SwiTtcHV: Automated SDN Switch Validation with P4 Models

Kinan Dak Albab*

Jonathan DiLorenzo

Stefan Heule*

Brown University Google Financial Choice
Ali Kheradmand Steffen Smolka Konstantin Weitz"
Google Google Financial Choice
Muhammad Timarzi® Jiaqi Gao Minlan Yu

Harvard University

ABSTRACT

Increasing demand on computer networks continuously pushes
manufacturers to incorporate novel features and capabilities into
their switches at an ever-accelerating pace. However, the traditional
approach to switch development relies on informal specifications
and handcrafted tests to ensure reliability, which are tedious and
slow to maintain and update, effectively putting feature velocity at
odds with reliability.

This work describes our experiences following a new approach
during the development of switch software stacks that extend fixed-
function ASICs with SDN capabilities. Specifically, we focus on
SWITCHV, our system for automated end-to-end switch validation
using fuzzing and symbolic analysis, that evolves effortlessly with
the switch specification. Our approach is centered around using the
P4 language to model the data plane behavior of the switch as well
as its control plane APL Such P4 models are then used as a formal
specification by SWITCHV, as well as a switch-agnostic contract by
SDN controllers, and a living documentation by engineers.

SwitcHV found a total of 154 bugs spanning all switch layers.
The majority of bugs were highly relevant and fixed within 14 days.

CCS CONCEPTS

« Networks — Network reliability; Programming interfaces; » Soft-
ware and its engineering — System description languages; Soft-
ware verification and validation;

KEYWORDS

P4, P4 modeling, SDN switch validation, PINS, SAI, fuzzing, sym-
bolic execution, automated test generation

ACM Reference Format:

Kinan Dak Albab, Jonathan DiLorenzo, Stefan Heule, Ali Kheradmand,
Steffen Smolka, Konstantin Weitz, Muhammad Timarzi, Jiaqi Gao, and Min-
lan Yu. 2022. SwitcHV: Automated SDN Switch Validation with P4 Mod-
els. In ACM SIGCOMM 2022 Conference (SIGCOMM °22), August 22-26,

*Work fully or partially performed while at Google.
TWork performed while at Google and Harvard University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.

https://doi.org/10.1145/3544216.3544220

Harvard University, Google

2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 15 pages. https:
//doi.org/lo.l145/3544216.3544220

1 INTRODUCTION

Motivation Demands on computer networks are ever-increasing.
Networks are constantly challenged to become more reliable, more
flexible, and more efficient. This drives manufacturers and operators
to design, implement, and deploy new features and capabilities
at an accelerating pace. In this paper, we focus on the following
conundrum: How can we increase the reliability of our network
infrastructure while simultaneously increasing feature velocity?

This question has led hyper-scalars to adopt novel approaches.
Google uses Software Defined Networking (SDN) [19, 28], a network
architecture that separates the control and data planes, to increase
feature velocity and improve debugging. Microsoft [4] and Ama-
zon [2] use network verification (§8) to detect network configuration
bugs. Meanwhile, the way we build switches, and especially their
software comprising network operating systems and control APIs,
has largely remained the same: we write informal, often incom-
plete and ambiguous specifications (if any) in English, and check
specification compliance using hand-crafted test suites. Verifica-
tion techniques have been applied to switch hardware (§8), but not
switch software or end-to-end correctness.

We are reaching an inflection point at which this approach no
longer scales, due to these trends: First, with SDN, the controller, the
switch software stack, and the switch hardware and drivers are typi-
cally developed by different teams across several companies. Timely
and correct integration of these components thus hinges on precise
encoding and understanding of the specification and API of each
component, which must be agreed upon by various teams across
organizational boundaries. Second, data from Microsoft Azure [55]
and Facebook [40] suggest that the success of network verifica-
tion at catching configurations bugs may have reached a point of
diminishing returns, with many network failures now occurring
due to switch hardware and software bugs. Finally, the accelerated
evolution of switches is increasing the complexity of their software,
which now often include an abundance of features and capabilities
unlikely to be fully used by any single operator, which makes their
validation and maintenance more challenging [13].

At its core, the traditional approach to switch design—relying on
informal English specifications and hand-crafted tests—inherently
puts feature velocity and reliability at odds, forcing switch design-
ers to carry out a balancing act between these two properties. In-
creasing reliability entails writing more tests, which saddles the
development of new features with having to update these tests as

https://doi.org/10.1145/3544216.3544220
https://doi.org/10.1145/3544216.3544220
https://doi.org/10.1145/3544216.3544220

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Switch-Agnostic

)
i
h]
E Abstraction ! Living o
E ! Documentation Ak
! ! Engineers
: 1
i
0 Configuration ! =y ! P4 Runtime API
and Runtime- E | Contract
p|.Ns Enforcement ' P4 ' SDN
Switch E Program/Model E Controller
i i
! 1 Control + Data Plane
i H Specification O
i \
! ! Automatic
. ' Validation

Figure 1: We model fixed-function PINS switches using P4
programs, which provide a implementation-agnostic abstrac-
tion for the components in the ecosystem.

the specification evolves. Developers are driven to quickly intro-
duce new features to meet increased demand and new requirements,
which often results in deprioritizing the maintenance of existing
tests or the addition of new ones. Thus, designers constantly run
the risk of their switches, various levels of specifications, and tests
going out of sync, or of abandoning the specs altogether. Simi-
larly, network operators are faced with a trade-off between quickly
deploying new switches with new desired capabilities into their
networks, and ensuring the overall reliability of their networks.

We attempt to reconcile these seemingly contradictory goals
using a novel approach to switch design and development. This
paper reports on our experience applying this approach during the
co-development of (i) the P4 Integrated Network Stack (PINS) [20],
(ii) a fixed-function [5] switch running PINS, and (iii) a data center
fabric based on that switch (Figure 4).

Our Approach Our methodology is centered around automated
validation that evolves automatically (i.e. without any additional
effort) along with the switch specification. To that end, we use
the P4 [16] programming language to model the end-to-end be-
havior of switches. While P4 is traditionally used to program P4-
enabled switches, we view P4 programs as a machine-readable and
implementation-agnostic formal specification of the control plane
API (i.e. the tables that can be programmed via P4Runtime [15]), and
the data plane behavior of switches (i.e. how the switch forwards
packets), including switches that are not P4-enabled. Modeling via
P4 programs is the linchpin that connects the various components
of our approach as shown in Figure 1.

We design each of our P4 programs to model the behavior of
a switch in a specific deployment role (e.g. ToR, WAN), modeling
only the capabilities needed in that role. This makes our models
simpler and more portable across switch implementations.

We introduce SWITCHV, our framework for validating switches
automatically. SwiTcHV validates that a given switch conforms to
our P4 modeling with high confidence. At a high level, SwitcaV
automatically analyzes the P4 model and generates two types of
differential tests for validating the control plane API and the data
plane forwarding behavior of the switch. SwiTcHV monitors the
behavior of the switch as the tests are run against it, and checks
that the behavior matches the expected behavior of the P4 program.
If a mismatch is detected, SWITCHV generates an incident report

Kinan Dak Albab et al.

that human testers can inspect to identify the root cause, which
may be a bug in the switch or the P4 model.

Automated validation using SwrTcHV helps reconcile the tension
between reliability and feature velocity, as it alleviates the burden
of updating and extending hand-crafted tests. Instead, SwiTcHV
automatically generates new tests as the specification evolves. We
have structured our approach to provide safeguards and incentives
to keep the P4 model in sync with the implementation: We run
SwrtcHV periodically (e.g. daily), catching any divergence between
the P4 model and the switch behavior almost immediately. Addi-
tionally, in contrast to informal English specifications, updating
our P4 models as the implementation evolves provides immedi-
ate value by yielding test coverage for new or changed features
“for free”; it is also a technical necessity for exposing features in
PINS to the controller, as the control plane API is defined by the
P4 program. Effectively, this makes our P4 models a living docu-
mentation that engineers can consult for a precise, yet abstract and
implementation-agnostic view of the current end-to-end behavior
of the switch, mitigating the problem of out-of-date specifications.

We used SWITCHV to validate two switch stacks under devel-
opment called PINS and CErRBERUS (§6). SwiTcHV found 122 and
32 bugs in the two stacks, including bugs in the hardware, various
software layers, the P4 toolchain, and the P4 models themselves.

Ethics Statement This work does not raise any ethical issues.

2 OVERVIEW

The centerpiece of our approach is using P4 to specify the API and
behavior of the switch in its intended role (§3). The choice of P4
as a modeling language is integral to SWITCHV, as it enables the
automated validation of the control plane API of the switch and its
data plane forwarding behavior.

The P4 language semantics ensure that P4 programs are unam-
biguous, making them suitable for use as formal specifications. P4
has relatively few and simple constructs (e.g. compared to general-
purpose languages such as C++), which makes it easier to automati-
cally analyze and reason about P4 programs, while also being more
mature and familiar to network engineers than a custom-made
modeling language. We show a simplified portion of a P4 program
that expresses parts of a typical IPv4 routing flow in Figure 2.

Fixed-Function Switches Our focus in this paper is on the use of
SwiTcHV to validate fixed-function switches [5] running the PINS
software stack (Figure 4). A fixed-function switch consists of a rigid
ASIC with limited flexibility. Concretely, the forwarding pipeline
in such a switch is mostly fixed and encoded in the hardware:
Operators cannot arbitrarily change the routing logic, control flow,
and supported protocol headers. However, such a switch can still
be programmed by a controller by installing table entries that the
fixed logic matches against. For example, the controller can install
entries that forward packets with a certain destination IP on a
certain port, or drop packets from a specific source address. The
controller performs this programming by issuing requests via the
switch’s control plane API There are also limited ways in which the
so-called ACL tables, which are invoked at pre-determined places
in the rigid packet-processing pipeline, can be configured prior to
programming, allowing to trade off expressivity (# tables, # bits that
a table matches on) with scalability (# of table entries supported).

