
Learning Differentiable Grammars for Continuous Data

AJ Piergiovanni 1 Anelia Angelova 1 Michael S. Ryoo 1

Abstract
This paper proposes a novel algorithm which
learns a formal regular grammar from real-world
continuous data, such as videos or other stream-
ing data. Learning latent terminals, non-terminals,
and productions rules directly from streaming data
allows the construction of a generative model cap-
turing sequential structures with multiple possi-
bilities. Our model is fully differentiable, and
provides easily interpretable results which are im-
portant in order to understand the learned struc-
tures. It outperforms the state-of-the-art on sev-
eral challenging datasets and is more accurate for
forecasting future activities in videos. We plan to
open-source the code.

1. Introduction
Learning a formal grammar from continuous, unstructured
data is a challenging problem. This is especially challenging
when the elements (i.e., terminals) of the grammar to be
learned are not symbolic or discrete (Chomsky, 1956; 1959),
but are higher dimensional vectors, such as representations
from real world data streams (e.g., videos).

Simultaneously, addressing such challenges is necessary
for better automated understanding of streaming data. In
video understanding, such as activity detection, a space-time
convolutional neural network (CNN) (e.g., (Carreira & Zis-
serman, 2017)) generates a representation abstracting local
spatio-temporal information at every time step, forming a
temporal sequence of representations. Learning a grammar
reflecting sequential changes in video representations will
enable explicit and high-level modeling of temporal struc-
ture and relationships between multiple occurring events
in videos. This not only allows for better recognition of
human activities from videos by enforcing the learned gram-
mar to local-level detections, but also enables forecasting
of future representations based on the learned production
rules. It also provides semantic interpretability of the video

1Google Brain. Correspondence to: AJ Pier-
giovanni <ajpiergi@google.com>, Anelia Angelova
<anelia@google.com>, Michael Ryoo <mryoo@google.com>.

recognition and prediction process.

In this paper, we propose a new approach of modeling a
formal grammar in terms of learnable and differentiable
neural network functions. The objective is to formulate
not only the terminals and non-terminals of our grammar
as learnable representations but also the production rules
generating them as differentiable functions. We provide the
loss function to train our differentiable grammar directly
from data, and present methodologies to take advantage of
it for recognizing and forecasting sequences. Rather than
focusing on non-terminals and production rules to generate
or parse symbolic data (e.g., text strings), our approach al-
lows learning of grammar representations directly on top of
higher-dimensional data stream (e.g., representation vector
sequences). We confirm such capability experimentally by
focusing on learning a differentiable regular grammar from
continuous representations, which can be applied to any
sequential data including outputs of 3-D space-time CNNs.

The primary contributions of our work are:

1. Design of a fully differentiable neural network that
is able to learn the structure (terminals, non-terminals,
and production rules) of a regular grammar.

2. The grammar model is easily interpretable, enabling
understanding of the structures learned from data.

3. We confirm that the approach works on sequential real-
world datasets, and outperforms the state-of-the-art on
challenging benchmarks.

4. We show that the model is able to achieve better results
on future forecasting of human activities which are to
occur subsequently in videos.

The goal of this work is to provide to the research commu-
nity a neural differentiable grammar-based matching and
prediction for video analysis, which is also applicable to
other domains. The results are interpretable which is very
important for real-life decision making scenarios. Further-
more, it can predict with higher accuracy future events,
which is crucial for anticipation and reaction to future ac-
tions, for example for an autonomous robot which interacts
with humans in dynamic environments.

Learning Differentiable Grammars

2. Background
A formal grammar G is defined with four elements: G =
(V,Σ, P, S) where V is a finite set of non-terminals, Σ is a
finite set of terminals, P is a finite set of production rules,
and S is the starting non-terminal.

In a regular grammar, the production rules P are in the
following forms:

A → aB

A → a

A → ε

(1)

where A and B are non-terminals in V , a is any terminal in
Σ, and ε denotes an empty string. A regular grammar is a
type 3 formal grammar in the Chomsky hierarchy.

In this paper, we follow this traditional regular grammar
definition, while extending it by making its terminals, non-
terminals, and production rules represented in terms of dif-
ferentiable neural network functions. Our differentiable
grammar could be interpreted as a particular form of re-
current neural network (RNN). The main difference to the
standard RNNs such as LSTMs and GRUs (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014) is that our grammar
explicitly maintains a set of non-terminal representations
(in contrast to having a single hidden representation in stan-
dard RNNs) and learns multiple distinct production rules
per non-terminal. This not only makes the learned model
more semantically interpretable, but also allows learning
of temporal structures with multiple sequence possibilities.
Our grammar, learned with a randomized production rule
selection function, considers multiple transitions between
abstract non-terminals when matching it with the input se-
quences as well as when generating multiple possible future
sequences.

