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a b s t r a c t 

Gas-liquid two-phase bubbly flows are found in different areas of science and technology such as nuclear 

energy, chemical industry, or piping systems. Optical diagnostics of two-phase bubbly flows with modern 

panoramic techniques makes it possible to capture simultaneously instantaneous characteristics of both 

continuous and dispersed phases with a high spatial resolution. In this paper, we introduce a novel ap- 

proach based on neural networks to recognize bubble patterns in images and identify their geometric 

parameters. The originality of the proposed method consists in training of a neural network ensemble 

using synthetic images that resemble real photographs gathered in experiment. The use of neural net- 

works in combination with automatically generated data allowed us to detect overlapping, blurred, and 

non-spherical bubbles in a broad range of volume gas fractions. Experiments on a turbulent bubbly jet 

proved that the implemented method increases the identification accuracy, reducing errors of various 

kinds, and lowers the processing time compared to conventional recognition methods. Furthermore, uti- 

lizing the new method of bubbles recognition, the primary physical parameters of a dispersed phase, 

such as bubble size distribution and local gas content, were calculated in a near-to-nozzle region of the 

bubbly jet. The obtained results and integral experimental parameters, especially volume gas fraction, are 

in good agreement with each other. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Oil, gas or aerospace industries development is inevitably asso-

iated with the use of modern methods of their study. Fundamen-

al research is required to improve existing technologies that help

olve more and more challenging technical problems appearing

n production. In the economy spheres mentioned above, various

onstationary two-phase bubbly flows are often encountered. Such

ubbly flows can, for example, be used in petrochemical reactors

bubble columns in which bubbles are involved in the process

f intensification of mass transfer between liquid and gas phases.

oreover, bubbly jets arising during the operation of some types

f hydraulic equipment can lead to serious negative consequences

losely related to the phenomenon of cavitation ( Caupin and Her-

ert, 2006 ). From the standpoint of fundamental research of these
∗ Corresponding author. 
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ows, it is necessary to develop highly accurate approaches for the

rimary processing and analysis of experimental data the amount

f which is continuously increased. Information support of exper-

ments, including data storage and visualization, as well as data

reatment with advanced algorithms, becomes a crucial element of

ny modern study. 

To date, there are two primary classes of measurement tech-

iques for two-phase flow diagnostics: probe-based (contact) and

on-invasive (contactless) methods. The first of them makes it pos-

ible to evaluate some physical quantity (temperature, pressure or

elocity) at a high frequency in a certain flow region and, thereby,

erive its average and fluctuating values. The undoubtable advan-

age of the contact methods is the possibility of using sensors in

ard-to-reach places. The second type of measurement techniquies

ncludes most of optical approaches the development of which has

een significantly accelerated along with the evolution of laser,

ecording and computer technologies, and favorably differ from the

robe-based methods in that they do not disturb an investigated

ow. 
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In most of existing contactless techniques for dispersed-phase

analysis, for example shadow photography ( Bongiovanni et al.,

1997 ), the thickness of a measurement volume (its dimension

along the line of sight of a camera) is proportional to the depth of

field of an optical system used. This makes it impossible to discern

and treat particles (solids, drops or bubbles) in a specific layer of a

flow under consideration, excluding the rest of them. This issue is

overcome in the planar fluorescence for bubbles imaging (PFBI) ap-

proach ( Akhmetbekov et al., 2010 ; Dulin et al., 2012 ), probably the

most effective modern technique to determine bubble parameters.

It is a whole-field optical method, in which bubbles located far

from the central plane of a laser-light sheet (measurement plane)

become less and less visible with increasing the distance to the

laser sheet , that is, the intensity of their patterns drops quickly

with the distance. This technique allows obtaining high-resolution

experimental data in a rectangular three-dimensional volume with

the thickness of 0.5–1.5 mm. 

In order to determine the parameters of bubbly flows, such

as the mean velocity and turbulent characteristics of the contin-

uous phase, the mean velocity and local gas concentration along

with their fluctuations of the dispersed phase, specific software is

needed that can extract information from PFBI data on the exact

positions of bubbles in space and their sizes. These data can be

used later, for example, by the particle image velocimetry (PIV) or

particle tracking velocimetry (PTV) algorithms ( Bröder and Som-

merfeld, 2003 ; Lindken and Merzkirch, 2002 ). To find and identify

objects in images, there exist many traditional approaches based

on the extraction of "manually configurable" features, for exam-

ple SIFT descriptors ( Lowe, 2004 ) or histograms of oriented gradi-

ents ( Dalal and Triggs, 2005 ). Another example is the study by Liu

et al., 2016 ), where bubble detection and calculation of their sizes

from experimental images were performed using the ImageJ anal-

ysis software. 