SwitcHV: Automated SDN Switch Validation with P4 Models

1 control routing(in headers_t headers,
2 inout metadata_t metadata) {
3 /%o */

4 @entry_restriction()
5 table vrf_tbl {

6 key = { metadata.vrf_id :
7 actions = { no_action; }
8 const default_action = no_action;

9 size = ROUTING_VRF_TABLE_MINIMUM_GUARANTEED_SIZE;
10 } // end of vrf_tbl

11 table ipv4_tbl {

exact; }

12 key = {

13 metadata.vrf_id : exact @refers_to(vrf_tbl, vrf_id);
14 headers.ipv4.dst_addr : lpm;

15 3}

16 actions = { drop; set_nexthop_id; /* ... */ }

17 const default_action = drop;

18 size = ROUTING_IPV4_TABLE_MINIMUM_GUARANTEED_SIZE;

19 } // end of ipv4_tbl
20 apply {

21 vrf_tbl.apply();

22 if (headers.ipv4.isvValid()) {
23 ipv4_tbl.apply();

24

25 VAN Vi

26 } // end of apply

27)

Figure 2: Simplified portion of a fixed-function routing
pipeline modeled as a P4 program.

// id table match keys => action action args

vl vrf_tbl 1 => no_action void

v2 vrf_tbl 0 => no_action void

v3 vrf_tbl 3 => set_nexthop_id 1

i1 ipv4_tbl 1 10.x.%.% => set_nexthop_id 3

i2 ipv4_tbl 5 10.%.%. % => drop void

i3 ipv4_tbl 1 10.%x.%. % => set_nexthop_id void

i4 ipv4_tbl 1 ODB8:*x:x:#:%:x:x => set_nexthop_id 1

i5 ipv4_tbl 1 10.0.%.% => set_nexthop_id 10

Figure 3: Table entries for Figure 2 in a human-readable form.
Entries v2, v3,i2, i3, and i4 are invalid.

We model fixed-function switches as P4 programs. This is an
unorthodox use of P4, which is designed and traditionally used to
install custom forwarding pipelines onto P4-enabled switches. In
contrast to a fixed-function switch, a P4-enabled switch re-arranges
its pipeline whenever a P4 program is installed on it, effectively
acting as an interpreter of that program. After installation, the con-
troller issues control requests to the P4 switch to manage its table
entries, whose signatures must match those defined in the installed
P4 program, as shown in Figure 3. The interface exposed to the con-
troller is governed by the P4Runtime Protocol [15], a standardized,
RPC-based protocol specifying the exact binary format of these
requests and how the switch is allowed to handle them.

PINS Fixed-function switches from different vendors or of differ-
ent makes may have different capabilities and internals and may
expose different APIs and protocols to the controller. This makes
deploying and managing a heterogeneous network challenging.
Recent work proposes various switch software layers [13, 39, 50]
that provide common abstractions and APIs. The P4 Integrated Net-
work Stack (PINS) [20] is a new software switch stack that extends
fixed-function switches with limited programming capabilities and
a unified control API. PINS is based on SONIC [56], an open-source
network operating system build atop the vendor abstraction layer

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

SDN Controller (Orion)

Switch Abstraction

Layer*
RPC
configures
- P4Runtime |~~~ """ T TTTTTTTT
- b5l Server*
2.
7 i
= § Orchestration Agent "
] z
2 SyncD! T
v =
Vendor Abstraction 2 E:: Todeled P4
Layer (SAI) > 2 Program
Hardware g '%
Abstraction Layer* g
Switch Linux
ASIC* CPU
>107LOC ~10°LOC

Figure 4: A fixed-function switch running PINS. New or ex-
tended components are marked with * and 1 respectively.

SAI [49], allowing it to run across hardware from different ven-
dors. PINS extends SONIC with a P4Runtime interface—configured
and governed by an accompanying P4 program—to the controller.
Together, the P4Runtime Protocol and the P4 program constitute
a contract between the PINS switch and the controller, precisely
specifying program-independent concerns, e.g. the signature and
abstract semantics of RPC calls, and program-dependent concerns,
e.g. the tables exposed for programming and the packet-forwarding
semantics of their entries, and the constraints on table entries that
encode hardware limitations, respectively. The same P4 program is
used to configure the ACLs on the PINS switch. PINS implements a
P4Runtime server that receives requests from the controller, checks
that they comply with the aforementioned constraints, and applies
them to the underlying ASIC via a vendor-agnostic abstraction
layer called the Switch Abstraction Interface (SAI) [49].

In addition to PINS, we used SwITcHV to validate CERBERUS,
another software stack for fixed-function switches whose details
we discuss in §6. In principle, SWiTcHV is also directly applicable
to P4-enabled switches. The control plane API validation compo-
nent of SWITCHV relies on the switch exposing a P4Runtime API
to communicate with the switch under test and to judge—based
on a given P4 program and the P4Runtime standard—whether the
observed behavior is admissible. Our data plane validation compo-
nent is largely independent of the P4Runtime Protocol, and can in
principle be extended to validate switches that do not support it.

Scope We used SWITCHV to validate the control plane API and the
packet forwarding behavior of PINS-based and CERBERUS-based
switches end-to-end. This includes validating both the new layers
added by these stacks (e.g. the P4Runtime interface) as well as the
existing layers they are built on top of (e.g. the hardware ASIC, the
underlying operating system), to the extend that these layers affect
the control plane API and packet forwarding.

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

SwitcHV does not validate QoS (which, to a first approximation,
only affects forwarding during congestion) or “management” and
“operational” aspects of the switch, e.g. port speed configuration or
TLS certificate configuration, respectively.

Recent work categorizes bugs found in switches into several
classes [7]. SwiTcHV has detected bugs from a majority of these
classes in practice, including functional bugs, bugs in the architecture
and associated development tools, as well as bugs caused by under-
specified behavior. SWITCHV is not designed to detect bugs from the
two remaining classes, security and performance, which are usually
an artifact of the switch’s configurations.

Design SwriTcHV consists of p4-fuzzer (§4) and p4-symbolic
(§5) responsible for generating tests for the control plane API and
data plane behavior, respectively. p4-fuzzer generates a sequence
of control plane requests for installing, modifying, or deleting vari-
ous table entries, including valid requests as well as “useful” invalid
ones. p4-symbolic generates test packets that satisfy the coverage
assertions provided by test engineers, e.g. hitting every table entry.

Testers provide both components with an input P4 program that
acts as a specification. Additionally, they provide p4-symbolic
with a set of table entries that represent the switch’s present for-
warding state. These are usually a replay of production table entries.
Testers also provide a coverage metric (e.g. branch or trace coverage)
relative to the P4 program encoded using Boolean assertions.

For each type of generated test, SwWITcHV provides a mecha-
nism for judging whether the switch’s response was admissible or
not. p4-fuzzer provides an Oracle that determines whether the
response of a switch to a control plane request complies with the
P4Runtime standard instantiated for the given P4 program, which
determines the format of table entries and may contain additional
constraints in the form of @refers_to and @entry_restriction
(§3) annotations. We run test packets generated by p4-symbolic
against the BMv2 P4 simulator configured with the input P4 pro-
gram and table entries, and check that the behavior of the switch
matches some observed behavior of BMv2. For both types of tests,
we do not predict a single correct outcome, but rather check that the
observed behavior is valid. For any test, there may be multiple valid
behaviors due to under-specification in the P4Runtime Protocol, or
non-determinism in the P4 program.

When SwiTcHV encounters switch behavior that it deems to be
invalid, it produces a log of the incident. A human must inspect this
log to investigate the root cause of the issue, and how it can be ad-
dressed. This may be a result of a bug in the switch, our P4Runtime
Oracle, or in the P4 simulator. Additionally, when the switch is
fixed-function, it may be that the switch’s behavior is correct, and
the P4 program incorrectly encoded the desired functionality.

3 MODELING A FIXED-FUNCTION SWITCH IN
P4

We discuss our experience designing P4 programs that we use as
models for fixed-function switches running PINS (Figure 4). At a
high level, our P4 programs are an encoding of SAI with a similar
structure to the SAI object model [50]. For the most part, we encode
each SAI object as a P4 match-action table. Our P4 models are role-
specific: they share a similar high-level structure and re-use many

Kinan Dak Albab et al.

of the same components. However, they differ in components that
depend on the deployment role of the switch.

We encode various resource limits and semantic constraints into
these P4 programs, such that the P4 program includes all the neces-
sary information to determine whether any control plane request
(e.g. installation of table entries) would be accepted by the switch.
Figure 2 shows simple examples of this where the P4 program spec-
ifies a minimum number of entries (i.e. size) for each table that the
hardware is guaranteed to meet. This guarantees that the switch
will accept any request that is valid from the perspective of the
P4 program (and its embedded resource limits) per the P4Runtime
Protocol semantics.

Furthermore, we design these P4 programs to exhibit our desired
packet forwarding behavior. Given the same table entries and con-
figuration, the switch must forward a packet the same way that
the P4 program would, e.g. if it was run via a simulator. In real-
istic pipelines, such as SAI, the forwarding behavior may include
non-determinism (e.g. for load balancing purposes), and thus this
guarantee is defined over the set of possible behaviors per packet.

We found P4 to be suitable for modeling due to several important
properties. P4 programs lend themselves well to automated valida-
tion. They specify both the control plane API and the data planes be-
havior of switch, and are unambiguous and machine-readable. This
becomes apparent when contrasted with traditional approaches
that write specifications informally in English. Furthermore, these
programs are implementation-agnostic, they depend on the deploy-
ment role rather than the exact switch capabilities, and thus can
be reused for different switches when deployed in the same role.
Additionally, these P4 programs are living documentation that en-
code the specification, the contract, and the exposed functionality
all at once, and thus ensure that the implementation and validation
remain in sync. Finally, they enable rapid innovation as new switch
hardware or software features can be quickly exposed by updating
the P4 program, without having to wait for the lengthy process of
exposing them via newer releases of NOS, SAI, or various standards.

P4 Language Features P4 is designed for programming P4-
enabled switches, rather than modeling fixed-function ones. How-
ever, we found the core language features, specifically its tables
and match action pipelines, expressive enough to allow us to model
our target pipelines while also being amenable to symbolic execu-
tion. Conversely, several language features, including header stacks,
unions, and registers were not needed to model our target pipelines,
even though they may be important for P4 programming generally.

