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ABSTRACT
With the rapid development of quantum technology, one of the leading applications that has been identified is the simulation of chemistry.
Interestingly, even before full scale quantum computers are available, quantum computer science has exhibited a remarkable string of results
that directly impact what is possible in a chemical simulation with any computer. Some of these results even impact our understanding of
chemistry in the real world. In this Perspective, we take the position that direct chemical simulation is best understood as a digital experiment.
While on the one hand, this clarifies the power of quantum computers to extend our reach, it also shows us the limitations of taking such
an approach too directly. Leveraging results that quantum computers cannot outpace the physical world, we build to the controversial stance
that some chemical problems are best viewed as problems for which no algorithm can deliver their solution, in general, known in computer
science as undecidable problems. This has implications for the predictive power of thermodynamic models and topics such as the ergodic
hypothesis. However, we argue that this Perspective is not defeatist but rather helps shed light on the success of existing chemical models
such as transition state theory, molecular orbital theory, and thermodynamics as models that benefit from data. We contextualize recent
results, showing that data-augmented models are a more powerful rote simulation. These results help us appreciate the success of traditional
chemical theory and anticipate new models learned from experimental data. Not only can quantum computers provide data for such models,
but they can also extend the class and power of models that utilize data in fundamental ways. These discussions culminate in speculation on
new ways for quantum computing and chemistry to interact and our perspective on the eventual roles of quantum computers in the future of
chemistry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060367

I. INTRODUCTION

The study of quantum computing in the abstract is an oppor-
tunity to ask ourselves what is possible if we could attain an almost
unimaginable level of control of the microscopic facets of our uni-
verse. It was first proposed as a solution to the problem of simulating
physical systems with strongly quantum characteristics, a task that
has proven very challenging for traditional computers.1 The idea was
that if, like the puppet of a marionette puppeteer, one could make a
precisely controllable quantum system act enough like a more inter-
esting system, then the puppet could answer previously unknown
questions about the true system. This core concept of quantum

simulation eventually merged with modern computer science to
form the fields of quantum computer science and quantum comput-
ing.2 This merger allowed these concepts to be made more precise
and expanded applications beyond physical systems into abstract
ones such as breaking cryptography.3,4

Despite the expansion into other applications, the simulation of
quantum systems and, especially, strongly correlated chemistry, has
remained a primary application of interest. Chemistry represents a
sweet spot of quantum effects strong enough to make them challeng-
ing for classical computers while still having a well-known applica-
tion space to motivate development. Since the original proposal of
Aspuru-Guzik et al.,5 there have been a number of developments in
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quantum algorithms for the direct simulation of chemistry bringing
costs down from astronomical numbers to routine calculations for
even very challenging systems.6–10

In parallel to algorithmic developments, quantum technology
has advanced at a rapid pace. Recent demonstrations by the Google
group have experimentally shown that these devices are capable of
tasks that are incredibly challenging on a classical computer, with
a gap that will only grow with the quality of modern quantum
computers.11 In addition, a number of prototype chemistry exper-
iments have now been experimentally demonstrated on quantum
devices.10,12–14 At present, error rates in quantum devices are too
great to make them competitive with the best classical algorithms for
chemistry, but quantum error correction and mitigation offer paths
forward.15–19

However, even without an actual quantum computer running
an algorithm, the study of quantum computer science in the abstract
has led to insights about the limitations and possibilities of chem-
ical simulation, and, indeed, under modest assumptions, about the
universe and chemistry itself. Recent results tying quantum com-
puter science directly to chemistry include showing that the elec-
tronic structure problem is expected to be hard in the worst case
even for quantum computers.20–22 In this work, we highlight some
of the yet unexplored connections leading up to a perspective on the
role both traditional and quantum computers may play in the future
of chemistry. To build to this perspective, we begin by framing direct
chemical simulation as a digital experiment. In this framework, we
exploit known results that restrict the power of any computer, even
a quantum one, to understand limits of such digital experiments in
chemistry. Along the way, we encounter surprising results about the
impossibility of an algorithm for determining if a system ever ther-
malizes, flying in the face of conventional thermodynamic analysis.
However, this construction guides us to new ground, where we will
see that learning from data can be fundamentally more powerful
than traditional computation. This sheds new light on the success of
many existing chemical theories and the way in which they exceed
rote simulation by leveraging the additional power provided by
data.

The relationship between traditional simulation and learning
models in chemistry is cartooned in Fig. 1, where classical mod-
els with data from nature can exceed the physical prediction hori-
zons of rote simulation. We consider learning models to be mod-
els where some amount of high quality training data for the task
is available, from either a physical experiment or a simulation in
addition to just the specification of the problem. As we will argue,
this is not just a reference to modern machine learning methods
but rather encompasses the foundations of chemical theory such
as transition state theory, molecular orbital theory, and thermody-
namically controlled reactions. In addition, we take the opportunity
to highlight previously unused technology from quantum informa-
tion science that may bolster the development of chemistry even
before the arrival of full fault tolerant quantum computers. The
links from chemistry to results in quantum computer science all
build to our ultimate perspective that the eventual role of quan-
tum computers in chemistry will be to aid in the construction of
learning models for chemistry. This includes providing data to clas-
sical models, constructing quantum models that can make accurate
predictions with far less data, and eventually interfacing directly
with quantum data from chemical systems. To close, we wrap this

FIG. 1. Cartoon of the relative power of direct simulation vs learning models for
chemistry, where a point on the figure is a question related to a chemical sys-
tem. The ovals on the left depict questions efficiently accessible via simulation of
time dynamics, where quantum simulation is widely believed to be exponentially
stronger than classical simulation but still softly bound (non-exponential) by the
no-fast-forwarding (NFF) to lag behind the system in nature even with a quan-
tum computer. Learning models, which include both traditional theories supported
by data such as thermodynamics and modern machine learned models, strictly
include all questions answerable by traditional simulation, as they are assumed to
not only have access to simulation but also have their power enhanced by data that
comes from either nature or other quantum simulations. The availability of quan-
tum states held in memory and full quantum computation extends the questions
that may be efficiently answerable beyond that of traditional learning models.

Perspective into an outlook for the interplay between these two
exciting areas.

