢;, mapping this factor to the selected label. The
B-VAE representation z is then essentially replaced by [z : c], as
illustrated in Figure 2. To elaborate, ¢ represents the dimensions in
the latent representation sampled from q(xy) that are explicitly
disentangled, whereas z constitutes the rest of the dimensions in
the sampled latent representation. The input of the encoder remains
the movies user u has seen, x;,, and the decoder aims to reconstruct
these. To reiterate, [z : c] is sampled from the distribution learned
by the encoder and thus is the representation of the user.

The objective function of our supervised f-VAE model is thus:

L(xy, 6, ¢)
= Eg, (12l (08 po(xullz : c])]

= BKL (qg([2 : cllxlp((z : €)) + YEqy ey [Hag(clxa). A)]

4)
where [ is a loss function computed on the (limited) preference labels
available. We use binary cross entropy loss, i.e. l[(gg(c|xwu), A) =
- le.fll a;ilog(o(ci)) + (1 — a;)log(1 — o(c;)), where o is the logistic
function and (slightly abusing notation) ¢; denotes the mean of
the representation generated by the encoder for attribute a;. It
is represented in binary form to denote presence or absence of
the attribute ([0, 1]) label. Typically there are more dimensions
in [z : c] (usually 10-100) than distinct attributes, so we limit the
dimensionality of ¢ to |A| dimensions of the representation [z : c]
for disentangling over A attributes.
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Figure 2: For each user, a bag-of-word representation is passed to the encoder (¢). The encoder estimates parameters of the
underlying distribution. The representation is then sampled from the learnt distribution. The representation is constrained
using KL divergence, and some supervision for certain preferences (e.g., funny, action). Decoder (0) then generates the prob-
ability distribution over the list of items 7 using the sampled representation [z : c]. During training phase, we optimize to
reconstruct the same set of items as given in input (blue), while at inference phase new set of items (orange) that have a high

probability score are recommended to the user.

Algorithm 1 Training supervised f-Variational Autoencoder

1: Input: Set X € RUxI containing user-item interaction and a
set of attributes A

2: Sample one batch (users) from X

3. for allu € U do

4  repeat

5 Compute [z : c] by sampling the output of the encoder
6: § « Decoder([z : c])

7: if user has label a then

8 Compute gradients VLy, VLg using Equation 4

9: end if

10: if user has no label then

11 Compute gradients VL, VLg using Equation 3

12: end if

13: Update model parameters for encoder ¢ and decoder 6
14:  until converges

15: end for

Labels. The training labels a; are assigned to a fraction of users:
Those with particularly distinctive interactions, having predomi-
nantly viewed movies with one specific attribute. Alternatively, not
explored here, they could be assigned by the users themselves.

Learning. Training the supervised -VAE involves learning both
0 and ¢ by maximizing the objective function in Equation 4. The
stochastic nature of the representation [z : ¢] does not allow for
direct application of backpropagation, hence the re-parametrization
trick is used, whereby € is sampled from N(0, I;) where d the di-
mensionality of [z : ¢] and the encoder representation is sampled
[z : c] = pg(xu) + € © 04 (xy) [12, 24]. This allows for gradients to

flow through the encoder even though [z : c] is sampled. While
training we utilize a small fraction of labeled items to compute loss
1, optimizing over the objective in Equation 4. The computational
overhead is thus minimal. For the items that have no labels (typi-
cally the vast majority) we optimize Equation 3. At inference time,
when generating recommendations, no label information is used.

5 EVALUATION

We demonstrate the three main goals: (1) Supervised f-VAE gen-
erates disentangled representations without sacrificing performance;
(2) The representation created by the supervised f-VAE can be used
by the user to control and critique recommendations and also ex-
plain recommendations across the disentangled attributes; (3) Only
a tiny fraction of labeled preference data is needed to generate the
disentangled representations. We discuss the metrics utilized.

Ranking Metrics. We utilize two ranking-based metrics, recall@k
and normalized discounted cumulative gain (NDCG@k). Both met-
rics are computed per user. NDCG is rank-sensitive, recall@k con-
siders equally each relevant item in the top-k positions.

k ollitem[i]leS] _ 4

DCG@k = 2, iy
>k 1[item[i] € S]
Recall@k := min(k, |S|)

NDCG@k is normalized DCG@k, by dividing it by the largest
possible DCG@k. Note that for much of the analysis (with the
exception of the accuracy computations) we consider relevant items
S to be the items that contain the attribute/label over which we
modify the recommendations.
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Table 1: Dataset statistics (after performing all filtering). The
sparsity rate indicates the fraction of cells in the complete
user-item matrix with a known value.