Several P4 targets, including the BMv2 P4 simulator [45], do
not allow revisiting tables in multiple locations in a pipeline. This
restriction stems from practical limitations in the targeted pro-
grammable switches (e.g. Intel Tofino switches [27]). However, it
poses a challenge when modeling certain components, such as
SAT’s router interfaces (RIFs), which interface with the underlying
switch ports at both ingress and egress. Such components cannot
be modeled as a single P4 table, since such a table could be matched
on more than once (e.g. at both ingress and egress). Instead, they
need to be modeled using workarounds, such as replicating them
in several tables, which are then used in different locations. Such
workarounds are merely modeling artifacts and must be accompa-
nied by explicit constraints in the model to ensure their consistency,

SwitcHV: Automated SDN Switch Validation with P4 Models

e.g. the replicas in our example must have the same table entries
since they correspond to the same actual component.

P4-Constraints A critical feature missing from P4 is the abil-
ity to encode semantic constraints on table entries to match the
semantics of the underlying pipeline being modeled. Since it is
primarily designed for P4-enabled switches, P4Runtime is a rela-
tively permissive API that disallows syntactically invalid control
plane requests, but is oblivious to semantic validity which differs
between scenarios. This flexibility causes challenges in PINS, which
uses this permissive protocol for programming the restrictive un-
derlying fixed-function hardware. We mitigated this by providing
mechanisms for specifying API constraints in the P4 program and
enforcing these constraints at run time in PINS’s P4Runtime layer.

Consider a simple ACL implementation that looks up the IPv4
or IPv6 destination addresses in a ban-list. This can be modeled in
P4 as a table that matches on IPv4 and IPv6 destination addresses
as well as the packet type. From the perspective of P4Runtime, this
is a table with three match keys, each with no particular semantic
significance. This means that P4Runtime may accept nonsensical
entries, such as entries that match the IPv6 destination address of
IPv4 packets and vice versa. Additionally, P4ARuntime may accept
entries that cannot be mapped to hardware, entries not in canonical
form, and entries that would interfere with the internals of the
switch being modeled. For example, in PINS, the default VRF 0
is reserved by the hardware and cannot be programmed by the
controller with table entries (Figure 2 line 4).

To capture such semantic restrictions, we built P4-constraints
[14], a P4 extension that enables us to specify custom constraints
on table entries using annotations in the P4 program. These con-
straints are part of the contract with the controller, and we use the
constraints while validating the control plane API of switches to
determine the semantic validity of the generated test requests. In
our experience, we needed to model two kinds of constraints: (1)
(Isolated) requirements imposed by the underlying switch, such as
excluding special built-in values. (2) Integrity constraints relating
entries in different tables that correspond to inter-related switch
components, or to the same component that is captured by multiple
tables for modularity or due to other modeling artifacts.

We express the first kind of constraints via @entry_restriction,
which can be attached to tables to restrict their entries using Boolean
constraints that may refer to the keys of the table along with
Boolean and relational operators. The @refers_to annotation al-
lows us to encode the second kind of constraints and provides
referential integrity, which essentially disallows dangling refer-
ences between two tables. For example, Figure 2 encodes a common
pattern where VRF IDs, which are modeled by an earlier table
(vrf_tbl), are matched against in a later table (ipv4_tbl). By us-
ing @refers_to in line 13, we disallow ipv4_tbl entries that use
non-existing VRF IDs, such as entry i2 from Figure 3. This captures
a restriction of SAIL which requires that VRFs must be allocated
(modeled in P4 by programming the VREF table) before they can be
used. We open-sourced the P4-constraints extension, which is now
a part of the P4 toolchain.

Role Specific Instantiations Developing a general model of PINS
switches is undesirable. Such a hypothetical model must capture all
the capabilities of the switch, even the ones that are not used in its

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

deployed role. This would make the model overly permissive and
unnecessarily complex. For example, on many ASICs, ACL can be
configured to match against various combinations of packet headers
and metadata. However, due to hardware (TCAM) limitations, only
a few of the available headers fields can be matched on at a time. A
natural way of modeling this in P4 is via a table that matches on
all header fields. Table entries can then choose to match against
any desired subset, and leave the remaining keys unset. However,
such a model accepts table entries that match on keys beyond the
capacity of the switch hardware, and is thus too permissive to use
as a specification for SWITCHV, or as a contract between a PINS
switch and the controller.

Instead, we construct a different P4 model for each role the switch
might be deployed in (e.g. ToR, WAN). For each of these roles, the
combination of keys used for ACL is fixed and fits within hardware
limits. Thus, the role-specific ACL can be directly expressed as a
P4 table that matches only on that specific combination. We view
these role-specific models as “instantiations” of the same blueprint.
They have the same high-level structure as SAI They re-use a
lot of the same components and pipelines and only differ in the
role-specific functionality, which currently only includes ACL. We
simplify the effort required to design and maintain these instan-
tiations by grouping all common components into a common P4
library, and instantiating from it using macros and preprocessors.

When a PINS switch is deployed in a role, we push the corre-
sponding instantiation onto it to configure its ACL and establish
its control plane APIL Using the same instantiation for validation
and configuration is an added benefit, but is incidental to SwITcHV,
which discovers deviations between a P4 model and a switch, regard-
less of how the model is organized, or whether the deviations stem
from programmable or fixed-function components in the switch.

Bounded Internal Resources Fixed-function switches have a
variety of internal mechanisms and resources that are handled by
low-level components of the switch. Sometimes it makes sense to
model them even if they do not affect packet-forwarding directly,
since our P4 programs also aim to capture resource limits and
availability. For example, in SAI, VRFs are limited resources that
have to be allocated before they can be used. Therefore, we modeled
VRFs in our P4 programs (Figure 2) using a table whose P4 semantics
is a no-op, but whose semantics in PINS is to allocate and deallocate
VRFs when entries are inserted or removed.

Hashing Switches often use hashing for load balancing purposes
(e.g. to implement WCMP [59]). However, the exact hashing al-
gorithm used is an internal detail that may differ across different
switches and may be kept private by vendors. This makes pre-
cise modeling of the hashing algorithm challenging. Furthermore,
hashing algorithms are often complex, and modeling them would
result in complex models that are harder to analyze automatically.
We chose to model hashing as an unspecified black box in our P4
programs, which we view as a “free” operation from a validation
perspective (§5).

Recently, P4wn [29] proposed a more sophisticated treatment of
hashing and other stateful constructs in forwarding pipelines for
adversarial testing. Our modeling of hashing is far more primitive,
and we did not need to use stateful constructs, such as registers, in
our P4 models. It may be interesting to adapt some of P4wn’s gray

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Oracle
(checks if switch
response is correct)

Test Control Switch

Response

P4 Program

Plane Requests

Switch

Figure 5: The design of p4-fuzzer.

box analysis of probabilistic and stateful structures to SwiTcHV in
the future to support more complex stateful pipelines.

Mirror Sessions SAI provides a mirroring API that clones packets
to a particular port. However, P4 provides a different clone API
that expects a session ID managed by a packet replication engine.
We reconcile these differences by introducing an additional logical
table in our P4 programs. The P4 table that models SAI mirroring
sets the target port, which is then translated to a session ID using
the logical table, which gets passed to the P4 clone API This logical
table is merely a modeling artifact. It correctly models the effects of
cloning on the switch but does not express how it is actually done,
and does not need to be programmed by the controller.

Batching Table Entries The P4Runtime specification does not
enforce any particular order when executing a batch table entry
update. This allows the P4Runtime to non-deterministically accept
or reject certain batches, particularly those that contain table entries
that refer to each other. We rely on the aforementioned @refers_to
annotation to detect entries that may cause ordering issues. We
also use this annotation to group (§4) entries into separate batches
with no ordering issues during control plane testing, and when
installing the entries for data plane testing, as well as when the
controller programs the switch.

Fidelity of P4 Models Our P4 programs can become moder-
ately complex as they evolve with the switch. Our P4 models of
PINS consist of 14 tables, 700 lines of role-specific and nearly 1000
lines of common P4 code. Various inaccuracies may be introduced
due to human errors or misunderstanding of the desired behavior.
SwitcHV checks that the behavior of the switch and P4 program
are identical. While we mostly use this to uncover bugs in the
switch, it has also revealed 18 bugs in the models in the two vali-
dated switch stacks (§6). Complimentary P4 program verification
techniques [21, 32, 36, 44] can be used in conjunction to further
increase confidence in the models if needed.

4 CONTROL PLANE API VALIDATION

Control plane API validation checks that the switch correctly ac-
cepts valid and rejects invalid control plane requests from the con-
troller given the switch’s current state, and that the switch does
not crash or otherwise get into an unresponsive state.

We built a fuzzer (Figure 5) for P4 to detect inconsistencies be-
tween the expected and observed control plane API of the switch.
Given an input P4 program, p4-fuzzer generates sequences con-
taining both valid and invalid table updates via fuzzing (i.e. semi-
randomly generating entries in a directed fashion). It then uses an
oracle to check that the switch handled the updates correctly.

Kinan Dak Albab et al.

Under-specified Behaviors The P4Runtime specification gen-
erally allows for more than one possible behavior given a request.
Here we discuss two such examples.

Example 1. Consider a P4 program that specifies a match-action
table T of size 10. Assume T already has 10 entries and received a
control plane request to add an 11th entry. The P4Runtime specifi-
cation allows the switch to accept the request and install the entry
(provided sufficient resources), or reject the request (regardless of
available resources).

Example 2. P4Runtime supports batch table updates. A single
Write RPC may contain n updates, and the switch is free to execute
these updates in any order. In theory, this gives rise to n! different
executions, though many may lead to the same outcome in practice.

To deal with this, our oracle does not predict a single expected
outcome. Instead, the oracle observes the switch’s response to en-
sure it belongs to the set of valid ones. Note that this requires the
oracle to keep track of the switch’s current state.