We also experimentally compare our grammar with previ-
ous models including LSTMs (Hochreiter & Schmidhuber,
1997) and Neural Turing Machines (NTMs) (Graves et al.,
2014) in the experiments section.

3. Approach
3.1. Formulation

We model our formal grammar in terms of latent represen-
tations and differentiable functions mapping to representa-
tions. The parameters of our functions define production
rules, which are learned together with the terminal and non-
terminal representations.

Each non-terminal in V is a latent representation with fixed
dimensionality, whose actual values are learned based on
the training data. Each terminal in Σ corresponds to a video
representation that could be obtained at every time step,

p = Pitch s = Swing r = Run

P pS | pP S sR | sP R rP

p = Pitch s = Swing p = Pitch

P pS | pP S sR | sP P pS | pP

Figure 1. Example regular grammar giving the sequence of possi-
ble activities in a baseball video. For example, a swing only occurs
after a pitch.

vt
𝞂

f 𝝓 g
vt+1

wt
k

Figure 2. Illustration of the connection between functions in the
grammar model. φ is the gumbel-softmax function and σ is the
softmax function.

such as a vector with activity class predictions. This has to
be learned as well. Our production rules are represented as
a pair of two functions:

• f : a function that maps each non-terminal in V (e.g.,
A) to a subset of production rules (i.e., the rules for the
current non-terminal) {pi} ⊂ P .

• g: a function that maps each rule pi to a terminal (e.g.,
a) and the next non-terminal (e.g., B).

f :V → {P}
g :P → (V,Σ).

(2)

The combination of the two functions effectively captures
multiple production rules per non-terminal, such as “A→
aB” and “A→ aA”. The starting non-terminal S is learned
to be one of the latent representations in V . The functions
are learned from data.

These form a straight forward (recursive) generative model,
which starts from the starting non-terminal S = v0 and iter-
atively generates a terminal at every time step. Representing
our production rules as functions allows us to model the
generation of a sequence (i.e., a string) of terminals as the

Learning Differentiable Grammars

repeated application of such functions. At every time step t,
let us denote the first function mapping each non-terminal
to a set of production rules as k = f(vt; θ1), and the second
function mapping each rule to a non-terminal/terminal pair
as (vt+1, wt) = g(pi; θ2) where v ∈ V , and w ∈ Σ. k is
a latent vector describing the production rule activations
corresponding to vt.

In its simplest form, we can make our grammar rely only
on one production rule by applying the softmax function
(σ) to the activation vector k: pi = σ(k). This formulation
makes pi a (soft) one-hot indicator vector selecting the i-th
production rule. Our sequence generation then becomes:(

vt+1, wt
)

= g
(
σ
(
f(vt; θ1)

)
; θ2

)
. (3)

We represent each v ∈ V as a N -dimensional soft one-hot
vector whereN is the number of non-terminals. In the actual
implementation, this is constrained by having a softmax
function as a part of gθ2 to produce vt+1. Each w ∈ Σ is a
T -dimensional representation we learn to generate, where
T is the dimensionality of the sequential representation at
every time step. This process is shown in Fig. 2.

We further extend Eq. 3 to make the grammar consider
multiple production rules in a randomized fashion during
its learning and generation. More specifically, we use the
Gumbel-Softmax trick (Jang et al., 2017; Maddison et al.,
2017) to replace the softmax in Eq. 3. Treating the activation
vector k as a distribution over production rules, the Gumbel-
Softmax (φ) allows sampling of different production rules:(

vt+1, wt
)

= g
(
φ
(
f(vt; θ1)

)
; θ2

)
. (4)

In our case, this means that we are learning the grammar
production rules which could be selected/sampled differ-
ently even for the same non-terminal (i.e., vt) while still
maintaining a differentiable process.

The idea behind our grammar formulation is to allow di-
rect training of the parameters governing generation of the
terminals (e.g., video representations in our case), while
representing the process in terms of explicit (differentiable)
production rules. This is in contrast to traditional work
that attempted to extract grammar from already-trained stan-
dard RNNs (Gers & Schmidhuber, 2001) or more recent
neural parsing works using discrete operators (Dyer et al.,
2016) and memory-based RNNs (Graves et al., 2014). Our
formulation also adds interpretability/explainability to our
temporal models learned from data streams, as we confirm
more in the following subsections.

Detailed implementation of production rule functions:
Although any other differentiable functions could be used
for modeling our functions f and g, we use matrix oper-
ations to implement them. Given a matrix of production

rules, W , a N × (R ·N) matrix, where R is the maximum
number of production rules per non-terminal, we obtain the
activation vector k with size R ·N as:

k = f(v) = vW (5)

We constrain W so that its each column is a vector with
only one non-zero element (i.e., each production rule may
originate from only one non-terminal). In the actual imple-
mentation, W is obtained by modeling it as a N ×R matrix
and then inflating it with zeros to have the form of a block
diagonal matrix of size N × (R · N) with the block size
1×R.