II. DIGITAL CHEMISTRY EXPERIMENTS
WITH QUANTUM COMPUTERS

The idea to draw a distinction between theory and computa-
tion or simulation is not new, with suggestions of considering com-
putation as the “third pillar of science,” alongside experiment and
theory.23 In this framework, it can sometimes be more accurate to
view simulations as closer to experiments than to theory. Quantum
computing, and especially quantum simulation of physical systems,
helps to make this even more clear by constructing simulations of
the physical world at the quantum level with efficiently refineable
(and bounded) accuracy. In addition, limitations on precision for
quantum computers24 to learn physical properties sometimes place
them even closer to experiments than classical digital simulations
of the same systems. While a discussion on the precise distinctions
between simulation and theory deserves more exposition than we
can provide here with many gray areas of overlap, we will attempt
to provide a working distinction. In particular, simulation will refer
to a rote input and output relationship, where given some compu-
tational problem and inputs, a fixed output is reached. In contrast,
theory will refer to the broader activity of developing and refin-
ing models that may go into a simulation, where those refinements
could be based on data from physical experiments, simulations, or
abstract mathematical constructs. In addition, it is worth distin-
guishing between data that can be considered as input, such as initial
conditions of a dynamical system, and data used to develop a theory
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or model, which we will refer to as training data in connection with
the growing literature on learning theory.

The most natural setting for a quantum simulation on a quan-
tum computer is that of watching the system step forward in time
or quantum time dynamics. Within the field of quantum comput-
ing, the term “quantum simulation” is sometimes reserved for time
dynamics simulation specifically, and when we refer to rote simu-
lation, it will typically apply to this case. That is, one sets an ini-
tial state, a physical system defined by its interactions, and some
time to simulate, and the quantum computer performs a compu-
tational experiment in mapping the initial state to the final time,
where any reasonable observable of the system can be probed. This
time dynamics obviously mirrors the most natural settings of the
real world. However, despite this natural setting, one will note that
a large number of quantum algorithms and theories closely follow
that of the electronic structure performed on classical computers,
where the focus is on low energy eigenstates of the electronic sys-
tem,5,25 rather than exclusively the final state after some fixed evolu-
tion. This important deviation already wraps in data from the nat-
ural world that tells us in many systems, thermal states are an apt
description of a system, and at low temperatures, low energy states
are most commonly observed. As we will discuss later, the use of
such observational knowledge is strictly more powerful than time
dynamics simulation and underpins the great success of many mod-
ern chemical theory or simulation methods. A detailed discussion of
this point will follow, but for now, we lump both static and dynamic
experiments into the category of direct simulation.

By direct simulation, we mean a simulation where the system
of interest (often processes such as a reaction) is known, and we seek
to use the computational experiment to gain insights into the pro-
cess that is challenging to access through the experiment, for exam-
ple, details of a reaction mechanism, transition states, or migration
of charge through a system. They represent the bulk of computa-
tional experiments, both on classical computers and those proposed
on quantum computers, and we draw a distinction between direct
simulation and design, often characterized as inverse problems.26

For the task of direct simulation of chemical systems, quan-
tum computers have been shown to demonstrate an exponential
advantage over their classical counterparts under modest assump-
tions.5,27–29 An exponential speedup has the practical implication
that some simulations that might have taken longer than the age of
the universe could be done in mere seconds. More specifically, full
quantum dynamics with no approximations beyond discretization
error can be performed on a quantum computer in a time that scales
only polynomially in t, N, and M, where t is the simulated time,
M is the number of basis functions, and N is the number of elec-
trons.9,19,30 Interestingly, along with these speedups, it comes with
some of the same limitations possessed by a physical experiment.
For example, in contrast to classical simulations where more preci-
sion in a simulated quantity is often relatively easily obtained, the
Heisenberg limit applies to any measurements one might perform
to extract information. These approaches have also included explor-
ing the ansatz for electronic systems that are inaccessible to classical
computers.13,31 Perhaps surprisingly, recent results have shown that
quantum computers can even achieve a scaling for exact computa-
tions that is sub-linear in the basis set size by taking advantage of a
first quantized representation in a way that has no current classical
counterpart.9

However, quantum computers do not vastly extend their capa-
bilities into the realm of discovery or design, which we identify as
distinct from direct simulation. That is, while many of the proposed
simulations would be faster and more accurate representations of the
same systems than would be achievable classically, they are much the
same type of the experiment without reaching into the design space.
While there has been some notion of how quantum search may
assist in design, most results promise at most a quadratic speedup
in contrast to exponential speedups in direct simulation,32 although
we note that the direct simulation subroutines used in a potential
search would still benefit from improved speed or accuracy. Due
to the immense size of the design space, this quadratic speedup is
not terribly compelling if it is not combined with structured strate-
gies. That is, any improved search must start not from naive global
search but a search enriched by knowledge of the design space, for
example, one that starts in the chemical neighborhood of known,
synthesizable compounds. In addition, practical issues arising in real
quantum computers may prevent quadratic speedups from being
advantageous for some time.33 We will argue later that perhaps it
is even more apt and useful to consider an infinite chemical space as
opposed to one which is merely combinatorially large.

That said, direct simulation, of course, has a great value for
design. For example, if a key reaction or catalyst is known to work
to catalyze a reaction of interest, the microscopic detail of a compu-
tational experiment that is inaccessible in the lab can offer insights
into the causal mechanism that enable the design of analogs.34–36 In
addition, a now popular approach is the use of screening of many
candidate compounds through direct simulation in order to identify
new candidate molecules or learn properties, which are predictive
for a desired design task.37–39 This type of approach is also used
for selection of candidates in protein to small-molecule docking.40

Direct simulation can also be used for novel discovery of processes
through direct time evolution, as has been done with the molecular
nano-reactor.41 Quantum computers serve to strictly improve this
type of discovery by expanding the set of systems that can be accu-
rately treated in a given amount of time by such methods. Advantage
in improving the accuracy in direct simulation has been the primary
focus in much of the literature of quantum computation for chem-
istry, with the hope that it enables for an accurate study of important
systems inaccessible to current methods. The example receiving per-
haps the most attention is FeMoCo,19,28,30,42–44 where the hope is that
direct simulation will offer a mechanistic insight that leads to the
design of new catalysts for nitrogen fixation. However, when lever-
aging direct simulations results for an improved design, the simula-
tions are typically tightly coupled to a theory already rooted in data.
For example, the energy of a transition state might be used to justify
a reaction rate, but this is inherently coupled to the empirical success
of transition state theory, rather than a result that emerges directly
from simulation.

In contrast, comparatively little attention has been paid to the
potential advantages of improved dynamics simulations, perhaps
due to the larger foundation of work available utilizing static eigen-
states in the classical case. In addition, it is perhaps surprising that
dynamics simulations on quantum computers that fully relax the
Born–Oppenheimer approximation, using fully quantum nuclei and
exact electronic representations, are about as costly as those that
live within such approximations. However, with each step toward
this nuclear-electron soup, what is gained in accuracy might be paid
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in ease of interpretation as the added overhead of re-discovering
the notion of a molecule through observable measurements remains
a largely uncharted problem in the context of quantum comput-
ing.27,45 Taking advantage of these departures from the tried and
true anchors of chemical space and embracing the idea of a fully
ab initio experiment will require more development in how this type
of simulation can be most beneficial. However, if it is unlocked, it
may offer new insights into complex dynamic processes in spectro-
scopic or electrochemical processes where both excited electronic
and quantum nuclear states can play a role.41,46 It may also offer
new insights into the long studied challenges surrounding proton
coupled electron transfer.47

Given the immense power of quantum computers in speeding
up these types of direct simulation, one is often left wondering how
far these advantages extend. This question is one that has been stud-
ied in great detail in computer science, and we now wish to turn
to our understanding of the limits of power in quantum computa-
tion. The similarity between quantum computations and the physi-
cal world implies that the results also tell us something about nature
and chemistry itself, and we now turn to this Perspective.