Valid and Invalid Requests We define a request to be syntacti-
cally valid if it conforms to the format specified by the P4 program
and the P4Runtime specification [15]. A request is constraint com-
pliant if it does not violate any user-defined constraints annotated
in the P4 program using the P4-constraints extension [14]. A re-
quest is valid if the P4Runtime specification dictates that it may be
accepted by the switch in some state. A request is valid if and only
if it is syntactically valid and constraint compliant. Valid requests
may still be rejected in some states, for example, a valid request
may be rejected due to insufficient resources, or because it tries
to delete a non-existent table entry. Conversely, a request is in-
valid if it must be rejected, i.e. by being syntactically invalid or not
constraint compliant.

The syntactic validity of a request can be assessed by analyzing
the input P4 program, which determines the appropriate request
format (e.g. the allowed headers or actions). The P4 program also
includes the constraints as annotations.

4.1 Generating Valid Requests

p4-fuzzer analyzes information regarding the existing tables in
the input P4 program. This includes the table types and the headers
and actions that they match. p4-fuzzer uses this information to
generate control plane requests that violate no obvious rules in
the P4Runtime specification. For example, p4-fuzzer abides by the
defined bit-size of each field in the generated table entry, and selects
actions from the set of permitted actions in the corresponding table
definition. We currently do not enforce constraint compliance, and
thus frequently generate invalid requests for tables with constraints
(e.g. v2 in Figure 3). We discuss ongoing work to support this in §7.

4.2 Generating Invalid Requests

Naively generating invalid requests by randomly choosing values
(e.g. random table or action IDs) produces “uninteresting” requests.
Such naive random requests are syntactically invalid with a high
probability and end up exercising only the first few checks in the
switch. This would leave most of the deeper and more complex
control space untested.

Instead of sampling the space of requests uniformly, we use a
mutation-based approach. After generating a valid control plane

SwitcHV: Automated SDN Switch Validation with P4 Models

request (as described above), p4-fuzzer applies a mutation ran-
domly chosen from a specified list to produce a new request. Our
mutations are based on historical analysis of control and data plane
bugs and the expertise of engineers who manually debug them.
Many also derive from the P4Runtime specification. These muta-
tions produce entries that are usually “interestingly” invalid. Each
invalid request is generated by applying a single mutation to a valid
request, and the same valid request can be used many times to
produce different invalid requests via different mutations. We give
a few example mutations below.

Single Action Tables Asshown in Figure 3, each table entry must
consist of a valid table ID, an action ID permitted by the table, an
appropriate number of arguments of appropriate sizes for the action,
and at most one match field entry per each key in the table. We can
generate “interesting” invalid entries by intentionally modifying a
valid entry to violate any one of the above properties. For example,
the Invalid ID mutation takes a valid entry and replaces its table,
match field, or action ID with an ID that does not exist in the P4
program. Invalid Table Action replaces a valid action ID with an
out-of-scope action. Other similar mutations include Invalid Match
Type, Duplicate Match Field and Missing Mandatory Match Field

One-shot Action Selector Programming [15] Tables of this
type allow an entry to map to a set of actions, each accompanied
by a strictly positive probability weight. The Invalid Action Selector
Weight mutation assigns a non-positive weight to an action in
an action selector set. The Invalid Table Implementation mutation
attempts to send a table entry with an action set to a single-action
table and vice versa.

Other Mutations The Invalid Reference mutation picks a non-
existing value for a field that refers to another field as specified
by the refers_to annotation. Other mutations generate entries
that refer to invalid resources (e.g. port or QoS queue), duplicate
existing entries, or delete non-existing ones.

4.3 Oracle

We built an oracle that encodes the P4Runtime specification to
determine if the switch behaves correctly. Due to under-specified
behavior, there may be multiple correct output switch states and
behaviors for a given request and input state. Attempting to keep
track of all valid states throughout a sequence of requests can quickly
lead to a state-explosion. Instead, our oracle issues a read to the
switch to observe its actual state after a batch of requests, and then
determines whether that state is valid or not (given the observed
state of the switch prior to the batch). If the new state is indeed
valid, our oracle can forget the prior state, and repeat the same
process for the next batch of requests. This lets us process the next
batch from a single state, reducing the non-determinism to the
current batch of requests and a single starting state.

The oracle significantly simplifies the valid and invalid request
generation process, since it allows the process to be unsound. While
the P4Runtime specification is complex, the oracle’s implementa-
tion is significantly smaller than the P4Runtime layer on the switch.
Furthermore, SWITCHV can detect bugs in the oracle implemen-
tation since such bugs likely lead to a divergence between the
expected and observed switch behavior.

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Custom
Coverage
Assertions

P4 Program
P4 Simulator

Coverage
Engine

P4-Symbolic

Validation

Symbolic
Execution

Table
Entries

Switch

o
P
8
E
3
@

Figure 6: The design of p4-symbolic.

4.4 Running Test Requests

We generate many (e.g. few thousands) valid and invalid requests
using the above procedure. We then group these requests into
several batches. We send the batches to the switch sequentially. The
switch may process the requests inside a single batch in parallel and
in any order. Therefore, the batches must only include independent
requests whose validity does not depend on the order of execution.

We ensure this by automatically analyzing the @refers_to anno-
tations in our P4 model, which encode any dependencies between
table entries. We use this information to sequence any dependent
requests to different batches. Note that for valid requests, we only
generate ones that depend on previously installed entries or have
no dependencies. Our Invalid Reference mutation generates invalid
requests that refer to and thus depend on non-existent entries, to
test whether the switch correctly rejects such requests.

5 DATA PLANE VALIDATION: P4-SYMBOLIC

Overview p4-symbolic validates the packet-forwarding behavior
of a switch by generating a set of test packets. SWITCHV runs the test
packets against the switch and the BMv2 P4 simulator, and monitors
their behavior. Mismatches indicate a potential issue in either the
switch, model, or simulator. Testers provide p4-symbolic with
three inputs: (1) the P4 program that models the switch’s expected
behavior, (2) the table entries used to configure both the switch
and simulator, and (3) coverage assertions describing the minimum
coverage guarantees the generated test packets must meet.

Symbolic Execution p4-symbolic maintains a symbolic state
S that maps the header and metadata fields from the P4 program
to their corresponding symbolic values at the current state of ex-
ecution. Additionally, p4-symbolic builds a symbolic trace that
maps each control flow construct in the program to a symbolic
expression which evaluates to true iff the construct is executed.
Initially, the symbolic trace is empty as the program is not ex-
ecuted yet, and the symbolic state consists of a mapping of each
packet header and metadata field to a unique unconstrained sym-
bolic variable. We denote the set of such variables by X. A concrete
input test packet is an assignment of concrete values to the variables
in X. As the program is symbolically analyzed, the symbolic state
and trace are mutated with the effects of the analyzed expressions.
At the end of the symbolic execution, the symbolic state S maps
each field of the output packet header to a symbolic expression over
variables from X. We denote these output symbolic expressions
by Y. The symbolic trace now similarly maps every control flow

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

construct, such as a specific branch or table entry, to a Boolean
symbolic expression over X. We denote this complete trace by 7.

Coverage Constraints After symbolic execution is completed,
p4-symbolic iteratively poses several coverage constraints over
X,Y, and T. Each constraint asserts a certain desired property
about the input packet, output packet, or the execution trace. This
ensures that generated packets collectively meet the desired cover-
age requirements. Each constraint is passed to our backend SMT
solver, Z3 [17], which produces a satisfying test packet if the con-
straint is satisfiable.

If p4-symbolic is configured to maximize branch coverage, this
step produces a sequence of |77| constraints, each asserting that
a unique control flow construct (e.g. a branch or table entry) is
executed or matched. Alternatively, maximizing trace coverage
requires an assertion per each possible combination of program
branches and entries. As the number of control constructs in the
program increases, the number of such combinations (and thus as-
sertions) increases combinatorically. This makes trace coverage im-
practical for complex P4 programs. To alleviate this, p4-symbolic
exposes X,Y,and 7 to test engineers N they can ensure coverage
of a selected subset of important traces, allowing for a practical
middle ground between branch and trace coverage.

Decidability Control blocks in P4 encode single-pass forwarding
pipelines. Tables cannot be reused, and there are no mechanisms for
iteration and recursion. Furthermore, p4-symbolic generates SMT
formulas that are quantifier-free. The SMT constraints generated by
p4-symbolic for typical programs only use the theories of bitvec-
tors and equality, which are decidable. Replacing bitvectors with
unbounded integers, it may be possible to build contrived examples
of P4 programs and coverage assertions that require undecidable
theories (e.g. Peano arithmetic). Even then, Z3 is mature and capa-
ble of solving many instances of such theories in a reasonable time
using its built-in heuristics.

Limitations We do not support certain P4 constructs that we did
not use in our P4 programs (header stacks, unions, and named calcu-
lations). To reduce the implementation effort, we deprioritized the
support for generic P4 parsers. Instead, we rely on semi-hardcoded
support for parser patterns of interest. Supporting a generic parser
is mainly an engineering task that we leave as future work.

Hashing P4 programs may compute hashes over packet header
fields and other metadata for purposes such as load-balancing. The
exact hashing algorithm used by the switch is often unknown and
may differ across switches. p4-symbolic interprets the hash as a
free operation: The output of the hash is allowed to be any value,
even in cases where these values are outside the range of the con-
crete hash. We rely on constraints set further down the symbolic
execution to restrict the values the hash can take, for example when
the value of the hash is used in a table match. To judge the cor-
rectness of the switch, SwiTcHV configures the P4 simulator to use
round-robin hashing, and runs the test packet through it several
times (i.e. until the same behavior occurs twice) to build the set of
all possible behaviors, and then checks that it includes the observed
switch behavior.

Trace Isolation In regular execution, only one branch of a condi-
tional expression is executed, and the remaining ones are ignored.

Kinan Dak Albab et al.

However, this is not the case during symbolic execution where all
branches are analyzed. This poses a challenge: We must ensure that
the symbolic side effects from all such sibling branches are isolated.

A common approach (e.g. in KLEE [8]) is to symbolically execute
each trace in the program in isolation, with a completely separate
state. This guarantees isolation of side effects. However, the number
of traces in P4 programs is prohibitive: while a P4 program typically
includes a handful of explicit conditionals (e.g. if statements), the
table entries (the number of which in our experience can be in the
order of several hundreds) constitute an implicit form of branches
that can quickly blow-up the number of traces. For example, a
simple flow with three consecutive tables, with 100 entries each,
would result in 1003 = 1,000, 000 traces.