Similarly, the function g mapping each production rule to
the next non-terminal and corresponding terminal is imple-
mented using a (R ·N)×N matrix H1, and a (R ·N)× T
matrix H2:

(vt+1, wt) = g(vt) = (σ(FH1), FH2) (6)

where F = φ(f(vt)). With this implementation, learning
the grammar production rules is done by learning the matri-
ces W , H1, and H2 directly. Figure 4 describes an example.

3.2. Learning

We train our grammar model to minimize the following
binary cross entropy loss:

L =
∑
t,c

ztc log(wtc) + (1− ztc) log(1− wtc) (7)

where zt is the ground truth label vector at time t with
dimensionality |c| and wt is the output of the grammar
model (terminal). In the case where the grammar is used to
predict discrete class labels, zt becomes a one-hot vector.
Training of our functions f and g (or matrices W , H1, and
H2) can be done with a straight forward backpropagation
for the simple production rule case of Eq. 3, as it becomes
a deterministic function per non-terminal at each time step.
Backpropagating through the entire sequential application
of our functions also allow learning of the starting non-
terminal representation S = v0.

Learning multiple production rules: In general, our
function f maps a non-terminal to a ‘set’ of production
rules where different rules could be equally valid. This
means that we are required to train the model by generating
many sequences, by taking b rules at each step (b is the
branching factor).

We enumerate through multiple productions rules by ran-
domizing the production rule selection by using the Gumbel-
Softmax trick (Jang et al., 2017; Maddison et al., 2017) as
suggested in the above subsection. This allows for weighted

Learning Differentiable Grammars

v0

𝞂

f

𝝓 g v1

w1
r0

r1

1

1

𝞂
g v1

w1
2

2

𝝓

𝞂

f

𝝓 g v2

w2
r0

r1

1

1

𝞂
g v2

w2
2

2

𝝓

𝞂

f

𝝓 g v2

w2
r0

r1

3

3

𝞂
g v2

w2
4

4

𝝓

𝞂

f

𝝓 g v3

w3
r0

r1

1

1

𝞂
g v3

w3
2

2

𝝓

𝞂

f

𝝓 g v3

w3
r0

r1

3

3

𝞂
g v3

w3
4

4

𝝓

𝞂

f

𝝓 g v3

w3
r0

r1

5

5

𝞂
g v3

w3
6

6

𝝓

𝞂

f

𝝓 g v3

w3
r0

r1

7

7

𝞂
g v3

w3
8

8

𝝓

w1
1w1

2w1
3

w1
1w1

2w2
3

w1
1w2

2w3
3

w1
1w2

2w4
3

w2
1w3

2w5
3

w2
1w3

2w6
3

w2
1w4

2w7
3

w2
1w4

2w8
3

Generated Strings

k

k

k

k

k

k

k

Figure 3. Visualization of training the grammar with branching.
The output (ri) of the Gumbel-Softmax (φ) is different for each
branch, producing different strings.

Algorithm 1 The training of the grammar, with multiple
branches

Input: sequence s
Set initial nonterminal v0

for t = 0 to T do
for c = 0 to current total branches do

Get rules for current nonterminal: k = f(vtc)
for b = 0 to Number of branches do

Randomly select a rule: p = φ(k)
Get next non-terminal and terminal
(vt+1
b , wtb) = gθ2(p)

end for
end for

end for
loss = minb L(s, wb), min over all branches

random selection of the rules based on the learned rule prob-
abilities. In order the train our grammar model with the
Gumbel-Softmax, we maintain multiple different ‘branches’
of non-terminal selections and terminal generations, and
measure the loss by considering all of them. Algo. 1 and
Figure 3 illustrate the training and branching process. When
generating many branches, we compute the loss for each
generated sequence, then take the minimum loss over the b
branches, effectively choosing the branch that generated the
most similar string:

L = min
b

∑
t,c

zt,c logwtb,c) + (1− zt,c) log(1−wtb,c) (8)

where wtb,c is the output of the grammar model (terminals)
at time t for class c and branch b. Branches are pruned to
make the process computationally tractable, limiting the
total number of branches we maintain.

3.3. Interpretability

As our model is constrained to use a finite set of non-
terminals, terminals and production rules, it allows for easy
interpretability of the learned grammar structure. We can
conceptually convert the learned production rule matrices
W , H1, and H2 into a discrete set of symbolic production
rules by associating symbols with the learned terminal (and
non-terminal) representations. The matrix W describe the
left-hand side non-terminal of the production rule following
the regular grammar (e.g., A → aB), the matrix H2 de-
scribes the terminal of the production rule (e.g., A→ aB),
and the matrix H1 corresponds to the right-hand side non-
terminal of the rule (e.g., A→ aB). Element values of the
matrix W in particular suggests the probability associated
with the production rule (i.e., it governs the probably of the
corresponding production rule being randomly selected with
Gumbel-Softmax). Fig. 4 shows how we can construct a
grammar from the learned matrices.