Disentanglement Metrics. To evaluate the disentanglement obtained
across the given attributes, we use the Disentanglement and Com-
pleteness metrics [5], which are briefly explained below:

Disentanglement (D) quantifies the extent to which each dimen-
sion in [z : ¢] captures at most one factor (attribute). If a single
dimension encodes all the factors (attributes) then it’s disentangle-
ment score will be 0. It will be 1 if each dimension encodes only one
factor (attribute). We measure the importance p,; of a'h attribute
on j™ dimension of [z : ¢] using a Gradient Boosting classification
technique. We take the input as the user (or movie) representations
[z : c] and the target as the attributes associated with the respective
user (or movie). Along with modeling the classifier for the given
target, it measures a dimension’s importance to predict an attribute.
Based on the pg; scores, D can be formally defined as:

[A|-1
Hia|(Pj) = = > pajloga|pajs Dj = (1—H|(p)))
a=0

d-1 Z|A|_1P .

=0 aj
D= 2upiPi Pr= SR
Jj=0 Zj=0 Za=0 Pa]

Dj is 1 — entropy, (H|4|(P;)) of importance distribution of the
a'? attribute across all dimensions d in [z : c]. The disentanglement
score of the system is then a weighted average of D; across all
dimensions, where p; is the dimension’s relative importance.

Completeness (C) measures the extent to which a factor (attribute)
is exclusively encoded in a given dimension j of [z : c]. For instance,
for d = 4, and two factors (|A| = 2), if first two encodes first attribute
and last two encodes the second attribute, C will be 0.5 whereas D
will be 1. Completeness is computed as follows:

d-1
Hy(Pa) = — Zpaj log; paj, Ca = (1—Hg(pa))
=0
|Al-1 Z‘?*l‘p i
j=0 f'dJ
C= 2} paCa Pa= RrT a0y
a=0 a=0 Zj:() Paj

5.0.1 Datasets. Movielens: We use two subsets of this dataset:
Movielens-1m and Movielens-20m[6], consisting of 1 million and
20 million interactions respectively. In the Movielens-20m dataset,
we filter out users who have rated fewer than 5 movies, but do not

Dataset Number Number Number Sparsity Cluster Label | Number of tagged Tags included in cluster
of Interac- | of Users of Items Rate _ movies | users _ _
. action 1,292 9,932 action, fight-scenes, special-effects
tions funny 1,326 1,360 comedy, funny, goofy, very funny
Movielens-1m 1,000,209 6,040 3,706 4.468 % romantic 1,061 1,816 destiny, feel-good, love story, romantic
Movielens-20m |9,990,682 136,677 20,720 0353 % sad 1,620 1,913 bleak, enigmatic, intimate, loneliness, melancholic,
Goodreads- 6,070,472 |124,411 104,103 0.046 % melancholy, reflective, sad :
suspense 1,172 1,514 betrayal, murder, secrets, suspense, tense, twist-and-
Books turns
Goodreads- 3,371,518 92,993 33,635 0.108 % violence 1,419 4,282 brutality, cult classic, vengeance, violence, violent
Children Table 2: Example clusters of tags in Movielens-20m. Tags
g’oo"heads' 2,705,538 57,405 32,541 0.145 % were clustered using K-Means, as shown in the Tags column.
omics

Each cluster was manually assigned a human-readable label.
We show how many movies had high relevance score for tags
in each cluster, and how many users this mapped to, as pre-
dominantly interested by movies in this class.

filter any users for Movielens-1m. These cut-off thresholds have
been taken from [16]. The statistics are presented in Table 1.

Attribute Selection. Along with user-movie ratings, the Movielens
datasets assigns 10,381 movies with 1,000 distinct tags. Example
tags include chase, brutal and funny. Each (tag, movie) pair also has
a relevance score - for instance, the movie Toy Story has high rele-
vance for children (0.96) and for funny (0.70), and low relevance for
gory (0.02) and horror (0.04). We extract the 100 tags with the high-
est mean relevance score across all movies. Within these 100 tags, a
number of tags are highly correlated (such as sad and melancholy),
and thus arguably have very similar semantics to users. Therefore
we cluster these tags into 20 clusters using K-Means clustering
(representing each tag by its relevance score s; € R19381),

For each movie and cluster, a new clustered-relevance score is
taken as the average of relevance scores for all the tags present in
the corresponding cluster. We label the movie with the cluster if its
clustered-relevance score is greater than a threshold M, which is a
hyperparameter. Finally, we transitively apply cluster tags to users:
A user is assigned to a given cluster if at least half of the movies
rated by this user are labeled by the respective cluster. A user is
labeled as e.g. action if more than 50% of the movies they rated are
labeled as action movies. Example clusters, along with the number
of movies and users assigned to each, are shown in Table 2.

