
Faster Graph Embeddings via Coarsening

Matthew Fahrbach * 1 Gramoz Goranci * 2 Richard Peng * 3 Sushant Sachdeva * 2 Chi Wang * 4

Abstract
Graph embeddings are a ubiquitous tool for ma-
chine learning tasks, such as node classification
and link prediction, on graph-structured data.
However, computing the embeddings for large-
scale graphs is prohibitively inefficient even if we
are interested only in a small subset of relevant
vertices. To address this, we present an efficient
graph coarsening approach, based on Schur com-
plements, for computing the embedding of the
relevant vertices. We prove that these embeddings
are preserved exactly by the Schur complement
graph that is obtained via Gaussian elimination
on the non-relevant vertices. As computing Schur
complements is expensive, we give a nearly-linear
time algorithm that generates a coarsened graph
on the relevant vertices that provably matches
the Schur complement in expectation in each it-
eration. Our experiments involving prediction
tasks on graphs demonstrate that computing em-
beddings on the coarsened graph, rather than the
entire graph, leads to significant time savings with-
out sacrificing accuracy.

1. Introduction
Over the past several years, network embeddings have been
demonstrated to be a remarkably powerful tool for learning
unsupervised representations for nodes in a network (Per-
ozzi et al., 2014; Tang et al., 2015; Grover & Leskovec,
2016). Broadly speaking, the objective is to learn a low-
dimensional vector for each node that captures the structure
of its neighborhood. These embeddings have proved to be
very effective for downstream machine learning tasks in net-
works such as node classification and link prediction (Tang
et al., 2015; Hamilton et al., 2017).

*Equal contribution 1Google Research, New York, NY, USA
2Department of Computer Science, University of Toronto, Toronto,
Canada 3Department of Computer Science, Georgia Institute of
Technology, GA, USA 4Microsoft Research, Redmond, WA, USA.
Correspondence to: Matthew Fahrbach <fahrbach@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

While some of these graph embedding approaches are ex-
plicitly based on matrix-factorization (Tang & Liu, 2011;
Bruna et al., 2014; Cao et al., 2015), some of the other
popular methods, such as DeepWalk (Perozzi et al., 2014)
and LINE (Tang et al., 2015), can be viewed as approxi-
mately factoring random walk matrices constructed from
the graph (Qiu et al., 2018). A new approach proposed
by (Qiu et al., 2018) called NetMF explicitly computes a
low-rank approximation of random-walk matrices using a
Singular Value Decomposition (SVD), and significantly out-
performs the DeepWalk and LINE embeddings for bench-
mark network-mining tasks.

Despite the performance gains, explicit matrix factoriza-
tion results in poor scaling performance. The matrix
factorization-based approaches typically require computing
the singular value decomposition (SVD) of an n×n matrix,
where n is the number of vertices in the graph. In cases
where this matrix is constructed by taking several steps of
random walks, e.g., NetMF (Qiu et al., 2018), the matrix is
often dense even though the original graph is sparse. This
makes matrix factorization-based embeddings extremely ex-
pensive to compute, both in terms of the time and memory
required, even for graphs with 100,000 vertices.

There are two main approaches for reducing the size of a
graph to improve the efficiency and scalability of graph-
based learning. The first method reduces the number of
edges in the graphs while preserving properties essential to
the relevant applications. This approach is often known as
graph sparsification (see (Batson et al., 2013) for a survey).
Recently, (Qiu et al., 2019) introduced NetSMF, a novel
approach for computing embeddings that leverages spectral
sparsification for random walk matrices (Cheng et al., 2015)
to dramatically improve the sparsity of the matrix that is
factorized by NetMF, resulting in improved space and time
efficiency, with comparable prediction accuracy.

The second approach is vertex sparsification, i.e., eliminat-
ing vertices, also known as graph coarsening. However,
there has been significantly less rigorous treatment of vertex
sparsification for network embeddings, which is useful for
many downstream tasks that only require embedding a rele-
vant subset of the vertices, e.g., (1) core-peripheral networks
where data collection and the analysis focus on a subset of
vertices (Borgatti & Everett, 2000), (2) clustering or training



Faster Graph Embeddings via Coarsening

models on a small subset of representative vertices (Karypis
& Kumar, 1998), and (3) directly working with compressed
versions of the graphs (Liu et al., 2016).

In all of the above approaches to graph embedding, the only
way to obtain an embedding for a subset of desired vertices
is to first compute a potentially expensive embedding for the
entire graph and then discard the embeddings of the other
vertices. Thus, in situations where we want to perform a
learning task on a small fraction of nodes in the graph, this
suggests the approach of computing a graph embedding on
a smaller proxy graph on the target nodes that maintains
much of the connectivity structure of the original network.

1.1. Our Contributions

In this paper, we present efficient vertex sparsification algo-
rithms for preprocessing massive graphs in order to reduce
their size while preserving network embeddings for a given
relevant subset of vertices. Our main algorithm repeatedly
chooses a non-relevant vertex to remove and contracts the
chosen vertex with a random neighbor, while reweighting
edges in its neighborhood. This algorithm provably runs
in nearly linear time in the size of the graph, and we prove
that in each iteration, in expectation the algorithm performs
Gaussian elimination on the removed vertices, adding a
weighted clique on the neighborhood of each removed ver-
tex, computing what is known as the Schur complement on
the remaining vertices. Moreover, we prove that the Schur
complement is guaranteed to exactly preserve the matrix fac-
torization that random walk-based graph embeddings seek
to compute as the length of the random walks approaches
infinity.

When eliminating vertices of a graph using the Schur com-
plement, the resulting graph perfectly preserves random
walk transition probabilities through the eliminated vertex
set with respect to the original graph. Therefore, graph
embeddings that are constructed by taking small length ran-
dom walks on this sparsified graph are effectively taking
longer random walks on the original graph, and hence can
achieve comparable or improved prediction accuracy in sub-
sequent classification tasks while also being less expensive
to compute.