Fig. 8 illustrates examples of such interpreted grammar,
learned from a raw baseball video dataset. This was done
by associating symbols with wt and vt.

3.4. Application to video datasets

While application of our differentiable grammar learning
to 1-D data is rather straightforward, when applying this to
more complex continuous data with various contents such
as videos, certain extensions are needed.

To apply the grammar model to videos, we make a few
key changes. The initial non-terminal is learned based on
the video representation. We learn a function ψ that maps
from the video representation to the initial non-terminal:
S = v0 = ψ(q), where q is the output of a video CNN
(e.g., I3D (Carreira & Zisserman, 2017)). We then train
the grammar model as above, where the ground truth is the
sequence of one-hot vector based on the activity labels in
the video.

During inference (which is about predicting frame-level ac-
tivity labels), we generate a sequence by selecting the rule
that best matches the CNN predicted classes. We then mul-
tiply the predictions from the grammar with the predictions
from the CNN. To predict future, yet-unseen actions, we
generate a sequence following the most likely production
rules.

4. Experiments
4.1. Toy Examples

We first confirm that our model is able to learn the rules of
simple, hand-crafted grammars and show how we can easily

Learning Differentiable Grammars

0 1 0

v
t 0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 .5 .5

W

0 0 1

0 0 1

1 0 0

H1

0 1 0

0 1 0

0 1 0

1 0 0
H2

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

A → aB

0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 .5 .5

W

0 0 1

0 0 1

1 0 0

0 1 0

0 1 0

0 1 0

1 0 0
H2

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

B → bA | bC

1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 .5 .5

W

0 0 1

0 0 1

1 0 0

0 1 0

0 1 0

0 1 0

1 0 0
H2

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

C → cA

H1 H1

A

B
A
B
A
C
A

a
c
a
c
b
b

B

B
A
B
A
C
A

a
c
a
c
b
b

C

B
A
B
A
C
A

a
c
a
c
b
b

 (0.5) (0.5)

BA C

v
t

v
t

Figure 4. Visualization of the learned toy grammar and how we can construct the grammar from the learned matrices. The non-terminal
vt gives an soft-index into the rule matrix W , which gives probabilities over the rules. The rules give a soft-index into the non-terminal
matrix (H1) and terminal matrix (H2).

interpret the learned model. Given the simple grammar:

A→ aB

B → bC | bA
C → cA

We train a model with 3 terminal symbols (a, b, and c),
3 non-terminal symbols (A, B and C), and 2 production
rules per non-terminal. We can then examine the learned
grammar structure, shown in Fig. 4. We observe that the
learned starting non-terminal corresponds to ‘A’, and by
following the learned rules, we end up with ‘aB’. From non-
terminal ‘B’, the learned rules go to ‘bA’ or ‘bC’ with 50%
probability. From non-terminal ‘C’, the learned rules go to
‘cA’. This confirms that the model is able to learn grammar
rules and can easily be interpreted.

4.2. Air Pollution Timeseries Dataset

We further test the algorithm on a timeseries dataset in order
to demonstrate its use to timeseries domain.

The Air Polution prediction dataset (Liang et al., 2016) is
intended to predict urban pollution levels. The data provides
measurements hourly, for 24 hours a day and spans several
years of sensing. This dataset contains several environmen-
tal factors as input features and measures the overall air
pollution (‘PM2.5 concentration’). It contains about 43,000
examples which are split consecutively into train and test
with a 50:50 ratio.

Figure 5 visualizes the prediction results for our model.
As seen it is correctly approximating the actual values (a
portion of the training data is also shown). We evaluate the
model by measuring root mean squared error. By simply
predicting the last seen value for the remaining data, we get
RMSE of 36.45. Using our grammar model, we get RMSE

Figure 5. Results on the AirPolution timeseries data. The left of
the black line is training data, right of it is unseen prediction.

Holding laptop Closing laptop Set down laptop Take dish Holding dish

Sitting Sitting Using phone Stand up Watch TV

Figure 6. Examples of videos in Charades dataset.

of 22.14. An LSTM-based model performs at 27.17.