GoodReads: This dataset [30] contains approximately 230 mil-
lion interactions from 876,145 users’ public bookshelves with 2.3 mil-
lion books. Goodreads-(Children,Comics) [30] consist of similar
interactions, but restricted to books in the children and comics
genres respectively. As in [21], we filter out interactions with a
rating of less than 4 as non-relevant, then remove users with fewer
than 10 rated books, and vice versa for the books rated by fewer
than 10 users for Goodreads-(Children, Comics) and 15 users for
Goodreads Books. The final dataset statistics are in Table 1.

Attribute Selection. In addition to user-book interactions, the Good-
Reads dataset contains metadata for each book (book language, top
user-generated shelf names, etc.). We use the top user-generated
shelf names (such as to-read, horror and fiction) as attributes for
disentangling. We extract the 100 most popular names, then filter
these to remove uninformative tags (e.g. one-word-title is not an
informative keyword for a book, while humor is informative). A
shelf name was considered uninformative if it was marked as such
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Dataset | Attribute Number of tagged Dataset | Attribute Number of tagged
books users books users

adventure 5895 2951 horror 1204 370

crime 3698 606 Children humor 10587 24958

fantasy 8017 11655 mystery 4094 7293

horror 2730 232 romance 1582 704

Books humor 4504 1085 adventure 9339 22,809
mystery 5887 2110 horror 6239 9,725

romance 5922 4100 humor 9,473 15,216

sci-fi 4040 721 | Comics | mystery 5,916 7,259

thriller 3691 746 romance 8,625 10,184

sc-fi 9,038 16,791

Table 3: Attributes selected for disentangling for
GoodReads-(Books, Children and Comics dataset). We
list the number of users, and books for which the attribute
was listed in the popular shelf.

Features Critiquing Disentanglement | Ours
Based Methods | for Recommen-
[19, 20, 31] dations [22]
Critique representations: Binary Continuous Continuous
Partially-labeled dataset No No Yes
Type of User control Binary Continuous Continuous
Pre-defined User controls Yes No Yes

Table 4: Qualitative Comparison with Critiquing and Disen-
tanglement based methods.

independently by all authors of this paper. We list the attributes
kept for all three GoodReads datasets in Table 3. To label users, we
perform the same process as described above for Movielens-20m:
That is, we label the user with a given shelf-name if at least half
of the books (rated positive) by him or her belong to that shelf-
name. The number of positive labels has been listed in Table 3 for
both books and users. We select the negative labels using the same
method as described for the movies domain.

5.0.2 Implementation Details. We divide the users into train, val-
idation and test splits: Validation and test splits consist of 10% of
the users, across all datasets. For each user in the validation and
test split, we use only 80% of the items rated by them to learn the
user representation. The remaining 20% is used to evaluate the
model’s performance. This strategy is similar to that used by [16].
For all experiments, the user’s latent representation is restricted to
16 dimensions. The encoder and decoder consist of two layers with
[500,300] and [300, 500] hidden units respectively, each with ReLu
activation. We conduct hyper-parameter tuning to identify $ and
y values from [1, 10, 50, 100] and [200, 500, 1000] respectively. The
threshold M to identify movies where the attribute is present for
Movielens-20m , and MovieLens-1m is taken as 0.5 and 0.4 respec-
tively. All the models are run up to 50 epochs. We select the best
model, based on its performance on the validation dataset for both
NDCG@100 and Disentanglement score. We select less than 1% of
users for supervised -VAE using stratified sampling. We present
the results and analysis on the test dataset, across all datasets in
the subsequent sections. Also, for the baselines we take the same
hyperparameters as mentioned in [16].

5.1 Qualitative Comparison

As discussed earlier, our model uses supervised disentanglement to
enable critiquing for VAE based models for collaborative filtering.