The next paper by Akhmetbekov et al., 2010 ) proposes the fol-

lowing two approaches of bubble recognition, which solve the

aforementioned problem to some degree of accuracy. The first

technique is based on the search for bubbles by outlining their

boundaries in images and then searching for related areas to de-

termine geometric centers and sized of bubbles. The second tech-

nique uses the correlation method, where a scanned image part is

compared with a pre-generated mask image, whereby the presence

or absence of a bubble in the image is determined. 

Both methods have a low quality of overlapping bubbles iden-

tification, because in a real experiment, bubble images, due to a

variety of different effects, can be significantly distorted. Addition-

ally, we can point out a high computational cost inherent to the

correlation analysis, although it can partially identify overlapping

bubbles as separate objects. Another issue is related to a lot of ad-

justable parameters required by both methods to operate properly.

These parameters are highly coupled with a particular kind of ex-

perimental data. 

In order to scale up the use of bubble recognition methods and

speed up experiments, new approaches are required that will be

able to overcome the above disadvantages. 

In the context of this study, instead of using traditional ap-

proaches for the classification of objects in the images, to achieve

the goal, we introduce a new technique based on the use of ar-

tificial neural networks (NNs). Thanks to the computational tech-

nologies, which have rapidly developed in recent decades, and the

tremendous growth of available data, it has become possible to uti-

lize NNs for a variety of applications such as image classification

or object detection ( Szegedy et al., 2013 ). Nowadays, convolutional

neural networks (CNNs) are one of the most successful examples of

machine learning applications, because they allow the achievement

of state-of-the-art performance in solving different image process-

ing problems. 
CNNs are a part of the general concept of “deep learning"

 Goodfellow et al., 2016 ). Deep learning approaches may be formu-

ated as a set of machine learning technologies that are designed

o extract and comprehend low- and high-level abstractions in data

utomatically. This approach provides a necessary flexibility in ex-

erimental data analysis, which implies that the algorithms are

daptable and simple as much as possible for configuration and

se. This, in turn, allows, for example, building of an effective and

obust classifier for recognizing bubble patterns in images of two-

hase bubbly flow with minimal interventions from outside. 

It is worthwhile mentioning that there are only several kinds of

esearch ( Ohmi, 2008 ; Sapkota and Ohmi, 20 09 , 20 08 ) in which

he authors used NNs for such a physical experiment analysis.

hese studies refer to modification of the PTV algorithm by NNs

or increasing the efficiency and universality of the PTV method. In

he recent paper by Ilonen et al., 2018 ), various methods for bub-

le detection and size estimation were compared. It was concluded

hat the best choice for an off-line bubbles image analysis was the

pplication of modern CNNs. 

Summarizing the above, the focus of this paper is on developing

 software based on NNs and its quality evaluation. This software

hould be easily adaptable to experimental data for various types

f turbulent bubbly flows and applicable to a wide range of vol-

me gas contents. Furthermore, the recognition algorithms have to

e capable of identifying different bubble patterns in raw images,

egardless of their size, shape, intensity profile, background, and

egree of overlap. 

. Neural network architectures 

Since the beginning of the 90s to the present, the theory of NNs

as experienced a real boom in the number of scientific publica-

ions and various applications, ranging from financial to medical

elds. Moreover, NNs in some areas, such as machine translation

 Johnson et al., 2017 ), actually reached the human level, and solv-

ng problems such as speech recognition, have long surpassed hu-

an results ( Amodei et al., 2016 ). 

Currently there are varying NN architectures used for image

ecognition. Despite the differences in structure, the basic princi-

les of their operation are identical - they require labeled data

o be trained on (see Section 3 ). After running the training pro-

edure, NN parameters are adjusted to perform the classification

ask. Thus, a NN acquires the ability to correctly process previously

nknown input data. 