4.3. Activity Detection Experiments

We further confirm that our method works on 3 real-world,
challenging activity detection datasets: MLB-YouTube
(Piergiovanni & Ryoo, 2018a), Charades (Sigurdsson et al.,
2016b), and MultiTHUMOS (Yeung et al., 2015). All
datasets are evaluated by per-frame mAP. The datasets are
described as follows:

MultiTHUMOS: The MultiTHUMOS dataset (Yeung
et al., 2015) is a large scale video analysis dataset which has
frame-level annotations for activity recognition. It is a chal-

Learning Differentiable Grammars

Figure 7. Examples of videos in MultiTHUMOS dataset.

lenging dataset and supports dense multi-class annotations
(i.e. per frame), which are also used here for both prediction
and ground truth. It contains 400 videos or about 30 hours
of video and 65 action classes. Examples are shown in Fig.
7.

Charades: The Charades dataset (Sigurdsson et al., 2016b)
is a challenging dataset with unstructured activities in videos.
The videos are everyday activities in a home environment.
It contains 9858 videos and spans 157 classes. Examples
are shown in Fig. 6.

MLB-YouTube: The MLB-YouTube dataset (Piergiovanni
& Ryoo, 2018a) is a challenging video activity recognition
dataset collected from live TV broadcast baseball games
(with many challenges, such as the small resolution of ac-
tivities in question). It further offers the challenge of fine-
grained activity recognition as all potential activities are en-
countered in the same context and environment, unlike many
other datasets which feature more diverse activities which
may also use context for recognition. It has 4290 videos
in 42 hours of video. Additionally, baseball games follow
a rigid structure, making it ideal to evaluate the learned
grammar. Some example frames are shown in Fig. 1.

Implementation Details We implemented our models in
PyTorch. The learning rate was set to 0.1, decayed every 50
epochs by 10, and the models were trained for 400 epochs.
We pruned the number of branches to 2048 by random
selection.

4.4. Results on MLB-Youtube

Table 1 shows the results of the proposed algorithm on
the MLB-Youtube dataset, compared to all state-of-the-art
algorithms including RNNs such as LSTMs and Neural
Turing Machines (NTM). We evaluated the methods in two
different settings: 1) learning grammar on top of features
learned from I3D and 2) on top of a recently proposed
super-events method. The result clearly shows that our
differentiable grammar learning is able to better capture
temporal/sequential information in videos. We also compare
to LSTMs and NTMs using both CNN features (e.g., I3D) as

Table 1. Results on the MLB-YouTube dataset (mAP).

Model mAP

Random 13.4

I3D 34.2
I3D + LSTM 39.4
I3D + NTM (Graves et al., 2014) 36.8
I3D class prob + LSTM 37.4
I3D class prob + NTM (Graves et al., 2014) 36.8
I3D with Grammar (ours) 43.4

I3D + super-events (Piergiovanni & Ryoo, 2018b) 39.1
I3D + super-events with Grammar (ours) 44.2

Table 2. Results on the MultiTHUMOS dataset (mAP).

Method mAP

Two-stream (Yeung et al., 2015) 27.6
Two-stream + LSTM (Yeung et al., 2015) 28.1
Multi-LSTM (Yeung et al., 2015) 29.6
Predictive-corrective (Dave et al., 2017) 29.7

I3D baseline 29.7
I3D + LSTM 29.9
I3D + NTM (Graves et al., 2014) 29.8
I3D class prob + LSTM 29.8
I3D class prob + NTM (Graves et al., 2014) 29.7
I3D with Grammar (ours) 32.3

I3D + super-events (Piergiovanni & Ryoo, 2018b) 36.4
I3D + super-events with Grammar (ours) 37.7

input and using the predicted class probabilities as input, as
that is more comparable to our grammar model. We find that
the use of class probabilities slightly degrades performance
for LSTMs and NTMs.

4.5. Results on MultiTHUMOS

Table 2 shows results comparing two common methods
with and without the proposed grammar. We also test both
settings as above and compare to the state-of-the-art. In
both settings we can see that use of the learned grammar
outperforms previously known methods.

4.6. Results on Charades

Table 3 has results comparing the proposed grammar to
other prior techniques on the Charades dataset (v1 localize
setting). As seen, this dataset is quite challenging since
recently its detection accuracy was below 10 percent mAP.
Our results here too outperform the state-of-the-art, increas-
ing the accuracy on this dataset to over 20 percent mAP.
We note that there are consistent improvements in both

Learning Differentiable Grammars

Table 3. Detection results on the Charades dataset (Cha-
rades v1 localize setting).

Method mAP

Predictive-corrective (Dave et al., 2017) 8.9
Two-stream (Sigurdsson et al., 2016a) 8.94
Two-stream+LSTM (Sigurdsson et al., 2016a) 9.6
R-C3D (Xu et al., 2017) 12.7
Sigurdsson et al. (Sigurdsson et al., 2016a) 12.8
I3D baseline 17.2
I3D + LSTM 18.1
I3D + NTM (Graves et al., 2014) 17.5
I3D class prob + LSTM 17.6
I3D class prob + NTM (Graves et al., 2014) 17.4
I3D with Grammar (ours) 18.5

I3D + super-events (Piergiovanni & Ryoo, 2018b) 19.4
I3D + super-events with Grammar (ours) 20.3

settings, similar to the results on MultiTHUMOS and MLB-
YouTube. In particular, the differentiable grammar learning
outperformed previous RNNs including LSTMs and NTMs.