Existing work that symbolically executes P4 programs (e.g. [43])
avoids this by reducing the number of table entries, which nega-
tively impacts the coverage. Instead, p4-symbolic performs only
a single pass over the program, executing branches against the
same symbolic state. We ensure isolation by encoding the context
of the branch as a logical guard that is applied to all consequent
side effects. Guarded assignments, and more generally guarded
commands, are a well-known technique dating back to the seminal
work of Dijkstra [18]. We adapt this technique to P4, where guards
are deduced from branches and control flow statements, but also
from table entries and action matches.

Example Consider the P4 program from Figure 2. Assume the
table entries v1, i1, and i5 from Figure 3 are passed as inputs to
p4-symbolic. We focus on p4-symbolic as it reaches the appli-
cation of the ipv4_tbl table (line 23). At this point, the symbolic
state S maps headers and metadata fields to their current sym-
bolic values, e.g. S := {ipv4.isValid — xjpyp4, ipvd.dst_addr —
Xdst_addr> 07f_id = xpr ¢ iq}. The current context C captures all
the constraints for the program to reach this point of execution, e.g.
because the execution is inside the body of a conditional (line 22),
its corresponding condition (xjpya = true) is reflected in C.

p4-symboliciterates over the entries in ipv4_tbl in descending
order of priority (longest prefix match in this case). In each step, it
maps the corresponding entry e to an expression 7 [e] capturing
the condition in which the entry gets matched. The expression is the
conjunction of the current context, the constraints on the current
values of the header and metadata fields for the entry to match,
and the negation of match conditions of higher priority entries. For
instance, 7 [i5] == C A (xyrf_jg = 1) A match(Xgs;_addr, 10.0.% %)
and 7 [i1] = C A (Xopf_jg =1) A match(xgs;_addr 10 % . % %) A
~((xorf_iad =1) A match(xgs;_addrs 10.0. * x)). The last conjunct
in 77 [i1] (the negation) ensures the higher priority (longer prefix)
entry i5 does not match.

After handling matching on the table entries, p4-symbolic han-
dles the actions they invoke. Assume that the set_nexthop_id
action sets the metadata field nexthop_id to the argument passed
to that action. Thus, p4-symbolic must set nexthop_id to 10 or
3 if either i5 or il is matched, respectively. For trace isolation,
p4-symbolic guards this assignment by the condition that ex-
presses when each entry is matched, which gives S[nexthop_id] :=
if T[i5] then 10 else (if T [i1] then 3 else v), where v is the old
value prior to the match. At the end of symbolic execution, the
current symbolic state S becomes VY, e.g. Y maps nexthop_id to

SwitcHV: Automated SDN Switch Validation with P4 Models

the value above. For unmodified fields, Y maintains their initial
values, e.g. Y [ipv4.isValid] = xipoa.

After the symbolic execution, we pose our desired coverage
constraints. For example, to produce a packet that matches on
i1, we assert that 7 [i1] must evaluate to true. We then ask the
SMT solver to produce a concrete assignment for the variables
and expressions in X and Y that satisfy our assertions (if such an
assignment exists), from which we extract the test packet. In our
example, Xjpo4 = true, Xgst qqdr = 10.1.0.0 satisfies the assertion.

6 SWITCHYV IN PRACTICE

We share our findings using SWITcHV to validate two switch stacks,
CeRBERUs and PINS, during their development. Both projects in-
volved extending existing open-source switch software stacks with
limited programmability on top of the underlying ASIC, and expos-
ing these programmable features using a P4Runtime-based APL

We developed SwiTcHV in parallel to these projects. The projects
were carried out by the same team at Google. CERBERUS began first
and was not completed; PINS has been in development for two years
and remains ongoing at the time of writing. Both projects used
different versions of SwiTcHV, with CERBERUS using p4-fuzzer
and p4-symbolic for 10 and 12 months, and PINS using them for
21 and 26 months. SwiTcHV detected a total of 122 and 32 bugs in
these projects respectively.

The PINS project involves many engineers inside and outside of
Google and comprises more than 2.5 million lines of code, which
amounts to more than 10 million lines of code when combined
with the pre-existing layers on a switch. In contrast, p4-symbolic
and p4-fuzzer are about 5k and 3.5k lines of code, respectively,
with no more than three engineers and a few interns working on
SwiTcHV at any point in time.

SONIC, the open-source stack on which PINS is based, is mature
and used in production. However, the P4Runtime server added by
PINS is new and under development, and required changes in all
SONIC layers (Figure 4). The underlying stack in CERBERUS was
being developed by a vendor. The switch vendor was internally
performing traditional testing for most features, although we did
use SWITCHV to test a few features in parallel or prior to the vendor.
Compared to PINS, the P4 programs used in CERBERUS were more
complex, with more involved forwarding pipelines and additional
features such as encapsulation and decapsulation.

During PINS’s development, we used the following testing proce-
dure: (1) Unit tests; (2) Component tests; and (3) Switch end-to-end
validation using SWITCHV (nightly test). Recently, PINS successfully
underwent the so-called Design Verification Testing (DVT) phase,
in which a data center fabric containing PINS-based switches was
tested end-to-end using more traditional means. DVT did not un-
cover any bugs in the switches’ control plane API or forwarding
behavior, which may be explained by SwitcHV discovering 122
bugs pre-DVT—we believe this is a strong testament to the effec-
tiveness and impact of P4-based automated validation. With that
said, we have not yet completed our in-production testing for this
switch, and thus we cannot be certain that SwitcuV found all of
the testable bugs.

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

PINS Component Bugs | p4-fuzzer | p4-symbolic
P4Runtime Server 47 11 36
gNMI 2 0 2
Orchestration Agent 24 12 11
SyncD Binary 23 10 13
Switch Linux 9 0 9
Hardware 1 1 0
P4 Toolchain 2 1 1
Input P4 Program 15 2 13

| Total | 122] 37 85
CeRBERUS Component | Bugs | p4-fuzzer | p4-symbolic
Switch software 24 14 10
Hardware 1 0 1
Input P4 Program 3 0 3
BMv2 P4 Simulator 4 4 0

| Total | 32] 18 14

Table 1: Bugs found by SwitcHV by component.

6.1 Detected Bugs

Our PINS-based switch stack is shown in Figure 4. On top is the
application layer, which includes the P4Runtime server that imple-
ments the P4Runtime protocol for communication with external
SDN controllers. It is possible to have other top-level applications
running concurrently at this layer. Below is the Orchestration Agent
that synchronizes the state of the top-level applications and applies
it to the hardware via the interface provided by SyncD. Below,
SyncD builds on top of SAI to provide a vendor and hardware
agnostic database interface to the ASIC. These layers constitute
PINS, and run on top of the switch’s hardware and our version of
Linux, which includes various switch-related daemons. Due to the
limited visibility we had into the stack in CERBERUS, which was
being developed by an external vendor, its bugs are categorized
more coarsely.

As shown in Table 1, SwiTcHV found bugs across the whole
stack. While a plurality of these bugs were found in the new parts
of the stacks under development (the P4Runtime and Orchestration
Agent), some were found in pre-existing code and components, pri-
marily because they were used in new ways. Additionally, SwiTcaV
found bugs in the P4 programs. These bugs manifested as differ-
ences between the observed behavior of the switch (specifically the
ASIC behavior) and the P4 program. Upon inspection, we deter-
mined that the switch was actually correct, and the P4 programs did
not encode our desired specifications correctly. Finally, SwiTcuV de-
tected bugs in the P4 toolchain, including in the BMv2 P4 simulator
and the P4-PDPI [24] framework.

We discuss a few of the more interesting examples to give a
flavor of the kinds of bugs SWITCHV can find.

In PINS, an application in the P4Runtime server was acciden-
tally sending certain out packets back to the controller via the
packet-in [15] mechanism. This was identified via p4-symbolic.
The P4Runtime server would get into an inconsistent state after
receiving certain sequences of L3 table entry deletions. This was
identified by p4-fuzzer. The SyncD binary did not support default

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

30 9
. BN Total
Symbolic
I Fuzzer

Bug Count

L Bm N

i an NN 1

O, B _ 06, I Iy <y K Iy O Y L 2
v Yo T, e, S, R, S, e 0, e, <y N
7 s o s % Y Vs,

Days To Resolution

Figure 7: Number of days required to resolve bugs in PINS
by SwiTcHV component. 9 bugs have not been resolved.

route deletion while other routes were present in the same VRF. This
was identified using production table entries to setup p4-symbolic
tests. The Switch Linux was running a traditional LLDP networking
application, which was interfering with our SDN controller’s LLDP
application. This was identified by p4-symbolic, which detects
when unexpected packets get punted to the controller.

In CERBERUS, p4-symbolic identified that the switch software
reversed the destination IP address used for packet encapsulation,
because of an issue with endianness. The hardware dropped packets
on a port with a certain port speed due to electric interference. This
bug was detected by p4-symbolic in a pre-production unit, and
was independently detected and fixed by the switch manufacturer.

We changed the underlying chip used in PINS past the mid-point
during development. After the change, we noticed a resurgence of
bugs in components that had been successfully validated before,
including software components and even our P4 program. These
bugs were the result of variations in the exact contract provided by
the new chip compared to the old one. For example, the new chip
has a built-in fixed-function trap that did not exist in the old switch
which immediately punts packets with TTL 0 or 1, even when our
controller/P4Runtime extension says otherwise.

Some of the bugs do not fit exactly into a single component.
Rather, they are symptoms of a larger design issue throughout
many components. For example, the new chip imposes restrictions
on entries in certain tables that are incompatible with desired ACL
behaviors, and with the design decisions that higher software lay-
ers made to support these behaviors. We found that 33% of the
bugs identified in PINS were integration bugs resulting from a
misunderstanding of the contract between two components.

The majority of bugs encountered in PINS were fixed within 14
days, with 33% of bugs fixed within 5 days. This indicates that most
of the bugs found by SwiTcHV were important enough for develop-
ers to fix quickly. This is in contrast to other automated techniques
we used in the past, where tools would find bugs that developers
would not deem important enough to act on. Anecdotally, we filed
issues for 3 bugs independent from SwiTcHV related to bad error
messages, and their mean resolution time was much worse, at 66
days. We reported 9 bugs that remain unresolved as of this writing.