Empirically, we demonstrate several advantages of our algo-
rithm on widely-used benchmarks for the multi-label vertex
classification and link prediction. We compare our algo-
rithms using LINE (Tang et al., 2015), NetMF (Qiu et al.,
2018), and NetSMF (Qiu et al., 2019) embeddings. Our
algorithms lead to significant time improvements, especially
on large graphs (e.g., 5x speedup on computing NetMF
on the YouTube dataset that has 1 million vertices and 3
million edges). In particular, our randomized contraction
algorithm is extremely efficient and runs in a small fraction
of the time required to compute the embeddings. By com-

puting network embeddings on the reduced graphs instead
of the original networks, our algorithms also result in at
least comparable, if not better, accuracy for the multi-label
vertex classification and AUC scores for link prediction.

1.2. Other Related Works

The study of vertex sparsifiers is closely related to graph
coarsening (Chevalier & Safro, 2009; Loukas & Van-
dergheynst, 2018) and the study of core-peripheral net-
works (Benson & Kleinberg, 2019; Jia & Benson, 2019),
where analytics are focused only on a core of vertices. In
our setting, the terminal vertices play roles analogous to the
core vertices.

In this paper, we focus on unsupervised approaches for
learning graph embeddings, which are then used as input
for downstream classification tasks. There has been consid-
erable work on semi-supervised approaches to learning on
graphs (Yang et al., 2016; Kipf & Welling, 2017; Veličković
et al., 2018; Thekumparampil et al., 2018), including some
that exploit connections with Schur complements (Vattani
et al., 2011; Wagner et al., 2018; Viswanathan et al., 2019).

Our techniques have direct connections with multilevel and
multiscale algorithms, which aim to use a smaller version
of a problem (typically on matrices or graphs) to generate
answers that can be extended to the full problem (Chen et al.,
2018; Liang et al., 2018; Abu-El-Haija et al., 2019). There
exist well-known connection between Schur complements,
random contractions, and finer grids in the multigrid litera-
ture (Briggs et al., 2000). These connections have been uti-
lized for efficiently solving Laplacian linear systems (Kyng
& Sachdeva, 2016; Kyng et al., 2016), via provable spectral
approximations to the Schur complement. However, ap-
proximations constructed using these algorithms have many
more edges (by at least a factor of 1/ε2) than the original
graph, limiting the practical applicability of these works. On
the other hand, our work introduces Schur complements in
the context of graph embeddings, and gives a simple random
contraction rule that leads to a decrease in the edge count
in the contracted graph, preserves Schur complements in
expectation in each step, and performs well in practice.

Graph compression techniques aimed at reducing the num-
ber of vertices have been studied for other graph primitives,
including cuts/flows (Moitra, 2009; Englert et al., 2014) and
shortest path distances (Thorup & Zwick, 2005). However,
the main objective of these works is to construct sparsifiers
with theoretical guarantees and to the best of our knowledge,
there are no works that consider their practical applicability.

2. Preliminaries
We introduce the notion of graph embeddings and graph
coarsening. In the graph embedding problem, given an



Faster Graph Embeddings via Coarsening

undirected, weighted graph G = (V,E,w), where V is the
vertex set of n vertices, and E is the edge set of m edges,
the goal is to learn a function f : V → Rd that maps each
vertex to a d-dimensional vector while capturing structural
properties of the graph. An important feature of graph em-
beddings is that they are independent of the vertex labels,
i.e., they are learned in an unsupervised manner. This allows
us to perform supervised learning by using the learned vec-
tor representation for each vertex, e.g., classifying vertices
via logistic regression.

In this work, we study the matrix factorization based ap-
proach for graph embeddings introduced by (Qiu et al.,
2018). Assume that vertices are labeled from 1 to n. Let A
be the adjacency matrix of G, and let D = diag(d1, . . . , dn)
be the degree matrix, where di =

∑
j Aij is the weighted

degree of the i-th vertex. A key idea of random walk-based
graph embeddings is to augment the matrix that will be fac-
tored with longer random walks. A unified view of this tech-
nique, known as Network Matrix Factorization (NetMF), is
given below

SVD

(
log+

(
W∑
i=1

θiD−1
(
AD−1

)i)
, d

)
, (1)

where d is the target dimension, W is the window size,
θ1, . . . , θW ∈ (0, 1) are fixed parameters, and log+ is
the entry-wise truncated logarithm defined as log+(x) :=
max (log(m · x), 0).

Qiu et al. (2018) showed that NetMF is closely related to
the DeepWalk model, introduced by (Perozzi et al., 2014)
in their seminal work on graph embeddings. NetMF also
generalizes the LINE graph embedding algorithm (Tang
et al., 2015), which is equivalent to NetMF with W = 1.

In graph coarsening (also known as vertex sparsification),
given an undirected, weighted graph G = (V,E,w) and a
subset of relevant vertices, referred to as terminals, T ⊆ V ,
the goal is construct a graph H with fewer vertices that
contains the terminals while preserving important features
or properties of G with respect to the terminals T .

An important class of matrices critical to our coarsening
algorithms are SDDM matrices. A Matrix M is a sym-
metric diagonally dominant M-matrix (SDDM) if M is
(i) symmetric, (ii) every off-diagonal entry is non-positive,
and (iii) diagonally dominant, i.e., for all i ∈ [n] we have
Mii ≥ −

∑
j 6=i Mij . An SDDM matrix M can also be

written as a Laplacian matrix L := D − A plus a non-
negative, non-zero, diagonal matrix Ds.

3. Graph Coarsening Algorithms
In this section, we present the graph coarsening algorithms.
Our first algorithm is based on Gaussian elimination, where

we start with an SDDM matrix and form its Schur comple-
ment via row and column operations. Next, we design an
algorithm for undirected, weighted graphs with loops, which
translates these matrix operations into graph operations.

Let M be an SDDM matrix and recall that by definition
M = L + Ds, where L := D − A is the Laplacian ma-
trix associated with some undirected, weighted graph G =
(V,E,w) and Ds is the slack diagonal matrix, which corre-
sponds to self-loops in G. Let D′ = D + Ds. For an edge
e = (u, v) ∈ E, let L(u, v) = (1u−1v)(1u−1v)> denote
the Laplacian of e, where 1u, 1v are indicator vectors. The
Laplacian matrix is also given by L :=

∑
e∈E w(e)L(e).

The unweighted degree of a vertex x in V is the number of
edges incident to x in G.