ML-1m ML-20m GR-Comics | GR-Children
D C D C D C D C
Multi-DAE [16] 0.381 | 0.312 | 0.317 | 0.238 | 0.182 | 0.183 | 0.287 | 0.243
Multi-VAE [16] 0.361 | 0.294 | 0.245 | 0.271 | 0.164 | 0.184 | 0.308 | 0.263
S-VAE 0.745 | 0.473 | 0.501 | 0.298 | 0.329 | 0.227 | 0.484 | 0.303
Supervised f-VAE | 0.825 | 0.656 | 0.801 | 0.719 | 0.902 | 0.857 | 0.823 | 0.728

Model

Table 5: Disentanglement performance of baselines, f-
VAE and Supervised f-VAE across Movielens(1m, 20m)and
Goodreads(Comics, Children)[Books Domain].(D stands for
Disentanglement score and C for Completeness)

Therefore, we compare our approach to recent work on disentan-
glement for recommendations [22] and critiquing based systems
[19, 20, 31] across desired features as given in Table 4.

First, note that [22] aims to disentangle user behavior and pref-
erences in a hierarchical and unsupervised fashion, leading to state-
of-the-art recommendation performance and interpretable repre-
sentations. In comparison to [22], we primarily disentangle user
representations to provide controllable levers to users to critique
the representations: The ability to encode specific subtle prefer-
ences to enable user control is particularly crucial for critiquing.
For example, in the case of movies, it is crucial to disentangle con-
cepts like funniness, as comedy preferences are very common. Such
subtle preferences are not guaranteed to be disentangled in [22].
Thus we use supervision to disentangle predefined attributes. We
achieve this with a tiny fraction of labeled-data.

Methods such as [31] are primarily focused on keyword-based
critiques with binary nature, i.e., if recommended items should,
or should not, have the given feature. Such methods could limit
usefulness of critiquing in domains like movies or books, where
continuous attributes are common. For example, consider “action
movies”: There is Bad Boys (light action) to John Wick (intense
action), and these may need different treatment. Their critiqued
recommendations depend on the energy redistribution function
(re-computing the latent representation). However, in our method,
dimensions are associated with specific meanings so the change
in latent representation is achieved by simply adjusting the asso-
ciated dimension, reducing inference overhead. To reiterate, we
achieve meaningful representations with very few labels. Moreover,
in past work critiquing has only been explored in one direction
(disabling the feature). We enable the user to critique in both direc-
tions. Note that though there is scope for incremental critiquing
[23], but we leave this for future work, focusing on fine-grained
one-step critiquing here.

5.2 Disentanglement Performance

We now quantify the disentanglement achieved across the attributes
studied, as described in Section 5. We infer from Table 5 that super-
vised -VAE outperforms the baselines (Multi-VAE and Multi-DAE)
and unsupervised S-VAE. It also achieves a high disentanglement
and completeness score. Recall that these indicate the extent to
which an attribute a is encoded only in the corresponding dimen-
sion ¢, in the latent representation. Thus they measure whether
adjusting c, is sufficient to critique attribute a.
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Figure 3: The trend for Disentanglement and Completeness
metrics when fewer labels are used for Movielens-20m and
Goodreads-Books. It is evident that comparable scores are
obtained even with very few labels on both datasets.

Algorithm 2 Control/Critiquing recommendations simulation

1: Input: Given a user u represented by the items they have
interacted with x,, and attribute a that will be adjusted.
: [z : ¢] = encoder(xy)
: ranking_scores = []
: forg e {-8,...,8} do
old ¢cq =cq
//0nly adjust the a'® dimension of
user representation’s subset ¢
6: Cq=gXcqg
7:  § < Decoder([z : c])
//Z1s: Relevant items where
attribute a is present
8:  ranking_scores.insert(recall@k(y, 1)
9:  cg=o0ld_cq
10: end for
11: plot ranking_scores against [—38, 8] for attribute a

G W

We further study the variation in disentanglement performance
with the amount of labeled data used. We train our model for differ-
ent fractions of the total labelled users, ranging from [0.1 to 100]%,
which corresponds to [51 to 39857] labels for MovieLens-20m and
[125 to 44928] labels for GoodReads-Comics. We can infer from
Figure 3! that even with a few? supervised labels in the training set,
we obtain Disentanglement scores of 0.73 and 0.75 for Movielens-
20m and GoodReads-Comics respectively, which is close to the
performance when trained with all labeled users, (0.81, 0.90 respec-
tively). We observe a similar trend for completeness as well. This
is one of the key findings: we achieve significant disentanglement
for user representation, with only around 100 labels per attribute.
This enables learning representations even for rare attributes. The
results in Table 5 are reported with 1% of the labelled dataset.