Kinan Dak Albab et al.

| Test [PINS [CERBERUS ‘
Set P4Info 22 (18%) | 0(0%)
Table entry programming 15 (12%) 0 (0%)
Read all tables 10 (8%) 2 (6%)
Packet-in 12 (10%) 4 (13%)
Packet-out 4 (3%) 1 (3%)
Packet forwarding 0 (0%) 0 (0%)
Not found by any test above | 60 (49%) | 25 (78%)

Table 2: Which bugs could be found using the trivial test suite

SwiITCHV reports inconsistencies between the switch and the
P4 model but leaves it up to the testers to identify the source of
the inconsistency. The number of days until bug resolution, shown
in Figure 7, includes the time to identify that source, as well as to
apply any relevant fixes. In our experience, most of the reported
time was spent either on fixing the bug or on the issue waiting in
the backlog pending developers’ availability.

6.2 Bug Complexity

While a vast majority of bugs found by SwiTcHV were deemed
important by developers, many of them are simple bugs that might
have been detected by simpler alternative forms of testing. To
evaluate how many bugs detected by SwiTcHV are harder to detect
via traditional means, we devised the following trivial suite of
traditional integration tests:

(1) Set P4Info: Push the P4Info configuration to the switch.

(2) Table entry programming: Install a rule in every table, in-
cluding an ACL entry that punts packets to the controller and
an IPv4 route.

(3) Read all tables: Read back all tables and compare with the set
of entries installed earlier.

(4) Packet-in: Send a packet that matches the previously installed
ACL punt rule and check that the correct packet gets received
on the packet-io channel.

(5) Packet-out: Send a packet via packet-out for each port, and
ensure the switch sends it out through those ports in the data-
plane.

(6) Packet forwarding: Send an IPv4 packet to the switch and
check that it gets forwarded correctly according to the IPv4
route installed earlier.

The tests are meant to be executed in sequence. Table 2 shows
the percentage of bugs that would be found by each sub-sequence
of tests, excluding bugs that would already be found by earlier
tests in that sequence. We observe that about 49% of the bugs from
PINS would have been found by the trivial test suite. Some of the
bugs not found by our trivial suite may still be found using other
reasonable test suites. Additionally, 67% of the identified bugs are
restricted to a single component. Many such bugs can be detected
using better unit and component tests. We have not used any other
kind of integration testing in PINS, and instead relied on SwitcaV
to find many of the trivial bugs, since it was easier to deploy and
use than manually designing test cases.

In CERBERUS, we estimate that 78% of the bugs cannot be found
by our trivial test suite. This is expected since most of the simpler
bugs in CERBERUS would have been detected by the vendor during

SwitcHV: Automated SDN Switch Validation with P4 Models

P4 Prog. | Entries | Generation (w/c) | Testing
InsT1 798 413s (14s) 58s
INST2 1314 1099s (6s) 64s
P4 Prog. Fuzzed Entries Entries/s
InsT1 50384 97
INsT2 48521 96

Table 3: Time required to run p4-symbolic (top table) and
p4-fuzzer (bottom table) for two production P4 programs.
Time with caching enabled is reported in parentheses.

their testing. Some simple bugs slipped through, partly because
we sometimes performed testing with SWITCHV in parallel to the
vendor. Additionally, this project exhibited more complex bugs
because its forwarding pipeline is more complex and feature-rich.

6.3 Performance of SwitcaV

Table 3 shows the performance of p4-symbolic and p4-fuzzer on
two different production P4 programs. We ran each experiment on
a single virtual CPU core in a containerized environment. We use
p4-symbolic to hit every reachable input table entry at least once
(i.e. branch coverage). The generation column measures the time
taken for this step (with and without a cache), while the testing
column shows the time needed to run the generated packets through
the switch and BMv2, and compare their behavior. We configure
p4-fuzzer to generate 1000 write requests with approximately 50
table entry updates each. We have found this to be sufficient to
catch a wide variety of bugs when run daily. We have not focused
on optimizing performance, beyond caching for p4-symbolic, as
the current performance is acceptable for our purposes.

Caching The slowest stage in SWITCHV is generating the test
packets by repeatedly invoking Z3 to solve the SMT constraints
produced by p4-symbolic.If the input P4 program and table entries
are unchanged from previous runs, or their changes do not affect the
SMT constraints, we simply lookup the test packets from a cache.
Thus, we only need to run the expensive generation stage when
the specifications have changes that affect the SMT formula, which
is less frequent than updating the switch stack under validation.

7 DISCUSSION

P4 as a Specification Language Our experience demonstrates
that P4 can successfully model the behavior of switches, includ-
ing fixed-function ones. Many of the challenges we encountered
while modeling SAI in P4 stem from the flexibility (and thus per-
missiveness) of P4 and the P4Runtime Protocol compared to the
restrictive and fixed semantics of the underlying switches and SAI
These challenges offer important insights that can help design the
next generation of modeling and specification tools for networking.
Indeed, we developed several P4 extensions [14, 24] to overcome
some of these challenges, and up-streamed them as standalone
open-source modules integrated into the P4 toolchain.

P4 programs provide a balance between the low-level detail
required to capture the correctness of individual switches and the
simplicity and formalism required for effective automated analysis.

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Using P4 programs as specifications allows SWITCHV to validate the
control plane API of a switch and its data plane behavior. This allows
SwrTcHV to detect bugs that would not be observed using only data
plane validation. Furthermore, bugs caused by errors in the control
plane API (e.g. during installation of table entries) are detected
earlier, rather than during packet forwarding where the root cause
is more removed from where the bug occured (e.g. packets being
forwarded via the wrong port because a table entry was installed
incorrectly). Currently, table entries generated using fuzzing are
only used to validate the control plane APL. A potential future
extension is to also pass these entries to p4-symbolic and use
them with the generated test packets, which can exercise additional
control paths during data plane validation.

In other domains, testing tools often rely on “throw-away” spec-
ifications whose sole purpose is validation. These specifications
can be complex and often use domain-specific modeling languages.
Thus, updating and maintaining these specifications as the system
they describe evolves can require significant effort, and may lead to
them going out of sync, even when validation is automated. This is
a common problem that extends beyond switch validation to other
domains ranging from maintenance of software test cases [41] to
formal proofs [51]. By contrast, our P4 specifications are multi-
purpose and “organic” to the networking ecosystem, and thus are
more likely to be always up-to-date. They are the primary interface
that expose new features in PINS, they define the contract with
the controller, and they provide a living documentation that engi-
neers can consult, and have additional incentives to continuously
maintain. The effectiveness of our P4 models as documentation
depends on the familiarity of the readers with P4, and we found
that many developers prefer them to having to read thousands of
lines of low-level C implementation.

Fuzzing p4-fuzzer relies on mutations to generate valid and
invalid control plane requests. This is a common technique that
has been used extensively for fuzzing [6, 10, 46]. Unlike state-of-
the-art general purpose smart fuzzing tools [52, 57], our fuzzer
is intentionally specialized to our target domain with manually
curated mutations based on the expertise of network engineers.
This allows us to find interesting invalid requests, whose space is
much smaller than the entire space of invalid requests, while also
minimizing the engineering effort to build and maintain p4-fuzzer.

While our experience demonstrates that our fuzzer is capable
of detecting interesting bugs throughout the switch stack, our
approach does not provide provable formal coverage guarantees.
This is a direction for future research, that may benefit from using
smart fuzzing mechanisms, including coverage-based fuzzers, pro-
vided that they can be succinctly tuned to the idiosyncrasies of the
P4Runtime protocol (e.g. using domain-specific testing goals [47]).

p4-fuzzer may benefit from adding more mutations that in-
crease the complexity of the generated invalid requests. One pos-
sibility is to use techniques that deduce mutations algorithmi-
cally [35] or via learning [23, 54]. Furthermore, we are currently im-
plementing an explicit mutation for reasoning about P4-constraints
based on binary decision diagrams (BDD). The mechanism trans-
forms every constraint in the P4 program into a BDD over the bits
of the header and metadata fields referred to in that constraint. We
can efficiently sample solutions to this BDD to ensure that our valid

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

tests are constraint-compliant, and randomly mutate one of the
nodes of the BDD to generate (otherwise valid) table entries that
violate the corresponding constraint.

We considered alternative designs for control plane API valida-
tion that do not rely on fuzzing. While we can easily generate syntac-
tically valid table entries with an SMT solver, it is challenging to gen-
erate “interesting” invalid ones for black box implementations. In-
stead, we would need to use program analysis techniques to analyze
the implementation (specifically, PINS’s P4Runtime layer), and find
invalid entries that exercise different “deep” control paths within
that implementation. This may offer some advantages as it can
provide more precise coverage guarantees, similar to p4-symbolic.
However, it requires dealing with implementations far more com-
plex than the P4 programs that p4-symbolic analyzes, both in
terms of size and friendliness to automated analysis (the switch’s
implementation is in C rather than P4). Furthermore, the imple-
mentation may frequently change, which may require updating the
automated analysis, e.g. in case unsupported features were used.
While existing tools have had some success with program analysis
of complex system implementations (e.g. KLEE [8]), we opted to rely
on mutation-based fuzzing as it provides a simpler mechanism for
generating useful invalid entries with black box implementations.

Development Processes Using SwiTcHV We believe SwiTcHV
is best suited to be run periodically and frequently (e.g. nightly)
during the development of switch stacks. This allows SwitcaV
to detects issues, including complex integration bugs, earlier in
the development cycle. Additionally, developers get quick feedback
after their changes and can correct mistakes quickly. Furthermore,
SwiTcHV can be used earlier and more frequently than more ex-
pensive forms of testing, such as DVT or fabric testing, which are
difficult to run on incomplete stacks. We do not recommend replac-
ing fabric testing with SwITcHV, rather we recommend running
SwrtcHV frequently prior to fabric testing to shorten the develop-
ment cycle, and running fabric and in-production testing normally
after specific milestones are achieved.