We now consider performing one step of Gaussian elimi-
nation. Given a matrix M and a vertex x ∈ V (G) that we
want to eliminate, assume without loss of generality that
the first column and row of M correspond to x. The Schur
complement of M with respect to T := V \ {x} is given by

SC (M, T ) = MT,T −
MT,xM

>
T,x

D′x,x
. (2)

An important feature of the output matrix is that it is an
SDDM matrix (see supplementary material), i.e., it corre-
spond to a graph on T with self loops. This suggests that
there should exist a reduction rule allowing us to go from
the original graph to the reduced graph. We next present
a way to come up with such a rule by re-writing the Schur
complement in Eq. (2), which in turn leads to our first graph
coarsening routine SCHURCOMPLEMENT given in Algo-
rithm 1. Note that this routine iteratively eliminates every
vertex in V \ T using the same reduction rule.

Algorithm 1: SCHURCOMPLEMENT

Data: graph G = (V,E,w) given as D−A + Ds,
terminals T ⊆ V , degree threshold ∆

Result: vertex sparsifier H of G such that T ⊆ VH
1 Set H ← G
2 while there exists a vertex x ∈ VH \ T with

unweighted degree ≤ ∆ do
3 Let x be the minimum degree vertex in VH \ T
4 for each vertex u ∈ N(x) do
5 for each vertex v ∈ N(x) do
6 Add edge (u, v) to H with weight

(w(x, u)w(x, v)) /D′x,x
7 Set Ds

u,u ← Ds
u,u +

(
w(x, u)Ds

x,x

)
/D′x,x

8 Remove vertex x from H

9 return H

Given a Laplacian L, let L(v) denote the Laplacian cor-
responding to the edges incident to vertex v, i.e., L(v) =



Faster Graph Embeddings via Coarsening∑
e∈E:e3v w(e)L(e). If the first column of L can be written,

for some vector a, as[
D′x,x
−a

]
, then L(x) =

[
D′x,x −a>
−a diag(a)

]
.

Using these definitions, observe that the first term in Eq. (2)
can be re-written as follows

MT,T = L− L(x) + diag(a) + Ds
T,T . (3)

The first two terms in Eq. (3) give that the vertex x must be
deleted from the underlying graphG (Line 8 in Algorithm 1).
Next, the second term in Eq. (2) together with (i) a = MT,x

and (ii) (diag(a) ·Dx,x)/D′x,x give us

diag(a) ·Dx,x

D′x,x
− aa>

D′x,x

=
1

2

∑
u∈N(x)

∑
v∈N(x)\{u}

w(x, u)w(x, v)

D′x,x
L(u, v), (4)

which corresponds to the weighted clique structure formed
by Schur complement (Line 6 in Algorithm 1). Finally, the
remaining terms in Eq. (3) together with the rescaled matrix
−(diag(a) ·Dx,x)/D′x,x give

Ds
T,T + diag(a)− diag(a)Dx,x

D′x,x
= Ds

T,T + diag(a)
Ds

x,x

D′x,x
,

which corresponds to the rule for updating loops for the
neighbors of x (Line 7 in Algorithm 1). This completes the
reduction rule for eliminating a single vertex.

While SCHURCOMPLEMENT is highly efficient when the
degree is small, its cost can potentially become quadratic in
the number of vertices. In our experiments, we delay this
explosion in edge count as much as possible by perform-
ing the widely-used minimum degree heuristic: repeatedly
eliminate the vertex of the smallest degree (George & Liu,
1989; Fahrbach et al., 2018). However, because the increase
in edges is proportional to the degree squared, on many real-
world graphs this heuristic exhibits a phenomenon similar
to a phase transition—it works well up to a certain point and
then it is suddenly unable to make further progress. To rem-
edy this, we study the opposite extreme: a contraction-based
scheme that does not create any additional edges.

Given a graph G and terminals T ⊆ V (G), the basic idea
behind our second algorithm is to repeatedly pick a mini-
mum degree vertex x ∈ V \T , sample a neighbor u ∈ N(x)
with probability proportional to the edge weight w(x, u),
contract (x, u) and then reweight the new edges incident to
the chosen neighbor. We formalize this notion below.
Definition 3.1 (Random Contraction). Let G = (V,E,w)
be a graph with terminals T ⊆ V . Let x ∈ V \ T be a
non-terminal vertex. Let Hx be the random star generated
by the following rules:

1. Sample a neighbor u ∈ N(x) with probability
w(x, u)/Dx,x.

2. Contract the edge (x, u).
3. For each edge (u, v), where v ∈ N(x) \ {u} in Hx,

set w(u, v) to be w(x,u)w(x,v)
w(x,u)+w(x,v) ·

(
Dx,x/D

′
x,x

)
.

LetH be the sparsified graph obtained by includingHx and
removing x, i.e., H := (G \ {x}) ∪Hx.

As we will shortly see, the time for implementing such
reweighted random contraction for vertex x is linear in the
degree of x. This is much faster compared to the Schur com-
plement reduction rule that requires time quadratic in the
degree of x. Another important feature of our randomized
reduction rule is that it preserves the Schur complement
in expectation in each iteration. Repeatedly applying such
a rule for all non-terminal vertices leads to the procedure
presented in Algorithm 2.

Algorithm 2: RANDOMCONTRACTION

Data: graph G = (V,E,w) given as D−A + Ds,
terminals T ⊆ V , degree threshold ∆

Result: sparsifier H of G that approximates
SCHURCOMPLEMENT(G,T )

1 Set H ← G
2 while there exists a vertex x ∈ VH \ T with

unweighted degree ≤ ∆ do
3 Let x be the minimum degree vertex in VH \ T
4 for each vertex u ∈ N(x) do
5 Set Ds

u,u ← Ds
u,u +

(
w(x, u) ·Ds

x,x

)
/D′x,x

6 Contract the edge (x, u), where u ∈ N(x), with
probability w(x, u)/Dx,x

7 for each edge (u, v), where v ∈ N(x) \ {u} do
8 Set

w(u, v)← w(u, v)+ w(x,u)w(x,v)
w(x,u)+w(x,v) ·

(
Dx,x

D′
x,x

)
9 Let H ′ be the resulting graph and set H ← H ′

10 return H

Now we analyze the behavior of our contraction-based al-
gorithm RANDOMCONTRACTION. The following theorem
demonstrates why it can be significantly more efficient than
computing Schur complements, while still preserving the
Schur complement in expectation in each iteration. In what
follows, whenever we talk about a graph G, we assume that
is given together with its associated SDDM matrix M.