In addition to the conventional basic architecture of the mul-

ilayer perceptron (MLP) ( Orbach, 1962 ), for computer vision, the

ast decade saw the increasing use of CNNs. The key idea of a

NN was first introduced by LeCun et al., 1990 ). The work was in-

pired by the principles of operation of the human visual cortex.

ater, various versions of the CNNs ( LeCun et al., 2010 , LeCun et al.,

004 ) began to be used for solving different challenging computer

ision issues, such as localization ( Szegedy et al., 2013 ), segmen-

ation ( Shelhamer et al., 2017 ), generating sentences from images

 Karpathy and Fei-Fei, 2017 ), object detection ( Girshick et al., 2014 ),

tc. 

CNN, compared to MLP, has the following two major advan-

ages: 

• NSpatial invariance: Due to its architecture, CNNs don’t lose out

in the process of learning information about the spatial ar-

rangement of the input images’ details 
• Computational efficiency: Due to distributed weights, a CNN can

have a similar “depth” as a conventional perceptron but with

the number of weights being an order of magnitude smaller. 

With that said, in order to effectively identify bubbles in the

ubbly jet images, CNNs were chosen as the base architecture. 



I. Poletaev, M.P. Tokarev and K.S. Pervunin / International Journal of Multiphase Flow 126 (2020) 103194 3 

Fig. 1. Example of the CNN classifier architecture used in this study. Sizes are given for a 50 × 50 input window. The network produces the normalized probability values 

of the presence of a bubble in a given image. 

Fig. 2. Example of convolutional denoising autoencoder architecture used in this study. 
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In the sections below, respective CNNs will be desig-

ated, according to their architecture’s parameters. For instance,

NN_8_16_75 is the convolutional network architecture ( Fig. 1 ),

here the values 8 and 16 denote the number of convolutional

ernels ( LeCun et al., 1998 ) used in the first and second convo-

utional layers, respectively, whereas “75 ′′ corresponds to the size

f the penultimate fully-connected neurons layer. 

However, even if the NN correctly detects a bubble in the im-

ge, this does not always mean that its geometric characteristics

an be easily determined. Very often the bubble is overlapping by

ther bubbles or its outlines are entirely blurred. To overcome this

roblem, denoising autoencoders were used in this study. The fol-

owing section briefly describes their operation. 

.1. Denoising autoencoders 

Autoencoding is a data compression algorithm where the com-

ression and decompression functions are data-specific, lossy and

earned automatically from examples, rather than engineered by

 human. Additionally, in almost all contexts where the term au-

oencoder is used, the compression and decompression functions

re implemented with NNs. Today, two interesting practical appli-

ations of autoencoders are data denoising and dimensionality re-

uction for data visualization. With appropriate dimensionality and

parsity constraints, autoencoders can learn data projections that

re better than the PCA or other basic techniques ( Smith, 2002 ). 

In our study, we used both MLP and CNN-based autoencoders

o solve the denoising problem ( Baldi, 2012 ; Vincent et al., 2008 ).

odels were trained on synthetic images and their clear shapes, as

hown in Fig. 2 . The autoencoder aim is to extract only central and

ocused bubble shapes from the images and suppress surrounding

oise and particles. 

The advantage of using autoencoders over other similar-purpose

lters [for example, the non-linear median filter with Sobel opera-
or ( Bröder and Sommerfeld, 2003 )] is that we do not need to ad-

ust processing parameters manually; an autoencoder learns how

o deal with the data during the training stage. Moreover, its main

istinguishing feature is that it leaves only the central, bright and

ocused bubble in the image, even if it contains several bubbles

see Fig. 11 and Section 5.2 ). Thus, this makes the autoencoder a

niversal tool, replacing other digital filters that can be used for

his problem. 

. Image generation for training neural networks 

As described in Section 2 , training samples are needed in order

o train a NN. From the sample of experimental images shown in

ig. 11 , it can be seen that in order to determine the character-

stics of the two-phase flow, it is necessary to detect preferably

ll bubbles and determine their parameters. Following this, it is

ecessary to carefully remove all detected bubbles in the image

nd calculate the properties of the velocity field of the continuous

hase, with the help of either the PIV or PTV method. For this pur-

ose, all image sections need to be processed successively. In order

o perform that, the respective image processing algorithms divide

he experimental images into a set of overlapping square windows

ith equal side sizes (denoted by parameter a ) and an equal value

f the overlapping between them (denoted by parameter s ). The

ize of these square windows depends on the average bubble ra-

ius; in our case, it was within the range of 40 up to 80 pixels.

oreover, due to the phenomenon of overlapping bubbles and for

he algorithm resolution improvement, the value of the s param-

ter should be lower with the increase of the gas actual content

exp in the pipe (see Section 6 ). 