5.2.1 Control and critiquing of recommendations. One of the pri-
mary aims of our model is to provide refined control over recom-
mended items. For instance, if a user asks for more romantic movies,
the model should rank movies with the romantic attribute higher.

!Note that each point in the graph is an average of five runs.
20.5% (250 points) and 0.1% (125 points) of the labeled dataset for Movielens-20m,
Goodreads-Comics respectively.
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. User-A (Children genre) User-B (Action genre)
Attribute Movie Name Genre Movie Name Genre
None Yellow Subma- | Adventure, Ani- | Mission: Impossi- | Action, Adven-
rine mation, Comedy | ble ture
Sad Alice in Wonder- | Adventure, Ani- | Blade Runner Action, Sci-Fi
land mation, Children
Action Jurassic Park Action, Adven- | Men in Black Action, Comedy
ture, Sci-Fi
Suspense | Lord of the Rings | Adventure|Fantasy| Ronin Action,  Crime,
Thriller
Romance | Beauty and the | Animation, Chil- | Forrest Gump Comedy, Drama
Beast dren, Fantasy
Violence | Dark  Crystal, | Adventure, Fan-| Twelve Monkeys | Mystery,Sci-Fi
The tasy
Funny Inspector Gadget | Action, Adven- | From Dusk Till | Action, Comedy
ture, Children Dawn.

Table 6: Comparison between the top recommendation for
User-(A and B), when they prefer attribute given in Col. 1

We use algorithm 2 to study the critiquing and control abilities of
the supervised f-VAE model. Specifically, we retrieve the user rep-
resentations based on the items rated using the encoder then adjust
the factor value ¢, associated with attribute® a by multiplying it by
a factor g (ranging from [—8, 8], which we empirically found to be a
range that fully demonstrates the effect. Beyond this range, the im-
pact is consistent with the ranking performance near the endpoints
-8 and 8 for both f-VAE and supervised -VAE). We then retrieve
the items recommended using the adjusted user representation in
the decoder and evaluate them against the known relevant items
(items where the attribute a is present). We compute recall@k with
respect to these relevant items.

We show the impact of multiplying with the factor g, on a selec-
tion of disentangled attribute factors c,, against the ranking metrics
in Figures 4 and 5, comparing unsupervised and supervised -VAE.
From a comparative analysis between the top and bottom rows of
the Figures, we can infer that supervised f-VAE provides better
control over the presence (or absence) of the desired attributes in
the recommendations, as the range of recall@k is substantially
higher as g is adjusted. This effectively means that a user can tune
her recommendations to contain between no recommendations
of items with an attribute (recall@k ~ 0) up to all items in her
recommendation list with the corresponding attribute (recall@l
~ 1). Even for attributes like suspense in Figure 4, and mystery
in Figure 5, for which the normal f-VAE model does not provide
much control (Fig (c)), we see significant improvement with our
model (Fig (g)) in Figures 4 and 5. Note that the range of recall@k
values is consistently higher across all the disentangled-dimensions
than the corresponding disentangled dimensions in S-VAE for the
predefined attributes. Also, each point in the graphs is an average
across all the users present in the test split.

5.2.2 Case Study: User Control with Disentanglement. We
study how adjusting profile attributes changes the recommenda-
tions for two example user profiles: We created two synthetic user
profiles, where each has rated 20 movies. User-A rated movies
mostly from the Children genre, such as Toy Story, Snow White.
User-B rated movies with major Action content such as Batman,
Mortal Kombat. We hypothesize that when User-B asks for more

3For (unsupervised) B-VAE, we adjust the dimension with highest feature importance
score computed using a Gradient Boosting Classifier for attribute a.
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Figure 4: Control over recommendations when factor-value c,, is adjusted by multiplicative factor g € [-8, 8]. Recommendation
lists are evaluated by recall@(5,10,20). Relevance is determined by the presence of attribute a in the retrieved item. We compare
p-VAE (top) with supervised -VAE model (bottom) for sad, romantic, suspense and action attributes on Movielens-20m.
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Figure 5: We compare -VAE (top) with supervised -VAE model (bottom) for adventure, sci-fi, mystery and horror attributes

for Goodreads-Comics for the same analysis done in Figure 4.