Theorem 3.2. Given a graph G = (V,E,w) with m edges
and terminals T ⊆ V , the algorithm RANDOMCONTRAC-
TION produces a graph H with O(m) edges that contains
the terminals T in O(m log n) time. Moreover, each iter-
ation of the algorithm preserves the Schur complement in
expectation.



Faster Graph Embeddings via Coarsening

Before proving Lemma 3.2, we first analyze the scenario of
removing a single non-terminal vertex using a reweighted
random contraction.

Lemma 3.3. Let G = (V,E,w) be a graph with terminals
T ⊆ V . Let x ∈ V \ T be a non-terminal vertex. Let H be
the sparsifier of G from Definition 3.1 and assume that the
slacks of the neighbors of x are updated according to the
rule in Line 4 of Algorithm 2. Then we have

E [MH ] = SC (M, V \ {x}) .

Furthermore, H can be computed in O(deg(x)) time.

Proof. We first show that H preserves the Schur comple-
ment in expectation. By Eq. (2) and the follow up discussion
in Section 3, we know that taking the Schur complement
with respect to V \{x} corresponds to (i) deleting x together
with its neighbors from G, (ii) updating the slacks of the
neighbors of x and (iii) introducing a clique among neigh-
bors of x and adding it to G. Note that x is contracted to
one of its neighbors in H , i.e., it is deleted from G, and the
rule for updating the slacks in both SCHURCOMPLEMENT
and RANDOMCONTRACTION is exactly the same. Thus it
remains to show that the edge contraction in H preserves
the clique structure of Schur complement in expectation.

Recall from Eq. (4) that the clique structure of Schur com-
plement is given by

1

2

∑
u∈N(x)

∑
v∈N(x)\{u}

w(x, u)w(x, v)

D′x,x
L(u, v).

For each u ∈ N(x), let Hx→u be the weighted star that
would be formed if x gets contracted to u, that is

Mx→u
H :=

∑
v∈N(x)\{u}

w(x, u)w(x, v)

w(x, u) + w(x, v)

(
Dx,x

D′x,x

)
L(u, v).

The probability that the edge (x, u) is contracted is
w(x, u)/Dx,x by Definition 3.1. Thus, we have

Eu [Mx→u
H ] =

∑
u∈N(x)

w(x, u)

Dx,x
Mx→u

H =
∑

u∈N(x)

w(x, u)

Dx,x

·
∑

v∈N(x)\{u}

w(x, u)w(x, v)

w(x, u) + w(x, v)

(
Dx,x

D′x,x

)
L(u, v)

=
1

2

∑
u∈N(x)

∑
v∈N(x)\{u}

w(x, u)w(x, v)

D′x,x
L(u, v),

as desired.

For bounding the running time for computing H , reweight-
ing the star H(x) takes O(deg(x)) time. We can also simu-
late the random edge incident to x by first preprocessing the
neighborsN(x) inO(deg(x)) time, and then generating the

random edge to be contracted in O(1) time, e.g., see (Bring-
mann & Panagiotou, 2017). The edge contraction can also
implemented in O(deg(x)) time, so together this gives us
O(deg(x)) time.

Proof of Theorem 3.2. By the construction of RANDOM-
CONTRACTION, it follows that T ⊆ VH . Moreover, since a
single random contraction preserves the Schur complement
in expectation by Lemma 3.3, we get that each iteration of
the algorithm preserves the Schur complement in expecta-
tion. Furthermore, the number of edges is always upper
bounded by m because a contraction cannot increase the
number of edges.

Let G(k) denote the graph at the k-th iterative step in our
algorithm, and denote by deg(k)(x) the degree of x in G(k).
By Lemma 3.3, the expected running time for removing a
single non-terminal x via a reweighted random contraction
in the graph G(k) is O(deg(k)(x)). We can implement a
data structure using linked lists and bucketed vertex degrees
to maintain and query the minimum degree vertex at each
step in O(deg(k)(x)) time. At each iteration, the minimum
degree vertex in V \ T is x by construction. Since the
number of edges throughout the procedure is at most m, it
follows that deg(k)(x) ≤ 2m/(n− k). Therefore, the total
running time of RANDOMCONTRACTION is bounded by
O(m

∑n−1
k=0

1
n−k ) = O(m log n).

In contrast, it is known that the SCHURCOMPLEMENT al-
gorithm requires Ω(n3) on almost all sparse graphs (Lipton
et al., 1979). Even simply determining an elimination order-
ing of vertices with the minimum degree at each iteration
as in the SCHURCOMPLEMENT algorithm also requires at
least Ω(n2−ε) time, for all ε > 0, under a well-accepted
conditional hardness assumption (Cummings et al., 2019).

4. Guarantees for Graph Embeddings
In this section, we give theoretical guarantees by proving
that our two coarsening algorithms SCHURCOMPLEMENT
and RANDOMCONTRACTION preserve graph embeddings
among terminal vertices. Let G = (V,E,w) be an undi-
rected, weighted graph whose node-embedding function we
want to learn. Assume that the parameters associated withG
are geometrically decreasing, i.e., θi = θi and θ ∈ (0, 1)
where i ∈ [W ]. While this version does not exactly match
DeepWalk’s setting where all θi values are 1/10, it is a
close approximation for most real-world graphs, as they are
typically expanders with low degrees of separation.

Our coarsening algorithm for graph embeddings first pre-
processes G, by building a closely related graph Ĝ that
corresponds to the SDDM matrix M = D− θA, and then
runs SCHURCOMPLEMENT on top of Ĝ with respect to
the terminals T . Let H with V (H) ⊇ T be the output



Faster Graph Embeddings via Coarsening

graph and recall that its underlying matrix is SDDM, i.e.,
SC(M, T ) = D′H−AH , where D′H = DH +Ds

H . Below
we define the graph embedding of H .

Definition 4.1 (NetMFSC). Given a graph G, a target di-
mension d and the graph H defined above, the graph em-
bedding NetMFSC of H is given by

SVD

(
log+

(
W∑
i=1

D′−1H Pi
H + D′−1H −D−1T,T

)
, d

)
, (5)

where PH = AHD′−1H is a random walk transition matrix.

The lemma below shows that Schur complement H together
with NetMFSC exactly preserve the node embedding of the
terminal vertices in the original graph G.