We track the progress of larger projects at Google by defining
milestones in terms of objectives and key results (OKRs). SwiTcHV
provides a methodical way of tracking the state of components
of the switch stack, and we found that it provides a natural set
of metrics to measure the progress towards completing an OKR
for some feature F. For example, the percentage of fuzzed table
entries related to F that are correctly handled by the switch, or the
percentage of table entries related to F that produce correct output
packets when hit by tests packets using p4-symbolic.

8 RELATED WORK

Automatic test generation is an established technique shown to
be an effective alternative to manual testing in various domains,
including system programs [8], circuits [11], enterprise applications
[53], and GUI applications [42]. P4pktgen [43] and ATPG [58] adapt
this technique for validating the data plane of a switch, but not its
control plane APL

P4pktgen P4pktgen uses symbolic execution to analyze P4 pro-
grams and generate test packets. P4pktgen does not take table
entries as inputs. Instead, it generates at most a single entry per
table along side the test packet. Thus, the generated packets have

Kinan Dak Albab et al.

lower coverage of the control paths in the switch stack. For exam-
ple, P4pktgen cannot detect bugs in the switch’s implementation
of priority or longest prefix matching, since such bugs cannot be
observed without at least two correlated entries in the same table.

ATPG ATPG operates on the switch’s configuration files and FIBs,
and uses them to build a model of the entire network. This model
essentially views a switch as a single match table (i.e. sequence
of rules) that directly match and produce packets. ATPG analyzes
the model and generates test packets that exercise various links
or rules in the network, and test its performance under different
loads. ATPG’s abstract view of a switch cannot represent lower-
level switch functionalities, such as behavior that depends on the
switch state (e.g. NAT), non-determinism (e.g. WCMP), and punt-
ing. However, this level of abstractions allows ATPG to effectively
reason about network-wide properties (e.g. reachability, liveness)
and performance (e.g. congestion).

Header Space Analysis HSA [30] is a well-established technique
for analyzing packet forwarding behavior, and is used by many
tools (including ATPG) as a foundation for their data plane analysis.
Similarly, HSA could be used for data plane validation in SwiTcHV
rather than symbolic execution with an SMT solver. We chose our
particular p4-symbolic design because of the availability, flexibil-
ity, and ease of use of off-the-shelf SMT solvers, and our familiarity
with them. This worked well for our use cases at Google as shown
by our empirical results, Our main insights and contributions sur-
round the use of P4 for modeling, which can also be compatible
with HSA and other data plane testing approaches.

Validation vs Verification While the last decade has seen exciting
progress on network and P4 data plane verification [1, 9, 21, 22,
25, 26, 31, 33, 34, 36, 38, 44, 48], these tools solve a different and
orthogonal problem to SwitcHV. The crucial difference is that
such tools never analyze the actual switch or network, but only its
configuration. Thus, they can find bugs in the configuration, but
not in the switch. In contrast, SwitcuV finds bugs in the switch, but
not in its configuration. Formal techniques have been used to verify
hardware designs [3, 12], including switch hardware [37]. However,
such techniques cannot be used to verify black box switches, require
significant device-specific modeling, as well as verification overhead
and expertise, and cannot reason about non-hardware layers in the
switch stack. Verification and validation can be combined to reap
the benefits of both. Specifically, P4 verification tools (e.g. p4v [36]
or ASSERT-P4 [21]) can be used to verify that our P4 models indeed
encode our desired correctness properties, to increase our faith in
the fidelity of these models and the validation process as a whole.

ACKNOWLEDGMENTS

We thank the SwitchlInfra team at Google for their patience and
support in pursuing this novel approach to switch validation, and
for root causing numerous bugs identified by SwiTcHV, at times
including false positives. We thank Waqar Mohsin for supporting
us in publishing this work, and Jeff Mogul and Colin Scott for
suggesting many improvements to the paper. We are also grateful
to Malte Schwarzkopf, our shepherd Ang Chen, and five anonymous
SIGCOMM reviewers for their help in improving the paper. This
work was supported in part by NSF grant CNS-2107078.

SwitcHV: Automated SDN Switch Validation with P4 Models

REFERENCES

[1] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil Mcminn. 2013.
An Orchestrated Survey of Methodologies for Automated Software Test Case
Generation. J. Syst. Softw. 86, 8 (Aug. 2013), 1978-2001. https://doi.org/10.1016/].

j8s.2013.02.061

&

et al. 2019. One-click formal methods. IEEE Software 36, 6 (2019), 61-65.

[3] A.Biere, T. van Dijk, and K. Heljanko. 2017. Hardware model checking com-
petition 2017. In 2017 Formal Methods in Computer Aided Design (FMCAD). 9-9.

https://doi.org/10.23919/FMCAD.2017.8102233

[4] Nikolaj Bjerner and Karthick Jayaraman. 2015. Checking cloud contracts in Mi-
crosoft Azure. In International Conference on Distributed Computing and Internet

Technology. Springer, 21-32.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM

Computer Communication Review 44, 3 (2014), 87-95.

[6] Thomas Braibant, Jonathan Protzenko, and Gabriel Scherer.

=

ArtiCheck: well-typed generic fuzzing for module interfaces.
Accessed

http://gallium.inria.fr/ scherer/doc/articheck-long.pdf. (2014).
September 5, 2021.
[7

[

3386367.3431313

>
&

Implementation (OSDI’08). USENIX Association, USA, 209-224.
[9

=

USENIX Association, USA, 10.
[10

SP.2015.50

[11] W.-T. Cheng and T.J. Chakraborty. 1989. Gentest: an automatic test-generation
system for sequential circuits. Computer 22, 4 (1989), 43-49. https://doi.org/10.

1109/2.25381

[12] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-
pala, and Arvind. 2017. Kami: A Platform for High-Level Parametric Hardware
Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP,

Article 24 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110268

[13] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani, Rob Sher-
wood, Ying Zhang, and Hongyi Zeng. 2018. FBOSS: Building Switch Software
at Scale. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SSIGCOMM ’18). Association for Computing Machinery,

New York, NY, USA, 342-356. https://doi.org/10.1145/3230543.3230546

[14] P4 community. 2020. P4 Constraints. https://github.com/p4lang/p4-constraints.

(2020). Accessed December 20, 2020.
[15] P4 community. 2020. P4 Runtime
https://p4.org/p4runtime/spec/v1.2.0/P4Runtime-Spec.html. (2020).
cessed January 13, 2021.
[16] The P4 Language Consortium. 2017.

2022.

[17] Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’ 08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337-340.

[18] Edsger W Dijkstra. 1975. Guarded commands, non-determinacy and a calculus

for the derivation of programs. ACM SIGPLAN Notices 10, 6 (1975), 2-2.

[19] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong, Charles Edwin Killian, Wagar
Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, et al. 2021. Orion: Google’s Software-Defined Networking Control Plane..

In NSDI. 83-98.

[20] Open Networking Foundation. 2021. P4 Integrated Network Stack (PINS).

https://opennetworking.org/pins/. (2021). Accessed September 5, 2021.
[21

https://doi.org/10.1145/3185467.3185499

John Backes, Pauline Bolignano, Byron Cook, Andrew Gacek, Kasper Soe Luckow,
Neha Rungta, Martin Schaef, Cole Schlesinger, Rima Tanash, Carsten Varming,

Pietro Bressana, Noa Zilberman, and Robert Soulé. 2020. Finding Hard-to-Find
Data Plane Bugs with a PTA. In Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies (CONEXT °20). Association
for Computing Machinery, New York, NY, USA, 218-231. https://doi.org/10.1145/

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kosti¢, and Jennifer Rexford.
2012. A NICE Way to Test Openflow Applications. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation (NSDI'12).

Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP ’15). IEEE Computer Society, USA, 725-741. https://doi.org/10.1109/

specification.

P4,4 Language Specification.
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html. (2017). Accessed January 19,

Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho,
and Marinho Barcellos. 2018. Uncovering Bugs in P4 Programs with Assertion-
Based Verification. In Proceedings of the Symposium on SDN Research (SOSR ’18).
Association for Computing Machinery, New York, NY, USA, Article 4, 7 pages.

[22]

[23

[24

[26

[27

[28

[29

[30

[31

[33

(34

[35

[36]

[37

[38

[39

[40]

[41]

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann,
and Martin Vechev. 2018. Bayonet: Probabilistic Inference for Networks. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). Association for Computing Machinery,
New York, NY, USA, 586-602. https://doi.org/10.1145/3192366.3192400

Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn amp;Fuzz: Machine
learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 50-59. https://doi.org/10.1109/ASE.2017.
8115618

Google. 2020. P4 PDPI: Program Dependent Intermediate Representation.
https://github.com/google/p4-pdpi. (2020). Accessed January 27, 2021.

Alex Horn, Ali Kheradmand, and Mukul R. Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-29,
2017. USENIX Association, 735-749. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/horn-alex

Alex Horn, Ali Kheradmand, and Mukul R. Prasad. 2019. A Precise and Expressive
Lattice-theoretical Framework for Efficient Network Verification. In 27th IEEE
International Conference on Network Protocols, ICNP 2019, Chicago, IL, USA, October
8-10, 2019. IEEE, 1-12. https://doi.org/10.1109/ICNP.2019.8888144

Intel. 2022. Intel® Tofino™ Series Programmable Ethernet Switch
ASIC. https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet- switch/tofino-series.html. (2022). accessed Jun, 19 2022.
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 3-14.

Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen. 2021. Probabilistic Profiling
of Stateful Data Planes for Adversarial Testing. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2021). Association for Computing Machinery, New
York, NY, USA, 286-301. https://doi.org/10.1145/3445814.3446764

Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI'12). USENIX
Association, USA, 9.

Ali Kheradmand. 2020. Automatic Inference of High-Level Network Intents by
Mining Forwarding Patterns. In SOSR °20: Symposium on SDN Research, San Jose,
CA, USA, March 3, 2020. ACM, 27-33. https://doi.org/10.1145/3373360.3380831
Ali Kheradmand and Grigore Rosu. 2018. P4K: A Formal Semantics of P4 and
Applications. CoRR abs/1804.01468 (2018). arXiv:1804.01468 http://arxiv.org/abs/
1804.01468

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
Philip Brighten Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in
Real Time. In Proceedings of the 10th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013. USENIX As-
sociation, 15-27. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/khurshid

Dexter Kozen. 2014. NetKAT — A Formal System for the Verification of Net-
works. In Programming Languages and Systems, Jacques Garrigue (Ed.). Springer
International Publishing, Cham, 1-18.

Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475-485.

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Calin Cascaval, Nick McKeown, and Nate Foster. 2018. P4v:
Practical Verification for Programmable Data Planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). Association for Computing Machinery, New York, NY, USA, 490-503. https:
//doi.org/10.1145/3230543.3230582

Yuan Lu and Mike Jorda. 2004. Verifying a Gigabit Ethernet Switch Using
SMV. In Proceedings of the 41st Annual Design Automation Conference (DAC
’04). Association for Computing Machinery, New York, NY, USA, 230-233.
https://doi.org/10.1145/996566.996631

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. SSIGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2011), 290-301. https:
//doi.org/10.1145/2043164.2018470

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (March 2008), 69-74. https://doi.org/10.1145/1355734.1355746

Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. 2018. A
large scale study of data center network reliability. In Proceedings of the Internet
Measurement Conference 2018. 393-407.

Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzé. 2010. Automatically
repairing test cases for evolving method declarations. In 2010 IEEE International
Conference on Software Maintenance. 1-5. https://doi.org/10.1109/ICSM.2010.

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.1145/3386367.3431313
https://doi.org/10.1145/3386367.3431313
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/2.25381
https://doi.org/10.1109/2.25381
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3230543.3230546
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/3192366.3192400
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://doi.org/10.1109/ICNP.2019.8888144
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.1145/3445814.3446764
https://doi.org/10.1145/3373360.3380831
http://arxiv.org/abs/1804.01468
http://arxiv.org/abs/1804.01468
http://arxiv.org/abs/1804.01468
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/996566.996631
https://doi.org/10.1145/2043164.2018470
https://doi.org/10.1145/2043164.2018470
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/ICSM.2010.5609549
https://doi.org/10.1109/ICSM.2010.5609549

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

5609549

[42] Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. 2014. GUI-
TAR: An Innovative Tool for Automated Testing of GUI-Driven Software. Au-
tomated Software Engg. 21, 1 (March 2014), 65-105. https://doi.org/10.1007/

510515-013-0128-9

[43] Andres Nétzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. P4pktgen: Automated Test Case Generation for P4 Programs. In Proceedings
of the Symposium on SDN Research (SOSR ’18). Association for Computing Ma-
chinery, New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/3185467.

3185497

[44] Mohammad A. Noureddine, Amanda Hsu, Matthew Caesar, Fadi A. Zaraket, and
William H. Sanders. 2019. P4AIG: Circuit-Level Verification of P4 Programs. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks — Supplemental Volume (DSN-S). 21-22. https://doi.org/10.1109/DSN-S.

2019.00016

[45] P4lang. 2022. The BMv2 Simple Switch target. https://github.com/p4lang/

behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/
simple_switch.md. (2022). accessed Jun, 19 2022.
[46

https://doi.org/10.1145/3293882.3330576
[47

ceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1-29.

[48] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, Brighten Godfrey, and
Matthew Caesar. 2020. Plankton: Scalable network configuration verification
through model checking. In 17th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020. USENIX Association, 953-967. https://www.usenix.org/conference/nsdi20/

presentation/prabhu

[49] Open Compute Project. 2015. Switch Abstraction Interface (SAI): A Reference

Switch Abstraction Interface for OCP. Technical Report.

[50] Open Compute Project. 2017. SAI Object Model. https://github.com/

opencomputeproject/SAI/blob/master/doc/object-model/pipeline_object
model.pdf. (2017). Accessed January 12, 2022.

[
O

(within llvm). URL https://releases.llvm.org/7.0 (2016).

[53] Haruto Tanno, Xiaojing Zhang, Takashi Hoshino, and Koushik Sen. 2015. TesMa
and CATG: Automated Test Generation Tools for Models of Enterprise Applica-
tions. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineer-

ing, Vol. 2. 717-720. https://doi.org/10.1109/ICSE.2015.231

[54] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy

(SP). 579-594. https://doi.org/10.1109/SP.2017.23

[55] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua
Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter network failure
mitigation. In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication. 419-430.

[56] Lihua Yuan and Microsoft Azure Network Team. 2018. SONiC: Software for
Open Networking in the Cloud. (Aug. 2018). Retrieved July 1, 2022 from https:

//conferences.sigcomm.org/events/apnet2018/slides/lihua.pdf

[57] Michat Zalewski. 2019. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.

(2019). Accessed September 5, 2021.
[58

//doi.org/10.1145/2413176.2413205
[59

York, NY, USA, Article 5, 14 pages. https://doi.org/10.1145/2592798.2592803

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 329-340.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. Fuzzfactory: domain-specific fuzzing with waypoints. Pro-

Talia Ringer. 2021. Proof Repair. Ph.D. Dissertation. University of Washington.
Kostya Serebryany. 2016. Libfuzzer: A library for coverage-guided fuzz testing

Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Automatic Test Packet Generation. In Proceedings of the 8th International Con-
ference on Emerging Networking Experiments and Technologies (CONEXT ’12).
Association for Computing Machinery, New York, NY, USA, 241-252. https:

Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: Weighted Cost Multipathing for Improved
Fairness in Data Centers. In Proceedings of the Ninth European Conference on
Computer Systems (EuroSys ’'14). Association for Computing Machinery, New

Kinan Dak Albab et al.

https://doi.org/10.1109/ICSM.2010.5609549
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1109/DSN-S.2019.00016
https://doi.org/10.1109/DSN-S.2019.00016
https://github.com/p4lang/behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md
https://doi.org/10.1145/3293882.3330576
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://github.com/opencomputeproject/SAI/blob/master/doc/object-model/pipeline_object_model.pdf
https://github.com/opencomputeproject/SAI/blob/master/doc/object-model/pipeline_object_model.pdf
https://github.com/opencomputeproject/SAI/blob/master/doc/object-model/pipeline_object_model.pdf
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/SP.2017.23
https://conferences.sigcomm.org/events/apnet2018/slides/lihua.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/lihua.pdf
https://doi.org/10.1145/2413176.2413205
https://doi.org/10.1145/2413176.2413205
https://doi.org/10.1145/2592798.2592803

SwitcHV: Automated SDN Switch Validation with P4 Models

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Appendices are supporting material that has not been peer-reviewed.

A LISTING OF SELECTED BUGS FOUND IN PINS

Bug Description Discovery Component Days to Integration | Trivial test that
Resolution Issue? would find bug

Deleting non-existing entry causes entire batch to fail | p4-fuzzer P4Runtime 14 no
server

Does not handle MODIFY requests correctly, leaving | p4-fuzzer P4Runtime 4 no

old action parameters unchanged in table entries server

P4Info push failures are not propagated up to the con- | p4-symbolic P4Runtime 0 yes Table entry pro-

troller. server gramming

Does not support reading ternary fields p4-symbolic P4Runtime 0 no Read all tables
server

Does not capitalize ACL table names p4-symbolic P4Runtime 16 yes Table entry pro-
server gramming

Incorrect error message for duplicate entries p4-symbolic P4Runtime 2 no
server

PacketOut packets incorrectly get punted back to con- | p4-symbolic P4Runtime 26 no Packet-out

troller server

Uses an orchestration agent API that does not support | p4-symbolic P4Runtime 34 no Table entry pro-

the space character in keys. This leads to the rejection server gramming

of all ACL table entries.

Incorrect handling of zero bytes in IDs p4-fuzzer P4 Toolchain 22 no Set P4Info

Does not clean up all WCMP group members when | p4-fuzzer Orch. Agent 6 no

creation of one fails.

Switch rejects WCMP groups with buckets with the | p4-fuzzer Orch. Agent 157 yes Table entry pro-

same action, violating the P4RT specifications gramming

A bug in WCMP group updating logic causes unchanged | p4-symbolic Orch. Agent 3 no

group members to get removed

VRE deletion fails due to incorrect ALPM flag usage & | p4-fuzzer Orch. Agent and 15 no

VREF response path is broken SyncD Binary

Does not clean up invalid entries in ACL tables, causing | p4-fuzzer SyncD Binary 120 no

RESOURCE_EXHAUSTED error after 30 entries

L3 forwarding not enabled for submit-to-ingress pack- | p4-symbolic SyncD Binary 19 yes

ets, causing them to be dropped with the new chip

Switch occasionally re-marks DSCP to 0 in forwarded | p4-symbolic SyncD Binary 53 yes

packets

A port sync daemon restarts unexpectedly, breaking all | p4-symbolic Switch Linux 3 yes Packet-In

packet IO

Daemons crash when network interface goes down p4-symbolic Switch Linux 164 yes

Runs a daemon that creates conflicting VRF configura- | p4-symbolic Switch Linux 5 yes Set P4Info

tions with other new services

Switch sends IPv6 router solicitation packets unexpect- | p4-symbolic Switch Linux unresolved yes

edly

Runs LLDP causing packets to be punted to controller | p4-symbolic Switch Linux 9 yes Packet-In

Resource guarantees for router_interface_table are un- | p4-fuzzer P4 Program 47 yes

realistically high for the new chip

Header fields get rewritten before ACL is applied p4-symbolic P4 Program 14 no

P4 program does not reflect that switch drops IPv4 pack- | p4-symbolic P4 Program 36 no

ets with destination IP 255.255.255.255

Program matches on the wrong ICMP field p4-symbolic P4 Program 13 no Packet-In

	Abstract
	1 Introduction
	2 Overview
	3 Modeling a Fixed-function Switch in P4
	4 Control Plane API Validation
	4.1 Generating Valid Requests
	4.2 Generating Invalid Requests
	4.3 Oracle
	4.4 Running Test Requests

	5 Data Plane Validation: p4-symbolic
	6 SwitchV In Practice
	6.1 Detected Bugs
	6.2 Bug Complexity
	6.3 Performance of SwitchV

	7 Discussion
	8 Related Work
	Acknowledgments
	References
	A Listing of Selected Bugs Found in PINS