III. LIMITS OF EVEN QUANTUM COMPUTATIONS
IN CHEMISTRY

Having set up the perspective of quantum computation as dig-
ital experiments, we now turn to the implications this may have for
the physical systems themselves. Due, in part, to the challenge of
building scalable quantum hardware, for a good part of its history,
quantum computing was a largely theoretical endeavor that aimed
at understanding the power of quantum devices and, by extension,
physical systems. Considerable progress has been made on this prob-
lem, and we wish to highlight those results we believe have the most
bearing on chemistry.

Before discussing how they pertain to chemistry, it is worth
mentioning a few aspects of the assumptions made in stating the
results below. In particular, in order to talk about scaling and cost,
it is necessary to have some model of computation where cost can
be quantified. We will generally be assuming that this means we
use a finite, often local, set of operations called quantum gates,
and we work within a digital gate model of quantum computation.
This assumption is in some ways analogous to assuming that nature
favors local interactions or that computers are built from modular
components. Moreover, some of the results below most precisely
pertain to the number of times some information, such as the Hamil-
tonian of a system, must be accessed. This is known as the query
complexity, and while it is often closely related to time complexity,
these can be different in some circumstances, such as when paral-
lelization is or is not possible and we attempt to be clear as to when
this distinction is important.

A. Quantum computers cannot fast-forward
time either

Starting with the most direct form of quantum simulation, time
dynamics of a quantum system, we have already noted the exponen-
tial advantage over classical simulation achieved by current quantum
algorithms. This begs the question how far these quantum algo-
rithms can go in accelerating simulation of physical systems. For
example, can a quantum computer simulate a system faster than
nature itself evolves the same system, that is, sub-linear in the time

being simulated? It turns out that, assuming one only has the avail-
able space to represent the system serially, the answer to this is a
resounding no. It is also worth noting that if a system is finite and the
time to simulate is larger than the number of possible system states,
the cost of diagonalization, finite state enumeration, or some equiv-
alent can be paid to fast-forward a system. However, in most cases,
the time scale of interest is much less than this, and indeed, as we
argue later, infinite perspectives on chemical systems are sometimes
more natural.

While there are some special systems that can be fast-
forwarded,48 it cannot be done in the most general case. This result
can be understood at a high level by imagining if this were true and
realizing one could build a recursive simulation that does any com-
putation in vanishingly small time, by nesting simulations within
simulations with no space overhead. If one allows the space on
the quantum computer to expand polynomially with the simulation
time, this result is more unclear and related to the classical debate of
if any computation can be parallelized arbitrarily well, encapsulated
by the theoretical question of if P = NC.49 This is an open question
that currently holds a similar status to the more famous question of if
P = NP. Some progress has been made on the question if all compu-
tations can be parallelized arbitrarily for specifically quantum com-
puters, showing that more simulation time is strictly more powerful
relative to an oracle.50 To simplify the message here, we assume that
quantum space resources are the minimum required to perform the
simulation and that as a result, oracle queries must be done in serial.
More formally, the limitations of simulation are encapsulated in the
no-fast-forwarding theorem.51,52 This theorem importantly shows
that not only is universal computation not fast-forwardable but sur-
prisingly even some Hamiltonians that are incapable of universal
computation cannot be fast-forwarded either.

Under the stated assumptions, the no-fast-forwarding result
practically implies that no simulation that retains a complete level
of detail at the quantum level can simulate physical systems faster
than nature, and likely, there will be some large factor disadvan-
tage between them. This result is in some ways not unexpected from
classical simulations of classical chemical models such as molecu-
lar dynamics, where for a fully detailed tracking of the model in the
most general case, one expects to lag behind the physical time scale
of the system unless approximations or reduced models are utilized.
The emphasis here is that this limitation provably carries into the
case of using a quantum computer as well. Taking this result at a face
value along with the knowledge that important chemical reactions
such as rusting can take months to occur, using a single molecular
realization in a simulation could take comparable times to witness a
reaction event, making discovery in this fashion totally impractical.
However, most chemists would know that is not the end of the story.

Specifically, methods such as transition state theory based on
static calculations of free energies or transition path sampling53

can allow access to rate constants on time scales much faster than
direct physical simulations.54 In addition, the general class of meth-
ods related to rare event sampling are often successful at reaching
beyond time scales accessible in direct simulation.55 Such methods
have been successful at dramatically increasing the reach of molecu-
lar dynamics simulations, often via the observation that rare events
are dominated via relatively few pathways. Hence, while the above
theorem is true for precise simulations of the full quantum state,
we see from practice that physical theories grounded in observation
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can circumvent such wild overheads by eliminating the complexity-
of the full quantum state and focusing on a reduced set of observ-
ables, reduced precision, or approximate models amenable to fast-
forwarding. Such reductions in the number of important degrees of
freedom have been studied in various contexts to try to understand
“what makes science possible.”56,57 It should also be noted that these
results are about the most general system, and specific systems may
exhibit physics that allow faster than physical simulation when that
data are utilized by validating approximate models. In other cases,
particular models are amenable to classical fast-forwarding, such as
non-interacting electron models, but they are not general enough to
encompass all quantum systems with interactions.

The observation that chemical methods have been so success-
ful in making predictions beyond physical time scales leaves one
believing that perhaps physical systems always admit some form
of reduction that will allow us to forecast results that we actually
care about (as opposed to a full quantum state), well in advance of
simply stepping them forward in time. A recent string of results in
quantum computer science has proven that, in fact, even in some
very simple systems by construction, there must exist some ques-
tions that are fundamentally unanswerable ahead of time. This list
of problems surprisingly includes whether simple one-dimensional
(1D) systems thermalize,58 which has implications for the predic-
tive power of thermodynamics in general systems. These results are
much stronger than simple chaos of dynamic systems and require
some exposition, but we believe they are a value lens to view
chemical problems.