Theorem 4.2. For any graph G, any subset of vertices T ,
and any parameter θ ∈ (0, 1), let the limiting NetMF em-
bedding with parameters θi, for i = 1, . . . ,W , be

R(G) := lim
W→∞

NetMF
(
G, d,

(
θi
)W
i=1

)
.

For any threshold minimum degree ∆, let H =
SC(M, T,∆) with M = D − θA be the output graph
along with its associated embedding

R(H) := lim
W→∞

NetMFSC (G,H, d) .

Then we have that R(G)T,T = R(H)T,T up to a rotation.

An important ingredient needed to prove the above lemma
is the following fact.

Fact 4.3. If M is an invertible matrix and T ⊆ V , it holds
that SC(M, T )−1 = M−1T,T .

Proof of Theorem 4.2. Recall that the NetMF of G is the
SVD factorization of an entry-wise truncated logarithm of
the random walk matrix

∑W
i=1 θiD

−1(AD−1)i. Substitut-
ing in our choices of θi = θi and since W tends to infinity,
we get that this matrix is the inverse of the SDDM matrix
D− θA. Concretely, we have

lim
W→∞

W∑
i=1

θi
(
AD−1

)i
= D−1

∞∑
i=0

(
θAD−1

)i −D−1

= D−1
(
I− θAD−1

)−1 −D−1

= (D− θA)
−1 −D−1. (6)

By Fact 4.3, we know that the Schur complement exactly
preserves the entries among vertices in T in the inverse, i.e.,

SC (D− θA, T )
−1

= (D− θA)
−1
T,T . (7)

Furthermore, the definition of NetMFSC in Eq. (5) performs
diagonal adjustments and thus ensures that the matrices
being factorized are exactly the same. Formally, we have

lim
W→∞

W∑
i=1

D′−1H

(
AHD′−1H

)i
+ D′−1H −D−1T,T

= D′−1H

∞∑
i=0

(
AHD′−1H

)i −D−1T,T

= D′−1H (I−AHD′−1H )−1 −D−1T,T

= SC(D− θA, T )−1 −D−1T,T

Eq. (7)
= (D− θA)−1T,T −D−1T,T . (8)

Since the matrices in Eq. (6) and (8) are the same when re-
stricted to the terminal set T , we get that their factorizations
are also the same up to a rotation, which in turn implies that
R(G)T,T = R(H)T,T up to rotation.

5. Experiments
In this section, we investigate how the vertex sparsifiers
SCHURCOMPLEMENT and RANDOMCONTRACTION affect
the predictive performance of graph embeddings for two
different learning tasks. Our multi-label vertex classification
experiment builds on the framework for NetMF (Qiu et al.,
2018), and evaluates the accuracy of logistic regression mod-
els that use graph embeddings obtained by first coarsening
the networks. Our link prediction experiment builds on the
setup in node2vec (Grover & Leskovec, 2016), and explores
the effect of vertex sparsification on AUC scores for several
popular link prediction baselines.

5.1. Multi-label Vertex Classification

Datasets. The networks we consider and their statistics
are listed in Table 1. BlogCatalog (Tang & Liu, 2009) mod-
els the social relationships of online bloggers, and its vertex
labels represent topic categories of the authors. Flickr (Tang
& Liu, 2009) is a network of user contacts on the image-
sharing website Flickr, and its labels represent groups inter-
ested in different types of photography. YouTube (Yang &
Leskovec, 2015) is a social network on users of the popular
video-sharing website, and its labels are user-defined groups
with mutual interests in video genres. We only consider the
largest connected component of the YouTube network.

Table 1. Statistics of the networks in our vertex classification ex-
periments.

Dataset Nodes Edges Classes Labels

BlogCatalog 10,312 333,983 3,992 14,476
Flickr 80,513 5,899,882 195 107,741
YouTube 1,134,890 2,987,624 47 50,669



Faster Graph Embeddings via Coarsening

Figure 1. Accuracy of sparsified LINE embeddings. The x-axis denotes the training ratio (%) and the y-axis in the top and bottom row
denotes the mean Micro-F1 and Macro-F1 scores, respectively.

Evaluation Methods. We primarily use the embedding al-
gorithm NetMF (Qiu et al., 2018), which unifies LINE (Tang
et al., 2015) and DeepWalk (Perozzi et al., 2014) via a ma-
trix factorization framework. LINE corresponds to NetMF
when the window size equals 1, and DeepWalk corresponds
to NetMF when the window size is greater than 1. We
use the one-vs-all logistic regression model implemented in
scikit-learn (Pedregosa et al., 2011) to investigate the quality
of our vertex sparsifiers for the multi-label vertex classifi-
cation task. For each dataset and embedding algorithm, we
compute the embeddings of the original network and the
two sparsified networks given by SCHURCOMPLEMENT
and RANDOMCONTRACTION. Then for each of these em-
beddings, we evaluate the model at increasing training ratios
using the prediction pipeline in the NetMF experiments (Qiu
et al., 2018).

Since all of the nodes in BlogCatalog and Flickr are labeled,
we downsample the training set by randomly selecting half
of the vertices and completely discarding their labels. This
induces a smaller label set which we use for both training
and evaluation. The YouTube network is already sparsely
labeled, so we do not modify its training set. We refer to the
labeled vertices as terminals and prohibit the sparsification
algorithms from eliminating these nodes. In all of our exper-
iments, we use the minimum degree threshold ∆ = 30 for
the SCHURCOMPLEMENT and RANDOMCONTRACTION
algorithms. We choose the conventional target dimension of
d = 128 for all graph embeddings. For LINE embeddings,
we run NetMF with window size W = 1. For DeepWalk
embeddings, we run NetMF with the window size W = 10
in the BlogCatalog and Flickr experiments, and we use the
window size W = 2 for the YouTube network because of

the density of the resulting random walk matrix. To further
study DeepWalk embeddings for the YouTube network, we
compare our results with the novel embedding algorithm
NetSMF (Qiu et al., 2019), which is leverages an intermedi-
ate spectral sparsifier for the dense random walk matrix. We
use the window size W = 10 in all instances of NetSMF.