4.7. Future Prediction/Forecasting

As our grammar model is generative, we can apply it to
predict the future, unseen activities. Future prediction is
important, especially for autonomous systems (e.g., robots)
as they need to anticipate potential future activities to re-
spond to. Once the grammar is learned, future sequences
containing unseen activities can be generated by selecting
the most probable production rule at every (future) time
step.

For this experiment we consider predicting at short-term
horizons (in the next 2 seconds), mid-term horizons (next
10 seconds), and more longer-term horizons (in the next
20 seconds). We compare to baselines such as random
guessing, repeatedly predicting the last seen frame, and
an LSTM approach (using I3D features) which has been
commonly used for future frame forecasting. We evaluate
these methods using per-frame mAP.

Table 4 shows the results for future prediction for the Mul-
tiTHUMOS dataset. We confirm the proposed method is
more accurate at future prediction at all future horizons con-
sidered. We note that 10-20 seconds in the future is a very
challenging setting to try to predict especially in the context
of multi-label datasets.

Table 5 shows the results for future prediction for the Cha-
rades dataset. Here too, we can see the proposed grammar
approach is more accurate at future frame prediction, with
predictions at 10 seconds in the future outperforming state-
of-the-art for 2 seconds only. This data is more challenging

Table 4. Future prediction on the MultiTHUMOS dataset for vari-
ous time horizons.

Method 2 sec 10 sec 20 sec
Random 2.6 2.6 2.6
Last frame 6.2 5.8 2.8
I3D + LSTM 8.5 6.6 2.9
I3D + Grammar (ours) 10.4 8.3 3.5

Table 5. Future prediction on the Charades dataset for various time
horizons.

Method 2 sec 10 sec 20 sec
Random 2.4 2.4 2.4
Last frame 6.8 3.3 2.4
I3D + LSTM 6.5 4.6 2.5
I3D + Grammar (ours) 8.6 7.3 5.5

by itself, which makes the future prediction even harder.

4.8. Visualization of Learned Grammars

In Figure 4, we illustrate how we convert from the learned
matrices to the grammar and production rules. From the
training data, we know the mapping from terminal symbol
to label. We can then examine the rule matrix, W and the
non-terminals, H1 to construct the rules.

We also visualize the learned grammar for the MLB-
YouTube dataset, in which interestingly the typical baseball
sequences are learned. Figure 8 is the conceptual visual-
ization of the learned regular grammar. In Figure 9, we
illustrate the actual learned matrices corresponding to one
of the production rules. In Figure 10, we illustrate how all
the learned rules are inferred from the learned matrices.

In Figure 8, we illustrate the learned grammar. We see that
that the learned grammar matches the structure in a baseball
game and the probabilities are similar to the observed data,
confirming that our model is able to learn the correct rule
structure. For example, an activity starts with a pitch which
can be followed by a swing, bunt or a hit. After a hit, foul,
or strike, another pitch follows. The learned grammar is
illustrated with probabilities for each rule in parenthesis.

5. Related work
Chomsky grammars (Chomsky, 1956; 1959) are designed
to represent functional linguistic relationships. They have
found wide applications in defining programming languages,
natural language understanding, and understanding of im-
ages and videos (Socher et al., 2011).

There are early works exploring extracting grammars/state
machines from trained RNNs (Kolen, 1994; Bodén & Wiles,
2000; Tiňo et al., 1998). Other works have attempted to

Learning Differentiable Grammars

P pitch S | pitch B | pitch K | pitch U | pitch Y

S

U

H

swing H | swing K

bunt H | bunt K

hit P | foul P

ball P

strike P

B

K

Y hit by pitch P

(0.5) (0.25) (0.21) (0.03) (0.01)

(0.68) (0.32)

(0.76) (0.24)

(0.42) (0.58)

Figure 8. The learned grammar from the MLB-Youtube dataset.
For non-terminals with multiple rules, the learned probabilities are
in parenthesis.