B. Questions no algorithm can answer
and undecidability

A direct reading of the no-fast-forwarding theorem contrasted
with the unassailable predictive success of simplified chemical mod-
els raises a number of interesting questions. On the one hand, the
no-fast-forwarding theorem tells us that even with an exponential
advantage over classical simulation of quantum dynamics, a quan-
tum computer aiming to simulate the dynamics of a full wavefunc-
tion to a fixed accuracy is bound by some multiplier of the physical
time of the actual process. On the other hand, we see that reduced
models, for example, mean-field molecular orbital models, reduc-
tions based on evaluating the energy of stationary states such as
ground and excited states, or even arrow pushing in Lewis dot struc-
tures can sometimes be powerfully predictive for a chemical phe-
nomenon of interest at a relative time cost much less than the time
scale of a process of interest. This leads one to ask if there is always a
predictive model or algorithm for simplified questions. Surprisingly,
results in computer science have shown us that there are, indeed,
even relatively simple questions related to physical systems for which
it can be proven that no single algorithm can answer for all such sys-
tems in finite time. Here, while we will certainly not claim that this
should cause one to abandon current methods, we will argue that
these results should have implications for how one approaches some
chemical problems.

To make our case, we will start with a motivating example
before we move to the more general concepts that will allow us
to address some of the tensions with this interpretation. Consider
the question of “Given unbounded time, does this physical system
reach thermal equilibrium?” The basic assumptions of conventional
thermodynamic theory, leaning on the ergodic hypothesis,59–61

assert that the answer is a resounding “yes” under assumptions that
the system is ergodic. Indeed, many standard molecular dynam-
ics simulations exploit both possible directions, either determining
free energies through proxies derived from long time simulations54

or predicting long time behavior through models for free energies.
However, recent results have shown that there are 1D translationally
invariant systems for which no algorithm that can answer the ques-
tion of thermalization or even simple questions about energy gaps in
finite time.58,62–64

To make such a problem even more concrete, let us take the
question of a finite gap as an example. The problem statement can be
set up briefly as follows. One is provided as input of a finite Hamilto-
nian for a chunk of a system that will be repeated indefinitely. While
any finite chunk of this system could be diagonalized, determining
the existence of a gap for that chunk, this proof implies that no finite
number of chunks taken together could ever tell you about the status
of the gap for the infinite system in the general case. Moreover, any
extrapolation on those chunks to a large size limit cannot be guaran-
teed to converge. The statement is so strong that we can guarantee
that not only will no simple algorithm work exist, but there cannot
exist such an algorithm of any finite time complexity. This type of
problem is known as an undecidable problem, the first example of
which was the famous halting problem of Turing.65 Imagining the
setup as a physical experiment, one can characterize a small chunk of
material experimentally, determining if it has a gap. Assuming that
one finds no gap, the size of that material could then be extended,
gradually adding more material, and one could again measure at any
juncture if the material has a gap. At any fixed size of the problem,
one can easily measure the gap, as the undecidable problem does not
imply that it is difficult to see that the system is gapless but rather
that, in general, one cannot predict whether it will ever exhibit a gap
upon measurement at larger sizes in the most general case. This class
of problems is much more challenging than even the perhaps more
familiar class of NP-complete problems, as even when provided with
a supposed answer, a mortal prover cannot verify if it is correct. This
implies that for a number such as an energy or free energy repre-
senting a system, either that number cannot be generally predictive
of the behavior of that system or the number itself must be uncom-
putable. Said another way, there will be instances where computing
the free energy of a chunk of a system fails to capture the complex-
ity of its real environment, and qualitatively different behavior than
predicted by thermodynamics or any finite time computation will be
observed. By an uncomputable number, we refer to the idea that if
there were such a number that could accurately predict the behavior
of any system for arbitrary times, its computation would involve the
solution of undecidable problems. Showing that this is true, even for
a quantum computer, which can perform classical computation as a
special case, underscores the weight of these results.

To draw a connection with recent results in worst-case com-
plexity for chemistry, it has been shown that the electronic struc-
ture problem in a finite basis and some related problems are in the
quantum analog of NP-complete or QMA-complete.21,22 Such prob-
lems live in a finite state space, and hence, the implication is that
at worst an exhaustive examination of all possible states will suffice
to determine if something will happen akin to a program halting.
Despite these complexity results, practicing chemists have obviously
not stopped using simulation methods. It is important to remember
that most of these results apply for worst-case constructions, and
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indeed, physical systems may come from a special set of all possi-
ble systems that makes them more amenable to study. For a system
with an infinite number of possible states, total enumeration obvi-
ously becomes untenable, and some problems graduate to become
undecidable. Similar to the case of QMA-completeness, however,
this does not imply that every instance of a problem should become
impossibly hard.

The idea that bare thermodynamic quantities may not be pre-
dictive due to lack of thermalization is certainly not new in the study
of non-ergodic systems, with preeminent examples such as spon-
taneous symmetry breaking, spin-glasses, and the general idea of a
Gibbs measure.66–69 These results strengthen these concepts to tell us
that in some non-ergodic systems, there is no computable replace-
ment for something like free energy that is predictive of the behavior
of a system. Hastily defined, the halting problem is the problem of
finding an algorithm that, given a finite program input, can deter-
mine in finite time if the program halts or runs forever. If one views a
physical evolution as a computation where halting is defined as some
qualitative change,70 for example, the fraction of random systems
that thermalize should be closely related to the fraction of random
programs that halt, a number known as Chaitin’s constant.71 Indeed,
it is easy to see that such a thing requires solving the halting problem
for every possible instance to determine the digits of the fraction of
halting programs, which defines it as an uncomputable number. For
such systems, assuming ergodicity is analogous to solving the halting
problem by simply hypothesizing that all programs encoded by the
physical evolution halt.

For veteran chemists, another way of viewing this result is that
it is a vast strengthening of the concept of kinetically controlled
reaction systems to be contrasted with thermodynamically con-
trolled systems. Previous work in this area has shown that this type
of unpredictability is distinct and stronger than traditional notion
sensitivity induced chaos in rendering systems unpredictable, even
when they are deterministic. When considering a computational
view of the universe,2 undecidability does not imply that some-
thing cannot happen in the universe. Rather, it implies that in the
worst case, some events cannot be predicted using a finite algo-
rithm, even if those events are relatively ordinary and the outcomes
are easy to describe once they have occurred. Phrased in a physical
point of view, for a system exhibiting undecidable dynamics, there
are sudden, qualitative changes that cannot be predicted in any way
other than simply stepping the system forward in time.70 For chem-
ical practitioners, such a description is certainly reminiscent of the
emergent phenomena that transition us from simple molecules to
proteins, RNA, DNA, complex catalytic networks, and even living
systems.