For the BlogCatalog experiments, we vary the training ratio
from 10% to 90%, and for Flickr and YouTube we vary the
training ratio from 1% to 10%. In all instances, we perform
10-fold cross validation and evaluate the prediction accuracy
in terms of the mean Micro-F1 and Macro-F1 scores. All of
our experiments are performed on a Linux virtual machine
with 64 Xeon E5-2673 v4 virtual CPUs (2.30GHz), 432GB
of memory, and a 1TB hard disk drive.

Results for LINE (NetMF with W = 1). We start by
evaluating the classification performance of LINE embed-
dings of the sparsified networks relative to the originals and
plot the results across all datasets in Figure 1. Our first
observation is that quality of the embedding for classifica-
tion always improves by running the SCHURCOMPLEMENT
sparsifier. To explain this phenomenon, we note that LINE
computes an embedding using length W = 1 random walks.
This approach, however, is often inferior to methods that
use longer random walks such as DeepWalk. When elimi-
nating vertices of a graph using the Schur complement, the
resulting graph perfectly preserves random walk transition
probabilities through the eliminated vertex set with respect
to the original graph. Thus, the LINE embedding of a graph
sparsified using SCHURCOMPLEMENT implicitly captures
longer length random walks through low-degree vertices
and hence more structure of the network. For the YouTube



Faster Graph Embeddings via Coarsening

Figure 2. Accuracy of sparsified DeepWalk embeddings. The x-axis denotes the training ratio (%) and the y-axis in the top and bottom
row denotes the mean Micro-F1 and Macro-F1 scores, respectively.

experiment, we observe that RANDOMCONTRACTION sub-
stantially outperforms SCHURCOMPLEMENT and the base-
line LINE embedding. We attribute this behavior to the fact
that contractions preserve edge sparsity unlike Schur com-
plements. It follows that RANDOMCONTRACTION typically
eliminates more nodes than SCHURCOMPLEMENT when
given a degree threshold. In this instance, the YouTube net-
work sparsified by SCHURCOMPLEMENT has 84,371 nodes
while RANDOMCONTRACTION produces a network with
53,291 nodes (down from 1,134,890 in the original graph).

Results for DeepWalk (NetMF with W ≥ 2). Now we
consider the same classification experiments using Deep-
Walk and NetSMF embeddings. We plot the prediction
performance for various training ratios across all datasets
in Figure 2. Again, we observe that the vertex-sparsified
embeddings perform at least as well as the embedding of
the original graph for this multi-label classification task,
which we attribute to the implicit use of longer random
walks. In the YouTube experiment we observe a dramatic
improvement over the baseline, but this is because of an
entirely different reason than before. A core subroutine of
NetMF with W ≥ 2 is computing the truncated SVD of a
dense random walk matrix graph, so the benefits of vertex
sparsification surface in two ways. First, the bottleneck in
the runtime of the classification pipeline is the truncated
SVD. By preprocessing the graph to reduce its vertex set we
noticeably speed up this SVD call (e.g., see YouTube and
NetMF in Table 2). Second, the convergence rate of the ap-
proximate SVD depends on the dimension of the underlying
matrix, so the sparsified graphs lead to more accurate eigen-
decompositions and hence higher quality embeddings. We

reiterate that for the YouTube experiment, we set W = 2 to
meet a 432GB memory constraint whereas in the DeepWalk
experiments in (Perozzi et al., 2014) the authors setW = 10.
We also run NetSMF with W = 10 on the original graphs
as another benchmark, but in some instances we need to use
fewer samples to satisfy our memory limit, hence the lower
accuracies than in (Qiu et al., 2019). When trained on 10%
of the label set, SCHURCOMPLEMENT achieves 24.45% and
44.67% relative gains over DeepWalk in terms of Micro-F1
and Macro-F1 scores. Furthermore, since RANDOMCON-
TRACTION yields a coarser graph on fewer nodes, it gives
26.43% and 48.94% improvements relative to DeepWalk.

Table 2. Running times of the coarsening and graph embedding
stages in the vertex classification experiment (seconds).

Network Sparsify LINE NetMF NetSMF

BlogCatalog – 3.72 20.80 45.56
BlogCatalog SC 1.53 3.88 15.66 –
BlogCatalog RC 2.47 3.83 15.61 –
Flickr – 51.62 1,007.17 950.60
Flickr SC 19.43 56.62 571.70 –
Flickr RC 59.43 43.41 597.08 –
YouTube – 147.55 4,714.88 3,458.75
YouTube SC 22.91 44.84 2,053.59 –
YouTube RC 44.13 16.55 909.16 –

5.2. Link Prediction

Datasets. We build on the experimental framework in
node2vec (Grover & Leskovec, 2016) and evaluate our
vertex sparsification algorithms on the following datasets:
Facebook (Leskovec & Krevl, 2014), arXiv ASTRO-



Faster Graph Embeddings via Coarsening

PH (Leskovec & Krevl, 2014), and Protein-Protein Inter-
action (PPI) (Stark et al., 2006). We present the statistics
of these networks in Table 3. Facebook is a social network
where nodes represent users and edges represent a friend-
ship between two users. The arXiv graph is a collaboration
network generated from papers submitted to arXiv. Nodes
represent scientists and an edge is present between two sci-
entists if they have coauthored a paper. In the PPI network
for Homo Sapiens, nodes represent proteins and edges indi-
cate a biological interaction between a pair of proteins. We
consider the largest connected component of the arXiv and
PPI graphs.

Table 3. Statistics of the networks in our link prediction experi-
ments.

Dataset Nodes Edges

Facebook 4,039 88,234
arXiv ASTRO-PH 17,903 196,972
Protein-Protein Interaction (PPI) 21,521 338,625

Evaluation Methods. In the terminal link prediction task,
we are given a graph and a set of terminal nodes. A subset of
the terminal-to-terminal edges are removed, and the goal is
to accurately predict edges and non-edges between terminal
pairs in the original graph. We generate the labeled dataset
of edges as follows: first, randomly select a subset of termi-
nal nodes; to obtain positive examples, remove 50% of the
edges chosen uniformly at random between terminal nodes
while ensuring that the network is still connected; to obtain
negative examples, randomly choose an equal number of
terminal pairs that are not adjacent in the original graph.
We select 500 (12.4%) nodes as terminals in the Facebook
network, 2000 (9.3%) in PPI, and 4000 (22.3%) in arXiv.