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

v
t

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 1 0 0 0 0 0P

P → pitch S |
 pitch B |
 pitch K |
 pitch U |
 pitch Y

K
-
H
-
-
B
S
U
Y
K
-
K
-
-
H
P
-
-
-
-
-
-
P
-
-
-
-
-
P
-
-
P
-
P
-

10000000 - pitch
01000000 - swing
00100000 - hit
00010000 - bunt
00001000 - strike
00000100 - ball
00000010 - foul
00000001 - hit by pitch

Terminal to class mapping:

Figure 9. Visualization of one learned non-terminal rule pair. For
simplicity, we only visualize the rules that are applicable for each
non-terminal. ‘-’ denotes terminals and non-terminals that are
never used.

learn ‘neural push down-automata’ to learn context-free
grammars (Sun et al., 2017) or neural Turing Machines
(Graves et al., 2014). However, these works only explored
simple toy experiments, and were not tested on real-world
data.

Some works have explored learning more explicit structures
by forcing states to be discrete and uses pseudo-gradients
to learn grammatical structures (Zeng et al., 1994). How-
ever, they still rely on a standard RNN to learn model the
sequences. It has also been found that LSTMs/RNNs are
able to learn grammars (Gers & Schmidhuber, 2001; Giles
et al., 1995; Das et al., 1992). Different to all these works,
we design a neural network architecture that is able to ex-
plicitly model the structure of a grammar, which leads to
much easier interpretability.

Other works have explored using neural networks to learn
a parser. Socher et al. (2011) parsed scenes by learning to
merge representations. Mayberry & Miikkulainen (1999)
learned a shift-reduce neural network parser and Chen &
Manning (2014) learn a dependency parser as a neural net-
work. While these works learn some grammar structure, it
is difficult to interpret what they are learning.

Within activity recognition, regular and context-free gram-
mars have been used to parse and understand videos (Moore
& Essa, 2002; Pirsiavash & Ramanan, 2014; Ivanov & Bo-
bick, 2000; Ryoo & Aggarwal, 2009; Si et al., 2011). Other
works have extended CFGs such as attribute grammars (Joo
& Chellappa, 2006) or using context-sensitive constraints
and interval logic (Brendel et al., 2011; Kwak et al., 2014).

6. Conclusion
In conclusion, we presented a differentiable model for learn-
ing formal grammars for the purposes of parsing videos
or other streaming data. The learned structures are inter-
pretable which is important for understanding the behavior
of the model and the decisions made. The proposed method
outperforms all prior state-of-the-art techniques on several
challenging benchmarks. Furthermore, it can predict fu-
ture events with higher accuracy, which is necessary for
anticipation and reaction to future actions.

In the future we plan to apply it to even longer horizon
data streams. Further, we aim to enable application of our
differentiable grammar learning to higher-dimensional rep-
resentations, learning them jointly with image/video CNNs
in an end-to-end fashion.

References
Bodén, M. and Wiles, J. Context-free and context-sensitive

dynamics in recurrent neural networks. Connection Sci-
ence, 12(3-4):197–210, 2000.

Learning Differentiable Grammars

Brendel, W., Fern, A., and Todorovic, S. Probabilistic event
logic for interval-based event recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Chen, D. and Manning, C. A fast and accurate dependency
parser using neural networks. In Proceedings of the 2014
conference on empirical methods in natural language
processing (EMNLP), pp. 740–750, 2014.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using rnn encoder-decoder for sta-
tistical machine translation. In EMNLP, 2014.

Chomsky, N. Three models for the description of lan-
guage. In IRE Transactions on Information Theory (2),
pp. 113124, 1956.

Chomsky, N. On certain formal properties of grammars. In
Information and Control. 2 (2), pp. 137167, 1959.

Das, S., Giles, C. L., and Sun, G.-Z. Learning context-free
grammars: Capabilities and limitations of a recurrent neu-
ral network with an external stack memory. In Proceed-
ings of The Fourteenth Annual Conference of Cognitive
Science Society, pp. 14, 1992.

Dave, A., Russakovsky, O., and Ramanan, D. Predictive-
corrective networks for action detection. arXiv preprint
arXiv:1704.03615, 2017.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A.
Recurrent neural network grammars. In NAACL-HLT,
2016.

Gers, F. A. and Schmidhuber, J. Lstm recurrent networks
learn simple context-free and context-sensitive languages.
IEEE Transactions on Neural Networks, 12(6):1333–
1340, 2001.

Giles, C. L., Horne, B. G., and Lin, T. Learning a class of
large finite state machines with a recurrent neural network.
Neural Networks, 8(9):1359–1365, 1995.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9:1735–80, 12 1997. doi: 10.1162/
neco.1997.9.8.1735.

Ivanov, Y. A. and Bobick, A. F. Recognition of visual activ-
ities and interactions by stochastic parsing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22
(8):852–872, 2000.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations (ICLR), 2017.

Joo, S.-W. and Chellappa, R. Attribute grammar-based event
recognition and anomaly detection. In Computer Vision
and Pattern Recognition Workshop. IEEE, 2006.

Kolen, J. F. Fool’s gold: Extracting finite state machines
from recurrent network dynamics. In Advances in Neural
Information Processing Systems (NIPS), 1994.