Before continuing, we must address a tension that arises with
the mapping of physical processes to halting problems in the form
of finite vs infinite systems. In order to map to a halting problem
rigorously, one typically maps the operations of a physical system to
operations of a Turing machine, with an infinite sized tape. If the
tape were finite, one can spend a very long, but not infinite, time
examining all possible states of the system to arrive at an answer
to any question related to the state of the system. For example, in
studying the dynamics of a finite physical system, one could dis-
cretize the possible states and expend an exponential amount of
time in the system size determining an answer. Hence, one might
want to argue that since the universe is often presumed finite, these

conclusions are of little consequence, even though from a practical
point of view, the exponential of even a modest sized finite system
would take longer than the age of the universe. Despite their some-
what similar predictions, in practice (too long to compute), we argue
that embracing the viewpoint of undecidable dynamics allows one
to let go of the impossible dream of treating chemical questions
by the exponential enumeration of the combinatorial perspective.
Whether or not a physical system exhibits truly undecidable behav-
ior, embracing the possibility leads to a more natural description
of many chemical processes and points the way toward more apt
solutions.

We depict an example of this Perspective in Fig. 2. Consider a
collection of small molecules attached to a reservoir of source chem-
icals, and we wish to know if a particular strand of DNA will ever
form, given this setup. If one took the closed system, or combinato-
rial, viewpoint, it would suggest that perhaps the most effective way
to address this question is to model the reservoir with some enor-
mous, but finite, set of explicit molecules and check all the possible
states of the dynamic system. Along the way, one can check things
such as the change in free energy (ΔG) or simply proceed with short
time dynamics. Not only is the approach untenable due to the num-
ber of possible configurations, but given the nature of self-catalytic
reaction networks, one could accidentally include slightly too few
molecules to form the right catalytic process to enable the formation
of that strand and reach the wrong conclusion. In contrast, the open
system, or undecidable, interpretation of this setup, is that the physi-
cal system can continue to borrow from the infinite reservoir such as
states of the Turing tape. If it has to temporarily expand to chemical
networks of unforeseen size, it can do so. In this situation, one tends

FIG. 2. Sketch of two viewpoints for the problem of chemical synthesis. In this
scenario, one wants to know if a certain target compound can be reached with
a feedstock of specified chemicals under typical conditions. The combinatorial
view tries to address this question by introducing a closed reaction system with
a large but finite number of the reagents and explores potential reaction pathways
to determine feasibility through some proxy such as free energy (ΔG) or a short
time simulation. The undecidable viewpoint embraces an open system picture and
the relationship to DNA computing to argue that the most feasible approach tries
to use data from either nature or related simulations to determine the answer to
the question. Such an approach can more naturally include the effects of common
side reactions or strong kinetic control.
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to lean on data models for what has existed before, and we detail later
how doing so changes the power of the simulation approach. The
undecidable interpretation is supported by recent work, showing
that DNA computing is Turing complete and as such can encode the
halting problem.72,73 While DNA computing is a bit of an artificial
construction and real DNA that tends to form in live systems is sub-
ject to other constraints that make its activity more predictable, the
possibility of implementing universal computation in the dynamics
of a chemical system pushes us to embrace the wildest consequences
of the theory of computation.

This tension between finite and infinite models is not unfamil-
iar when related to the study of other non-ergodic systems, such as
spin-glasses.66 In such cases, models might predict that finite systems
have some chance of exhibiting substantial rearrangements, albeit on
exponentially long time scales. However, it has been seen to be use-
ful to lean on a model that takes a limit where these different basins
qualitatively fracture from each other and are considered separate.
We suggest here that as molecular systems grow in complexity, the
run-away reaction systems that form are best treated by considering
them as fracturing into novel parts of chemical space, without track-
ing vanishingly unlikely events that transition one between these
parts of space. Indeed, the undecidability of thermalization suggests
that for infinite systems, it is correct to view such fracturing as exact
in the most general case. Even in simpler cases, this model tracks
more closely with the experience of laboratory chemists who have to
contend with side reactions, rendering a thermodynamically favor-
able synthesis seemingly impossible. By not splitting hairs about
the distinction between a large finite system and a truly infinite
one, we can move toward practical alternatives to the brute-force
combinatorial approach of pure computation.

However, if one resigns themselves to accept that many of these
problems have no general algorithm, is one left with no option but
to plod forward with rote dynamic simulation or give up? At least
the combinatorial approach offered a glimmer of hope, even if it
required longer than the age of the universe for tiny problems right?
In Sec. IV, we argue that, in fact, this realization does offer an alter-
native, which focuses the scientist on an approach based on learning
and reduced chemical model construction.

IV. LEARNING AS AN ALTERNATIVE
TO COMPUTATION

Rather than claim that one must give up hope on problems
where the most natural formulation looks undecidable or hopelessly
expensive, we argue that embracing the undecidable interpretations
of these problems frees one from the distraction of the combinatorial
approaches and leads them to embracing the only known resolu-
tions to problems that exist for halting problems. The first, and not
really palatable solution, that has been mentioned, is running time
dynamics forward and hoping for the event of interest to occur. The
second, and more actionable viewpoint, is to understand that sys-
tems with advice can formally resolve such problems. While advice
has a precise definition in theoretical computer science,74 it was
recently shown that data from the real world can act as a restricted
form of advice.75 To solve halting problems, one’s advice would
need to constitute a form of infinite time pre-computation; how-
ever, much like the argument of finite vs infinite systems, the pre-
computation performed by the physical universe before this point,

though finite, is already quite strong and available to be revealed
through experiments.

To see an example of this in chemistry, one can look to the field
of natural product synthesis, where one seeks to synthesize chemical
species found in nature from simpler, readily available components
in a finite number of steps. For the most general complex molecule,
it can be quite difficult to say if a product can be reached with a fixed
set of reagents and conditions or at all, perhaps due to some inter-
vening side reaction. In fact, we conjecture this form of the problem
may be undecidable since we could specify the target molecule as
a particular strand of DNA.73 By contrast, in the study of natural
product synthesis, the challenging question of chemical synthesiz-
ability is answered by nature itself, and practitioners are freed to dis-
cover practical routes toward a product rather than ponder if success
was even possible theoretically. In this sense, empowering ourselves
with observations from the physical world can enable answers to
questions that cannot be practically resolved with rote algorithms.
More generally, we believe one could view the models and study
of synthesis in organic chemistry and their predictive success in
this light. Hence, taking this point of view suggests that approaches
based on learning are fundamentally different from those that rely
on computation alone.

With the rise of popularity in machine learning, naturally, there
is now a flurry of work applying techniques of machine learning to
chemistry.76 The applications range from prediction of direct sim-
ulation quantities77 to synthesizability78 and inverse design.26 We
believe that the results we highlight here bolster the motivation for
pursuing this line of work in the general sense but also support the
long standing tradition of chemists developing physical models as
well. While much practical work remains to be done in finding the
best representation or approaches, it is now understood that these
approaches are fundamentally different, and indeed more powerful
in some ways, from traditional simulation approaches.