For each network and terminal set, we use RANDOMCON-
TRACTION and SCHURCOMPLEMENT to coarsen the graph.
Then we compute node embeddings using LINE and NetMF.
We calculate an embedding for each edge (u, v) by taking
the Hadamard or weighted L2 product of the node embed-
dings for u and v (Grover & Leskovec, 2016). Finally, we
train a logistic regression model using the edge embeddings
as features, and report the area under the receiver operating
characteristic curve (AUC) from the prediction scores.

Results. We summarize our results in Table 4. For all
of the datasets, using RANDOMCONTRACTION or SCHUR-
COMPLEMENT for coarsening and LINE with Hadamard
products for edge embeddings gives the best results. More-
over, coarsening consistently outperforms the baseline (i.e.,
the same network and terminals without any sparsification).
We attribute the success of LINE-based embeddings in this
experiment to the fact that our coarsening algorithms pre-
serve random walks through the eliminated nodes; hence,
running LINE on a coarsened graph implicitly uses longer-

Table 4. Area under the curve (AUC) scores for different operators,
coarsening, and embedding algorithms for the link prediction task.

Operator Algorithm Facebook arXiv PPI

LINE 0.9891 0.9656 0.9406
RC + LINE 0.9937 0.9778 0.9431

Hadamard SC + LINE 0.9950 0.9854 0.9418
NetMF 0.9722 0.9508 0.8558
RC + NetMF 0.9745 0.9752 0.9072
SC + NetMF 0.9647 0.9811 0.9018

LINE 0.9245 0.6129 0.7928
RC + LINE 0.9263 0.6217 0.7983

Weighted L2 SC + LINE 0.9523 0.6824 0.7835
NetMF 0.9865 0.9574 0.8646
RC + NetMF 0.9852 0.9800 0.9207
SC + NetMF 0.9865 0.9849 0.9120

length random walks to compute embeddings. We see the
same behavior with coarsening and NetMF, but the resulting
AUC scores are marginally lower. Lastly, our experiments
also highlight the importance of choosing the right binary
operator for a given node embedding algorithm.

6. Conclusion
We introduce two vertex sparsification algorithms based on
Schur complements to be used as a preprocessing routine
when computing graph embeddings of large-scale networks.
Both of these algorithms repeatedly choose a vertex to re-
move and add new edges between its neighbors. In Section 4
we demonstrate that these algorithms exhibit provable trade-
offs between their running time and approximation quality.
The RANDOMCONTRACTION algorithm is faster because
it contracts the eliminated vertex with one of its neighbors
and reweights all of the edges in its neighborhood, while the
SCHURCOMPLEMENT algorithm adds a weighted clique
between all pairs of neighbors of the eliminated vertex via
Gaussian elimination. We prove that the random contraction
based-scheme produces a graph that is the same in expec-
tation as the one given by Gaussian elimination, which in
turn yields the matrix factorization that random walk-based
graph embeddings such as DeepWalk, NetMF and NetSMF
aim to approximate.

The main motivation for our techniques is that Schur comple-
ments preserve random walk transition probabilities through
eliminated vertices, which we can then exploit by factorizing
smaller matrices on the terminal set of vertices. We demon-
strate on commonly-used benchmarks for graph embedding-
based multi-label vertex classification tasks that both of
these algorithms empirically improve the prediction accu-
racy compared to using graph embeddings of the original
and unsparsified networks, while running in less time and
using substantially less memory.



Faster Graph Embeddings via Coarsening

Acknowledgements
MF did part of this work while supported by an NSF Gradu-
ate Research Fellowship under grant DGE-1650044 at the
Georgia Institute of Technology. SS and GG are partly sup-
ported by an NSERC Discovery grant awarded to SS by
NSERC (Natural Sciences and Engineering Research Coun-
cil of Canada). RP did part of this work while at Microsoft
Research Redmond, and is partially supported by the NSF
under grants CCF-1637566 and CCF-1846218.

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Steeg, G. V., and Galstyan,
A. MixHop: Higher-order graph convolutional architec-
tures via sparsified neighborhood mixing. In Proceedings
of the 36th International Conference on Machine Learn-
ing (ICML), pp. 21–29. PMLR, 2019.

Batson, J., Spielman, D. A., Srivastava, N., and Teng, S.-H.
Spectral sparsification of graphs: Theory and algorithms.
Communications of the ACM, 56(8):87–94, 2013.

Benson, A. and Kleinberg, J. Link prediction in networks
with core-fringe data. In Proceedings of the 28th Inter-
national Conference on World Wide Web (WWW), pp.
94–104. ACM, 2019.

Borgatti, S. P. and Everett, M. G. Models of core/periphery
structures. Social networks, 21(4):375–395, 2000.

Briggs, W. L., Henson, V. E., and McCormick, S. F. A
Multigrid Tutorial. SIAM, 2000.

Bringmann, K. and Panagiotou, K. Efficient sampling meth-
ods for discrete distributions. Algorithmica, 79(2):484–
508, 2017.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
In Proceedings of the 2nd International Conference on
Learning Representations (ICLR), 2014.

Cao, S., Lu, W., and Xu, Q. GraRep: Learning graph rep-
resentations with global structural information. In Pro-
ceedings of the 24th ACM International on Conference
on Information and Knowledge Management (CIKM), pp.
891–900. ACM, 2015.

Chen, H., Perozzi, B., Hu, Y., and Skiena, S. HARP: Hierar-
chical representation learning for networks. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI), pp. 2127–2134, 2018.

Cheng, D., Cheng, Y., Liu, Y., Peng, R., and Teng, S.-
H. Efficient sampling for Gaussian graphical models
via spectral sparsification. In Proceedings of The 28th

Conference on Learning Theory (COLT), pp. 364–390.
PMLR, 2015.

Chevalier, C. and Safro, I. Comparison of coarsening
schemes for multilevel graph partitioning. In Interna-
tional Conference on Learning and Intelligent Optimiza-
tion, pp. 191–205. Springer, 2009.

Cummings, R., Fahrbach, M., and Fatehpuria, A. A fast
minimum degree algorithm and matching lower bound.
arXiv preprint arXiv:1907.12119, 2019.

Englert, M., Gupta, A., Krauthgamer, R., Räcke, H., Talgam-
Cohen, I., and Talwar, K. Vertex sparsifiers: New results
from old techniques. SIAM J. Comput., 43(4):1239–1262,
2014.