Each image should be divided in such a way that can be effec-

ively processed by the NN. The task of the NN is to determine the

resence of a bubble inside a particular window as well as to cal-

ulate its geometrical characteristics (see Section 4 ). Thus, we need
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Fig. 3. Examples of the generated synthetic images of the virtual bubbly flow with 

the gas content value of 0.5%. The left image is the source large synthetic image. 

The images on the right are negative (upper) and positive (lower) training images 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Simulated brightness distribution of the intensities of a bubble image. Cal- 

culations are made for the water-air medium. The brightness is averaged on the 

interval [ − h 
2 
, h 

2 
] , h = 1 mm inside the square area of 60 x 60 pixels. The bubble 

rim, as noted in the histogram, has a maximum brightness at a distance of about 

70% of its real radius. 
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to obtain the respective training data to train such NNs where the

input is a square image, with or without bubbles, and output is

the digital representation of the information about this bubble (or

bubbles) or its absence. This section describes the way to prepare

this training data, as was done for this study. 

Besides, it is important to note the following empirical fact:

The more training samples and the more varied they are, the bet-

ter the algorithm generalizes the learned information. It increases

the overall NN performance in the processing of the experimen-

tal images. Unfortunately, for obvious reasons, hand-crafted label-

ing of the required amount of data (several tens of thousands of

images) was too laborious and impossible in practice. Therefore,

in the study, we leveraged synthetically generated images, which

modelled the real experimental data. Artificially generated images

were used to train the NNs to recognize bubbles, find their geo-

metric centers and clean up the patterns found due to background

noise. An example of an approach of artificial image synthesis with

realistic bubble images can be found in Fu and Liu (2019) . The next

section describes the data generation approach in detail. 

3.1. Synthetic training data generation 

During the creation of the training data, the appearance of a

bubble inside a square image was simulated, which floated inside a

virtual two-phase flow with given gas content parameters ( Fig. 3 ). 

Images of the bubbles were drawn as ellipses with specified co-

ordinates of their geometric centers as well as with the given val-

ues of the semi-axes and the rotation angle of their semi-major

axis, with respect to the normal bubbly flow direction. The uni-

form random distribution was used to generate the position of the

geometric center of the bubbles. Normal distributions were used

to generate the corresponding semi-axis sizes and rotation angle

values. Thus, the entire area of the created images was utilized to

place the bubbles. Cases were also simulated when the center of

the generated bubble was outside the current image. This approach

was extremely important in providing the NN with information on

as many possible real-life situations. 

Physically meaningful intensity distribution of the rim of a bub-

ble ( Akhmetbekov et al., 2010 ) was added to the black background

and superimposed with Gaussian noise and particle images, which

were generated using a specific software that considers various

physical conditions such as general illumination, concentration of
racers, their reflectivity, etc. To impart a greater similarity to real

ata, 200 square images of the background without bubbles were

aken from real data. These images were used as random masks

hat were added to the generated examples, with a multiplier ran-

omly sampled in the interval [0.01, 0.5] for each generated image.

uch a combined approach allowed the generation of a large num-

er of dissimilar examples to train the NNs. 

.2. Physical background 

In order to simplify the task for NNs, it is necessary to model

he training data as realistically as possible. Therefore, the spe-

ific intensity distribution profile of a bubble rim was generated

ased on the physical model described by Dulin et al., 2012 ). It was

hown that rings corresponding to bubble images have roughly a

0% smaller diameter relative to the original diameter of bubbles

 Fig. 4 ). 

This theoretical model is well confirmed experimentally. In fur-

her detail, the results of the measurements of the intensity pro-

les of a single pop-up bubble can be found in the studies of

khmetbekov et al., 2010 ) or Pervunin and Timoshevskiy (2016 ). 

To ensure that the synthetic images are maximally similar to

he real experimental data, the numerical experiment ( Fig. 5 ) was

arried out to construct a dependence of the bubble blurriness de-

ree as a function of the distance between its geometric center and

he laser sheet plane. Thus, all the bubbles generated in the images

ere distributed along the perpendicular axis to the measurement

lane and illuminated by the same law as the bubbles in a real

xperiment ( Fig. 3 ). The peculiarity of this approach is that it is

ossible to generate such artificial data for any experiment config-

ration. Namely, data generation algorithms can consider the dif-

erent bubble sizes, background brightness distribution variations,

otal gas content values, the density of the tracer particles and op-

ical registration magnification. 