In particular, recent work has shown that the power offered
by data from a quantum computer can lift classical models to be
competitive with their quantum counterparts in some cases.75 If
nature is, indeed, a universal quantum computer,79 this would sug-
gest that quantum computations could help fill the role of natural
experiments in providing data to empower learning models, but with
improved programmability and flexibility. This might suggest that in
the future, a key role of quantum computers, which may still remain
scarce compared to their traditional counterparts, may be to provide
data for learning models primarily run on traditional computers.
However, that would be a rather unexciting fate for a technology
that pushes the limits of our understanding of the universe.

Instead of accepting this fate, we appeal to other recent work
that has shown an overwhelming advantage for quantum comput-
ers in how they can process data moved directly into the computer
from a quantum sensor, a process referred to as transduction.80,81

A comparison with a traditional data pipeline is shown in Fig. 3.
In such cases, even performing quantum data processing on even
very few copies stored in quantum memory can allow one to extract
properties of quantum systems that would require exponentially
more data in the classical case.80 Even early machines may be able
to manipulate few copies for limited times and store these quan-
tum data for future models. This separation is stronger than a tra-
ditional computational separation, as if limited measurements are
available due to the transient nature of a system, no amount of
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FIG. 3. Comparison of quantum and classical data pipelines. The presence of
classical data or traditional measurements, e.g., data from laser spectroscopy or
thermodynamic models, already confers an advantage over traditional simulation.
Here, we contrast that pipeline with the one where quantum data are collected from
quantum sensors, which can be stored in quantum memory, increasing yet again
the power of available data. In the classical case, a sensor measures and reports
classical values back to a classical computer. In the quantum case, a sensor has its
state transferred into a quantum computer, a process also known as transduction,
where it may be computed alongside multiple additional copies of such states to
perform tasks that would be exponentially more costly on a classical computer.
In such setups, the quantum transduction route can require exponentially fewer
measurements than the classical case to learn some quantities or perform some
tasks. In cases where data are hard to come by, e.g., transient, short-lived, or rare
systems, this can make an impossible characterization into the one that is routine.

computation can allow for the traditional measurement and compu-
tation to catch up. This implies that even systems with a number of
qubits that can be classically simulated could prove advantageous.
If the quantum computer has quantum memory that can main-
tain states in the quantum form, this extends the power of these
approaches even further. The relationship between this hierarchy of
data models and traditional simulation is depicted in Fig. 1. More-
over, if one ventures further into the realm of speculation, recent
computer science results have shown that if one can entangle two
parties trying to prove something to another, what they can con-
vincingly prove expands to unimaginable heights, including halting
problems. While this celebrated result, MIP∗ = RE,82 has not yet
been directly connected with the physical world, it is tantalizing to
imagine how it might reflect on the power of physical experiments
empowered by entanglement to reveal the mysteries of the universe.
The question, of course, becomes where to find such useful quantum
data and how to effectively get it into the quantum computer.

Chemistry has long benefited from the power of quantum sen-
sors in nuclear magnetic resonance experiments. While the most
basic forms of these experiments are based on ensemble mea-
surements at an effectively high temperature, they offer incredible
insights and are fundamentally quantum. Interestingly, the form
of these basic experiments can be closely identified with the so-
called one clean qubit model or DQC1 and this has inspired some
recent work in pursuing advantages with nuclear magnetic reso-
nance (NMR).83 However, as NMR technology advances with tech-
niques such as hyper-polarization,84 multi-dimensional methods,85

spatial resolution,86 and zero-field techniques,87 we appear to be
accessing more and more pure quantum states with increasing con-
trol.88 In addition, the design of more advanced molecular quan-
tum sensors is an active research area.89 With sufficient advances in
transduction techniques and developments in quantum error cor-
rection, it may become possible to load data from molecules directly
into quantum computers and perform manipulations that are prov-
ably challenging for a classical device even with unbounded com-
pute time to replicate due to the query separations we mention
above. This could enable faster chemical identification, unprece-
dented accuracy in examining quantum effects in molecules, or
fundamentally new techniques for the control and manipulation of
chemical states.

V. UNTAPPED RESOURCES IN QUANTUM
COMPUTER SCIENCE

The discussion thus far has largely centered on the role of quan-
tum computer science or quantum computers themselves in new
approaches to understanding chemistry. However, it is also inter-
esting to ask more generally what theoretical tools from quantum
information science with potential to impact computational chem-
istry remain untapped. For example, techniques in tensor networks
that received much of their theoretical development in quantum
information have now begun to inform the ansatz for correlated
wavefunctions. Both matrix product states and tensor network states
coupled with an entanglement perspective on strong correlation
have led to a wealth of theoretical developments.90,91

An area of remarkable theoretical development that remains
relatively unknown in the chemical community is that of digital
quantum error correction.16,92 Perhaps for a chemist, the best way
to understand these methods is in relation to the existing and well
developed body of research of quantum control of chemical reac-
tions and chemistry.93–95 We depict aspects of this relationship in
Fig. 4. In quantum control, a signal, often through a laser excita-
tion or similar, may be used to control and measure the system
through feedback; however, these measurements are often destruc-
tive with regard to quantum states in the system, and we refer to this
as analog quantum-classical feedback control. Through the use of a
separate quantum probe or ancilla system, one can make measure-
ments of a system that actually generate or stabilize entanglement
in the quantum system or an analog quantum–quantum scheme.
Taking this one step further, one may use multiple probes and digi-
tal algorithms that adaptively change based on measurement results
to pump entropy out much faster than traditional thermalization
would allow. It turns out that the exponentially long suppression of
transport out of collection of desired quantum states is reliant on
an abstract digital perspective of the states. These constructions are
formalized in the theory of digital quantum error correction, where
it has been shown that with only spatially local measurements and
classical computation, it can be possible to stabilize exotic quan-
tum states for essentially arbitrary lengths of time with asymptot-
ically modest resources. While quantum control has a rich history
in quantum chemistry and, indeed, many of the developments in
reducing errors in quantum experiments93,96 have relationships to
techniques in chemistry, the full digital perspective remains rela-
tively unexplored. If such techniques could be ported more directly
into chemistry, stabilizing electronic or excitonic states could lead to
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FIG. 4. Digital quantum feedback control inspired by quantum error correction.
Quantum control of chemical reactions is a well-studied field, and many aspects
of it are mirrored in the control of qubit systems. The dotted lines denote quantum
interaction, while the solid lines imply classical information exchange. While direct
measurement of a system through typical analog signals destroys entanglement in
a quantum system (quantum-classical), the use of a quantum probe or ancilla sys-
tem can allow for measurements that preserve or create entanglement in the target
system reliably (quantum–quantum). While this paradigm is already powerful, the
tools of discrete computer science allow one to use such interactions in combi-
nations with algorithms that can be imagined as sophisticated Maxwell’s demons
to pump entropy out of the system at incredible rates far exceeding those of typi-
cal thermalization to stabilize exotic quantum states, such as electronic states, for
time scales that could, in principle, extend for years, using only local measure-
ments and feedback. These tools are developed at length in the field of quantum
error correction, and we imagine here how those tools might eventually integrate
with chemical systems. Such constructions may pave the wave for novel excitonic
or energy transport designs.

novel reactive methods or wildly improved energy transfer efficien-
cies. While this remains in the realm of pure speculation perhaps
probe systems that can be interacted via future versions of tunneling
microscopes with near single electron resolution coupled to catalyti-
cally active sites on metal surfaces could offer some of the first places
to explore these ideas.