Fahrbach, M., Miller, G. L., Peng, R., Sawlani, S., Wang,
J., and Xu, S. C. Graph sketching against adaptive ad-
versaries applied to the minimum degree algorithm. In
2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 101–112. IEEE, 2018.

George, A. and Liu, J. W. H. The evolution of the minimum
degree ordering algorithm. SIAM Review, 31(1):1–19,
1989.

Grover, A. and Leskovec, J. Node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pp. 855–864. ACM,
2016.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In Advances
in Neural Information Processing Systems (NIPS), pp.
1024–1034, 2017.

Jia, J. and Benson, A. R. Random spatial network models for
core-periphery structure. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining (WSDM), pp. 366–374. ACM, 2019.

Karypis, G. and Kumar, V. A software package for partition-
ing unstructured graphs, partitioning meshes, and com-
puting fill-reducing orderings of sparse matrices, 1998.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proceedings of
the 5th International Conference on Learning Represen-
tations (ICLR), 2017.

Kyng, R. and Sachdeva, S. Approximate gaussian elimi-
nation for laplacians - fast, sparse, and simple. In 2016
IEEE 57th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 573–582, Oct 2016.



Faster Graph Embeddings via Coarsening

Kyng, R., Lee, Y. T., Peng, R., Sachdeva, S., and Spiel-
man, D. A. Sparsified cholesky and multigrid solvers
for connection laplacians. In Wichs, D. and Mansour,
Y. (eds.), Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 842–
850. ACM, 2016.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Liang, J., Gurukar, S., and Parthasarathy, S. MILE: A multi-
level framework for scalable graph embedding. arXiv
preprint arXiv:1802.09612, 2018.

Lipton, R. J., Rose, D. J., and Tarjan, R. E. Generalized
nested dissection. SIAM Journal on Numerical Analysis,
16(2):346–358, 1979.

Liu, Y., Dighe, A., Safavi, T., and Koutra, D. A graph
summarization: A survey. CoRR, abs/1612.04883, 2016.
URL http://arxiv.org/abs/1612.04883.

Loukas, A. and Vandergheynst, P. Spectrally approximat-
ing large graphs with smaller graphs. In Proceedings of
the 35th International Conference on Machine Learning
(ICML), pp. 3237–3246. PMLR, 2018.

Moitra, A. Approximation algorithms for multicommodity-
type problems with guarantees independent of the graph
size. In 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 3–12, 2009.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 701–710.
ACM, 2014.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J.
Network embedding as matrix factorization: Unifying
deepwalk, line, pte, and node2vec. In Proceedings of the
Eleventh ACM International Conference on Web Search
and Data Mining (WSDM), pp. 459–467. ACM, 2018.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, C., Wang, K., and
Tang, J. NetSMF: Large-scale network embedding as
sparse matrix factorization. In Proceedings of the 28th
International Conference on World Wide Web (WWW),
pp. 1509–1520. ACM, 2019.

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Bre-
itkreutz, A., and Tyers, M. BioGRID: A general reposi-
tory for interaction datasets. Nucleic Acids Research, 34:
D535–D539, 2006.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,
Q. LINE: Large-scale information network embedding.
In Proceedings of the 24th International Conference on
World Wide Web (WWW), pp. 1067–1077, 2015.

Tang, L. and Liu, H. Relational learning via latent social
dimensions. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (WSDM), pp. 817–826. ACM, 2009.

Tang, L. and Liu, H. Leveraging social media networks for
classification. Data Mining and Knowledge Discovery,
23(3):447–478, 2011.

Thekumparampil, K. K., Wang, C., Oh, S., and Li, L.-
J. Attention-based graph neural network for semi-
supervised learning. arXiv preprint arXiv:1803.03735,
2018.

Thorup, M. and Zwick, U. Approximate distance oracles. J.
ACM, 52(1):1–24, 2005.

Vattani, A., Chakrabarti, D., and Gurevich, M. Preserv-
ing personalized pagerank in subgraphs. In Proceedings
of the 28th International Conference on International
Conference on Machine Learning (ICML), pp. 793–800,
2011.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. In Pro-
ceedings of the 6th International Conference on Learning
Representations (ICLR), 2018.

Viswanathan, K., Sachdeva, S., Tomkins, A., and Ravi, S.
Improved semi-supervised learning with multiple graphs.
In The 22nd International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pp. 3032–3041, 2019.

Wagner, T., Guha, S., Kasiviswanathan, S., and Mishra,
N. Semi-supervised learning on data streams via tempo-
ral label propagation. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML), pp.
5095–5104, 2018.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181–213, 2015.

Yang, Z., W. Cohen, W., and Salakhutdinov, R. Revisit-
ing semi-supervised learning with graph embeddings. In
Proceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning (ICML),
pp. 40–48, 2016.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://arxiv.org/abs/1612.04883


Faster Graph Embeddings via Coarsening

A. Closure of SDDM Matrices Under the
Schur Complement

Lemma A.1. If M is an SDDM matrix and T = V \ {x}
is a subset of its columns, then S := SC(M, T ) is also an
SDDM matrix.

Proof. Recall that

SC(M, T ) = MT,T −
MT,xM

>
T,x

D′x,x
,

and observe that D′x,x = Mx,x. By definition of SDDM
matrices, we need to show that S is (i) symmetric, (ii) its off-
diagonal entries are non-positive and (iii) for all i ∈ [n− 1]
we have Sii ≥ −

∑
j 6=i Sij . An easy inspection shows that

S satisfies (i) and (ii). We next show that (iii) holds.

To this end, by definition of S, we have that

−
∑
j 6=i

Sij =
∑
j 6=i

(
−Mij +

MixMxj

Mxx

)

= −
∑
j 6=i

Mij +
Mix

Mxx

∑
j 6=i

Mxj

 . (9)

As M is an SDDM matrix, the following inequality holds
for the x-th row of M

−
∑
j 6=i

Mxj ≤Mix,

or equivalently

Mix

∑
j 6=i

Mxj

 ≤ −M2
ix. (10)

Plugging Eq. (10) in Eq. (9) and using the fact that
−
∑

j 6=i Mij ≤Mii, we get that

−
∑
j 6=i

Sij ≤Mii −
M2

ix

Mxx
= Sii,

which completes the proof of the lemma.