funny movies, the system should move towards Action Comedy
movies rather than classic comedies. Similarly, if more violent
movies are asked for by User-A, we would expect recommenda-
tions would still be less violent than those returned for User-B.
We obtain revised recommendations as follows: (i) we obtain user
representation by passing x,, in Figure 2 to the encoder. Note that
Xy, is set to 1 for the handpicked 20 movies. (ii) We adjust the value
of the attribute in the encoded user representation to a higher value.
(iii) This adjusted user model is then passed as input to the de-
coder, to generate revised recommendations. We show the top-1

movie recommended in Table 6. Notice that even changing intense
attributes like suspense and violence have an appropriate impact
on User-A recommendations. For User-B, when attributes such as
suspense or funny are increased, recommendations contain a blend
of Action and the requested attribute. The model provides control
over recommendations keeping the user profile in perspective.

5.2.3 Explainable Representations. Here we show that with super-
vised disentanglement the similarity between the user and item
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Figure 7: Correlation between factor value in item-
representation and attribute label value for Movielens-20m
for romantic and suspense. Our model achieves higher
correlation (bottom-row) as compared to $-VAE (top-row).

representations is dominated by the disentangled part of the repre-
sentation c. As we have associated predefined preferences to c, the
items recommended could be explained with c.

We compute user representations using our model encoder, and
obtain item representations by encoding one item at a time in the
one-hot encoding in Figure 2 at the encoder. The representations
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Model ML-1m ML-20m GR-Comics GR-Children
R@50 | N@100 | R@50 | N@100 | R@50 | N@100 | R@50 | N@100

MultiDAE[16] 0.467 0.404 0.530 0.419 0.510 0.401 0.591 0.425
MultiVAE[16] 0.458 0.405 0.519 0.411 0.550 0.439 0.577 0.404
B-VAE 0.454 0.411 0.516 0.407 0.549 0.443 0.586 0.415

Supervised f-VAE | 0445 | 0415 | 0515 | 0403 | 0538 | 0430 | 0.581 | 0.413
Table 7: Recommendation performance of baselines, j-
VAE and Supervised -VAE across Movielens(1m, 20m) and
Goodreads(Comics, Children). We omit error bars as confi-
dence interval is in 4th digit.

consist of latent dimensions (z) and supervised disentangled dimen-
sions (c). We compute the cosine similarity between user and items
(seen by the corresponding user), using (i) the whole representation
[z : c], (ii) only entangled dimensions (z), (iii) only disentangled
dimensions (c). Figure 6 shows the similarity score distributions
using the three settings for Multi-VAE [16] and Supervised S-VAE.

From Figure 6 (a,c), we see that for Multi-VAE [16] the similarity
using the whole representation is not being dominated either by
entangled or disentangled dimensions. We also observe that f-VAE
has a similar trend. With both algorithms, the overall representa-
tion is necessary to capture the interaction between user and item.
As discussed earlier, as none of the dimensions in Multi-VAE can
be strongly associated with any of the preferences, it is difficult to
explain the items recommended using only the representation. In
comparison to Multi-VAE, the cosine similarity in representations
generated with supervised -VAE, is dominated by the disentan-
gled dimensions c¢ (Figure 6(b,d)). As we have associated predefined
preferences with dimensions in ¢, we could explain the correla-
tion between the user and an item using only c. This behavior is
consistent across the movie and book domains.

5.3 General Recommendation Performance

Finally, we compare our models f-VAE and supervised f-VAE
against MultiDAE and MultiVAE [16] on the Movielens and Good-
Reads datasets. We see in Table 7 that the performance of our model
and the baseline models on ranking-based metrics (recall@k, and
NDCG@k) on the test split are comparable across all datasets. On
some datasets supervised -VAE outperforms the baselines, while
on others it is slightly behind (We believe that this might be due
to the constraints on the representation imposed by the increased
p parameter). However, we argue that these small drops in perfor-
mance are compensated for by the significant additional flexibility
and interpretability provided by our model.

6 CONCLUSION

The supervised f-VAE recommendation model allows for disen-
tangled representation of user preferences and hence allows for
critiquing of the recommendations provided. The analysis shows
that the model can effectively learn the attribute representations
using only a tiny fraction of labeling information and map them
on individual attributes of the user representations. Recommenda-
tions can then be generated, explained and controlled over these
attributes without the use of any label or attribute information.
Finally the overall recommendation accuracy is on par with state-
of-the art collaborative filtering methods.
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