The development of quantum error correction was also closely
linked to the development of simulation for a particular class of
quantum states, known as stabilizer states. These states can exhibit
essentially maximal entanglement across a system yet are incredi-
bly efficient to simulate classically, often scaling like N2 or N3 in the
number of orbitals.97,98 While they are discrete in nature, requiring
some novel optimization techniques such as reinforcement learning,
if coupled with simple orbital rotations, these could form yet another
powerful ansatz for efficient classical electronic structure methods
informed by quantum information that has yet to be exploited. We
depict this connection in Fig. 5.

While the existence of a powerful ansatz that has not yet been
explored is perhaps strong enough motivation by itself, the link to
quantum error correction provides even more fuel for this interest-
ing avenue of inquiry. Many of the most challenging bio-metallic
enzymes, such as nitrogenase, are characterized by an active site
that is difficult to describe with traditional methods due to static
correlation related to quasi-degeneracy of electronic configurations.
Quantum error correction takes advantage of strong entanglement

FIG. 5. Contrasting the state vs stabilizer and rotation viewpoint for quasi-
degenerate systems. The top shows a representation of an electronic state built
from rotations applied to a stabilizer state, while the bottom depicts a traditional
configuration based view. Electronic catalysts often exhibit quasi-degeneracy,
making them challenging to treat with single reference methods. The stabilizer
formalism from quantum error correction, combined with efficient single particle
rotations, may offer a compact way to both simulate and analyze such situations,
as the use of degeneracy to protect quantum states is a core principle of quan-
tum error correction. Graph state representations of stabilizer states may offer
connections to chemical bonding and electron correlation theory, all while being
computationally efficient to simulate and analyze classically.

and engineered degeneracy as a mechanism for protecting informa-
tion. If nature were to follow a similar path, perhaps the electronic
near-degeneracy and resulting entanglement in these systems could
be an avenue for protecting a coherent reaction pathway similar to
the approach of quantum error correction. In addition, many mod-
ern quantum error correcting codes take advantage of topological
protection, and topological effects have been studied in the context
of electronic degeneracies near conical intersection.99 While natu-
ral systems do not have access to an optimal decoder to remove
excess entropy, the notion of self-correcting memories where sys-
tems exhibit such behavior more naturally draws an enticing con-
nection.100 In such a case, the stabilizer formalism for representing
these ground states would be especially apt, efficiently manipulat-
ing untold numbers of determinants through non-obvious symme-
tries.101 This could offer an electronic (non-point group) symmetry
perspective view on important intermediate or catalytic electronic
states. Such statements are presently at the level of conjecture, but
it represents another example of a potential way in which quantum
computation and chemistry may unite. We depict this Perspective in
Fig. 5.

VI. OUTLOOK
As quantum technology advances, so does our understanding

of what any computational device can accomplish. In this Perspec-
tive, we have explored the ways in which results from quantum com-
puter science may impact our view and approach toward computa-
tional chemistry. On the one hand, quantum computers are believed
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to offer an exponential advantage over classical computers in direct
simulation of some quantum chemical theories, making certain tasks
that previously seemed impossible into ones that should be relatively
routine. On the other hand, we saw that even quantum comput-
ers have limits, crystallized through the no-fast-forwarding theorem
and strong results on the undecidability of physical processes with
quantum computers.

In highlighting the ways some of these speed limits are bro-
ken, we were led to a framework where learning from natural
data is fundamentally different from rote computation. This view-
point captures the ability of reduced theories to offer meaningful
predictions further than the time scales of experiments, and also
offers a strategy for dealing with some of the hardest problems in
chemical theory.

It has now been decisively shown that classical models empow-
ered by data from quantum computation (including both nature and
engineered computers) are more powerful than traditional compu-
tation without data, assuming only that quantum computers may
perform some tasks faster than classical computers. While data from
quantum devices will play an important role in their future interac-
tions with chemistry, the ability to feed quantum data directly into
quantum computers offers more power still. The interplay of quan-
tum computers with more advanced quantum sensors may offer
untold possibilities. Finally, we expect the interplay between quan-
tum information theory and chemical theory to continue, where
import of ideas from domains such as digital quantum error cor-
rection may open new avenues of research.

In looking forward, we see a bright future for the ways in which
quantum technology may advance the study of chemistry. While it
is true that the direct simulation abilities of quantum computers will
offer amazing value, we have argued here that this is just the tip of
the iceberg. Our ability to address some of the hardest problems in
chemistry and nature through data and learning will only be bol-
stered by stronger quantum technology, and that future is on its
way.

ACKNOWLEDGMENTS
We thank Nathan Wiebe for helpful discussions and feedback

on the draft.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

REFERENCES
1R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467
(1982).
2D. Deutsch, “Quantum theory, the Church–Turing principle and the universal
quantum computer,” Proc. R. Soc. London, Ser. A 400, 97 (1985).
3P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and
factoring,” in Proceedings of the 35th Annual Symposium on Foundations of
Computer Science (IEEE, 1994), pp. 124–134.