Kwak, S., Han, B., and Han, J. H. On-line video event de-
tection by constraint flow. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(6):1174–1186,
2014.

Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang,
S., Huang, H., and Chen, S. X. Assessing beijing’s
pm2.5 pollution: severity, weather impact, apec and win-
ter heating. In Proceedings of the Royal Society A, 471,
20150257, 2016.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In International Conference on Learning Rep-
resentations (ICLR), 2017.

Mayberry, M. R. and Miikkulainen, R. Sardsrn: A neural
network shift-reduce parser. In Proceedings of the 16th
Annual Joint Conference on Artificial Intelligence, 1999.

Moore, D. and Essa, I. Recognizing multitasked activities
from video using stochastic context-free grammar. In
Proceedings of the American Association for Artificial
Intelligence (AAAI), 2002.

Piergiovanni, A. and Ryoo, M. S. Fine-grained activity
recognition in baseball videos. In CVPR Workshop on
Computer Vision in Sports, 2018a.

Piergiovanni, A. and Ryoo, M. S. Learning latent super-
events to detect multiple activities in videos. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018b.

Pirsiavash, H. and Ramanan, D. Parsing videos of actions
with segmental grammars. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

Ryoo, M. S. and Aggarwal, J. K. Semantic representation
and recognition of continued and recursive human activ-
ities. International Journal of Computer Vision (IJCV),
82(1):1–24, 2009.

Learning Differentiable Grammars

Si, Z., Pei, M., Yao, B., and Zhu, S.-C. Unsupervised learn-
ing of event and-or grammar and semantics from video.
In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2011.

Sigurdsson, G. A., Divvala, S., Farhadi, A., and Gupta,
A. Asynchronous temporal fields for action recognition.
arXiv preprint arXiv:1612.06371, 2016a.

Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A., Laptev,
I., and Gupta, A. Hollywood in homes: Crowdsourcing
data collection for activity understanding. In Proceedings
of European Conference on Computer Vision (ECCV),
2016b.

Socher, R., Lin, C. C., Manning, C., and Ng, A. Y. Parsing
natural scenes and natural language with recursive neural
networks. In Advances in Neural Information Processing
Systems (NIPS), 2011.

Sun, G.-Z., Giles, C. L., Chen, H.-H., and Lee, Y.-C. The
neural network pushdown automaton: Model, stack and
learning simulations. arXiv preprint arXiv:1711.05738,
2017.

Tiňo, P., Horne, B. G., Giles, C. L., and Collingwood,
P. C. Finite state machines and recurrent neural network-
sautomata and dynamical systems approaches. In Neural
networks and pattern recognition, pp. 171–219. Elsevier,
1998.

Xu, H., Das, A., and Saenko, K. R-c3d: Region convolu-
tional 3d network for temporal activity detection. arXiv
preprint arXiv:1703.07814, 2017.

Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori,
G., and Fei-Fei, L. Every moment counts: Dense detailed
labeling of actions in complex videos. International Jour-
nal of Computer Vision (IJCV), pp. 1–15, 2015.

Zeng, Z., Goodman, R. M., and Smyth, P. Discrete recur-
rent neural networks for grammatical inference. IEEE
Transactions on Neural Networks, 5(2):320–330, 1994.

Learning Differentiable Grammars

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

H1 H2

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

H1 H2

A

0000010
-
0000001
-
-
0000100
1000000
0010000
0001000
0000010
-
0000010
-
-
0000001
0100000
-
-
-
-
-
-
0100000
-
-
-
-
-
0100000
-
-
0100000
-
0100000
-

01000000
-
01000000
-
-
10000000
10000000
10000000
10000000
10000000
-
00010000
-
-
00010000
00000001
-
-
-
-
-
-
00000100
-
-
-
-
-
00001000
-
-
00100000
-
00000010
-

S → swing H | swing K

v
t

1 0 0 0 0 0 0S
v

t
.32 0 .68 0 0
.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 1 0 0 0 0 0P

P → pitch S |
 pitch B |
 pitch K |
 pitch U |
 pitch Y

v
t

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 0 1 0 0 0 0U

U → bunt H | bunt K

v
t

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 0 0 1 0 0 0Y

Y → hit by pitch P

v
t

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 0 0 0 1 0 0B

B → ball P

v
t

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 0 0 0 0 0 1H

H → hit P | foul P

v
t

.32 0 .68 0 0

.25 .5 .03 .01 .21
0 .24 0 0 .76
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 .42 0 .58 0

W

A0 0 0 0 0 1 0K

K → strike K

Figure 10. Visualization of the learned grammar for MLB-YouTube videos. Note, for simplicity, we only visualize the applicable rules in
W . ‘-’ is used for terminals and non-terminals that are never used.