4A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”
Rev. Mod. Phys. 68, 733 (1996).
5A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated
quantum computation of molecular energies,” Science 309, 1704 (2005).
6D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, “Gate-count
estimates for performing quantum chemistry on small quantum computers,”
Phys. Rev. A 90, 022305 (2014).
7J. R. McClean, R. Babbush, P. J. Love, and A. Aspuru-Guzik, “Exploiting locality
in quantum computation for quantum chemistry,” J. Phys. Chem. Lett. 5, 4368
(2014).
8R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-
Guzik, “Exponentially more precise quantum simulation of fermions in second
quantization,” New J. Phys. 18, 033032 (2016).
9R. Babbush, D. W. Berry, J. R. McClean, and H. Neven, “Quantum simulation of
chemistry with sublinear scaling in basis size,” npj Quantum Inf. 5, 92 (2019).
10G. A. Quantum et al., “Hartree-Fock on a superconducting qubit quantum
computer,” Science 369, 1084 (2020).
11F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell et al., “Quantum supremacy using a
programmable superconducting processor,” Nature 574, 505 (2019).
12B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kas-
sal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri et al., “Towards quantum
chemistry on a quantum computer,” Nat. Chem. 2, 106 (2010).
13A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A.
Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic
quantum processor,” Nat. Commun. 5, 4213 (2014).
14P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends,
J. Kelly, P. Roushan, A. Tranter, N. Ding et al., “Scalable quantum simulation of
molecular energies,” Phys. Rev. X 6, 031007 (2016).
15A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,”
Phys. Rev. A 54, 1098 (1996).
16D. Gottesman, “Stabilizer codes and quantum error correction,” arXiv:quant-
ph/9705052 (1997).
17J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. De Jong, “Hybrid
quantum-classical hierarchy for mitigation of decoherence and determination of
excited states,” Phys. Rev. A 95, 042308 (2017).
18W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C. Rubin, S. Boixo, K. B.
Whaley, R. Babbush, and J. R. McClean, “Virtual distillation for quantum error
mitigation,” Phys. Rev. X (to be published).
19J. Lee, D. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, and
R. Babbush, “Even more efficient quantum computations of chemistry through
tensor hypercontraction,” Quantum 2, 030305 (2021), https://journals.aps.org/
prxquantum/abstract/10.1103/PRXQuantum.2.030305.
20N. Schuch and F. Verstraete, “Computational complexity of interacting elec-
trons and fundamental limitations of density functional theory,” Nat. Phys. 5, 732
(2009).
21J. D. Whitfield, P. J. Love, and A. Aspuru-Guzik, “Computational complexity in
electronic structure,” Phys. Chem. Chem. Phys. 15, 397 (2013).
22B. O’Gorman, S. Irani, J. Whitfield, and B. Fefferman, “Electronic structure in a
fixed basis is QMA-complete,” arXiv:2103.08215 (2021).
23D. A. Reed, R. Bajcsy, M. A. Fernandez, J.-M. Griffiths, R. D. Mott, J. Dongarra,
C. R. Johnson, A. S. Inouye, W. Miner, M. K. Matzke et al., “Computational sci-
ence: Ensuring America’s competitiveness,” Technical Report, President’s Infor-
mation Technology Advisory Committee, Arlington, VA, 2005; available at
https://apps.dtic.mil/sti/citations/ADA462840.
24E. Knill, G. Ortiz, and R. D. Somma, “Optimal quantum measurements of
expectation values of observables,” Phys. Rev. A 75, 012328 (2007).
25T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory
(John Wiley & Sons, 2014).
26B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design using
machine learning: Generative models for matter engineering,” Science 361, 360
(2018).
27I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik,
“Polynomial-time quantum algorithm for the simulation of chemical dynamics,”
Proc. Natl. Acad. Sci. U. S. A. 105, 18681 (2008).

J. Chem. Phys. 155, 150901 (2021); doi: 10.1063/5.0060367 155, 150901-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1007/bf02650179
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1103/revmodphys.68.733
https://doi.org/10.1126/science.1113479
https://doi.org/10.1103/physreva.90.022305
https://doi.org/10.1021/jz501649m
https://doi.org/10.1088/1367-2630/18/3/033032
https://doi.org/10.1038/s41534-019-0199-y
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/physreva.54.1098
http://arxiv.org/abs/quant-ph/9705052
http://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1103/physreva.95.042308
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.030305
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.030305
https://doi.org/10.1038/nphys1370
https://doi.org/10.1039/c2cp42695a
http://arxiv.org/abs/2103.08215
https://apps.dtic.mil/sti/citations/ADA4628405
https://doi.org/10.1103/physreva.75.012328
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1073/pnas.0808245105


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

28Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D.
Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya et al., “Quantum chemistry in
the age of quantum computing,” Chem. Rev. 119, 10856 (2019).
29S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum
computational chemistry,” Rev. Mod. Phys. 92, 015003 (2020).
30V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler,
and M. Troyer, “Quantum computing enhanced computational catalysis,” Phys.
Rev. Research 3, 033055 (2021); available at https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.3.033055.
31J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of
variational hybrid quantum-classical algorithms,” New J. Phys. 18, 023023 (2016).
32P. K. Barkoutsos, F. Gkritsis, P. J. Ollitrault, I. O. Sokolov, S. Woerner, and I.
Tavernelli, “Quantum algorithm for alchemical optimization in material design,”
Chem. Sci. 12, 4345 (2021).
33R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo, and H. Neven,
“Focus beyond quadratic speedups for error-corrected quantum advantage,” Phys.
Rev. X Quantum 2, 010103 (2021).
34J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, “Towards the
computational design of solid catalysts,” Nat. Chem. 1, 37 (2009).
35D. Ess, L. Gagliardi, and S. Hammes-Schiffer, “Introduction: Computational
design of catalysts from molecules to materials,” Chem. Rev. 119, 6507 (2019).
36G. Knizia, “Intrinsic atomic orbitals: An unbiased bridge between quantum
theory and chemical concepts,” J. Chem. Theory Comput. 9, 4834 (2013).
37J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R.
S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-
Guzik, “The Harvard clean energy project: Large-scale computational screening
and design of organic photovoltaics on the world community grid,” J. Phys. Chem.
Lett. 2, 2241 (2011).
38A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder et al., “Commentary: The materials project: A
materials genome approach to accelerating materials innovation,” APL Mater. 1,
011002 (2013).
39A. K. Singh, K. Mathew, H. L. Zhuang, and R. G. Hennig, “Computational
screening of 2D materials for photocatalysis,” J. Phys. Chem. Lett. 6, 1087
(2015).
40S. L. Kinnings, N. Liu, P. J. Tonge, R. M. Jackson, L. Xie, and P. E. Bourne,
“A machine learning-based method to improve docking scoring functions and its
application to drug repurposing,” J. Chem. Inf. Model. 51, 408 (2011).
41L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V. S. Pande, and T. J. Martínez,
“Discovering chemistry with an ab initio nanoreactor,” Nat. Chem. 6, 1044
(2014).
42M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Elucidating reac-
tion mechanisms on quantum computers,” Proc. Natl. Acad. Sci. U. S. A. 114, 7555
(2017).
43M. Motta, E. Ye, J. R. McClean, Z. Li, A. J. Minnich, R. Babbush, and G. K. Chan,
“Low rank representations for quantum simulation of electronic structure,” NPJ
Quantum Information 7, 83 (2021).
44D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R. Babbush,
“Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low
rank factorization,” Quantum 3, 208 (2019).
45A. D. Bochevarov, E. F. Valeev, and C. David Sherrill, “The electron and nuclear
orbitals model: Current challenges and future prospects,” Mol. Phys. 102, 111
(2004).
46T. J. Martínez, “Ab initio reactive computer aided molecular design,” Acc.
Chem. Res. 50, 652 (2017).
47D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C.
Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer, “Proton-coupled
electron transfer,” Chem. Rev. 112, 4016 (2012).
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