Finally, the approach described may be combined with machine

earning. The generative adversarial networks ( Goodfellow et al.,

014 ; Huang et al., 2018 ) can be used to generate the training data

utomatically. In addition to the performance increase, it will also

ake it possible to get rid of any manual settings. This approach

s not considered in this study. 
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Fig. 5. Points of the calculated dependence of the maximum brightness J of the 

bubble ring divided by the maximum possible brightness J max , when H ≈ 0 and 

where H is the distance between the geometrical center of the bubble and the cen- 

tral plane of the laser sheet. The data are given for the case of an air bubble (real 

r = 0 . 5 mm) in water. H is positive when the bubble is behind the laser sheet 

and is negative if the bubble is located between the camera and the measurement 

plane. 
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. Bubble recognition 

To identify a bubble and determine its parameters, we propose

he following algorithm, which includes the consecutive operation

f the next three separate NNs: 

• Classifier : It outputs the probability of the presence of a bubble

in the processed image. 
• Centers finder : It determines the geometric center of a bubble

in a given image. 
• Autoencoder : It clears found bubbles from the background noise

(see Section 2.1 ). 

The sections below describe how each architecture operates in

etail. 

.1. Training neural networks 

For all aforementioned NN architectures, as the input data, a

ormalized brightness map of the processed images was used

 Fig. 3 ). Training data sets for the classifier and centers finder

ontained 30,0 0 0 synthetically generated square images (see
ig. 6. An illustration of the probability distribution (1) (left) of the center of a bub- 

le for the synthetic bubble image (right). 
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ection 3 ) with the size a × a pixels. The value of the parame-

er a was equal to 50 pixels. This size was chosen because most

arts of the bubbles in the experimental images can be fully fitted

n such square. Input vectors for NNs ( I 11 , . . . , I aa ) are the two-

imensional array of brightness values of each pixel, I lm 

↔ I ( x l , y m 

).

or the autoencoder training, we used 50,0 0 0 “noisy-clear” pairs of

ynthetic images (see Section 2.1 ). 

The classifier was trained for binary classification; it has one

utput, that represents the probability P of the presence of the de-

ired bubble in the image. Thus, square images with and without

ubbles ( P = 1 or P = 0 , respectively) were used as training exam-

les. In this case, when more than one bubble is in the image, it is

ssumed that the network should provide the output, P = 1 . 

To train the centers finder , the following two-dimensional out-

ut map was used: 

P ( x, y ) = e −a ( x −x 0 ) 
2 +2 b ( x −x 0 ) ( y −y 0 ) −c ( y −y 0 ) 

2 ·
{ 1 i f image has bubble, 0 − otherwise } (1) 

(1) is the Gaussian distribution that corresponds to the proba-

ility that some pixel with coordinates ( x , y ) is the geometric cen-

er of a given bubble with the real center in ( x 0 , y 0 ). Consequently,

he output vectors ( t 1 , . . . , t a ·a ) ar e a one-dimensional array of

robabilities: t i ↔ P ( x i , y i ) ( Fig. 6 ). Coefficients a, b, c in Eqn 1 are

sed to rotate the distribution by an angle θ , and are calculated as

ollows: 

a = 

cos ( θ ) 
2 

2 σ 2 
x 

+ 

sin ( θ ) 
2 

2 σ 2 
y 

; b = 

sin ( 2 θ ) 

4 

(
1 

σ 2 
y 

− 1 

σ 2 
x 

)
;

c = 

cos ( θ ) 
2 

2 σ 2 
y 

+ 

sin ( θ ) 
2 

2 σ 2 
x 

(2) 

The dispersion parameters σ x , σ y in Eqn 2 were chosen so that

he function Eqn 1 satisfies the following condition Eqn 3 : 

 ( ̃  x , ̃  y ) ≤ 0 . 01 ∀ ( ̃  x , ̃  y ) ∈ the rim of the drawn bubble (3)

Thus, this NN was trained to determine the most probable bub-

le center coordinates, which correspond to the distribution maxi-

um given by Eqn 1 . Such an approach has proved to be success-

ul in view of the fact that bubble centers in situations with large

as content are often found under the other bubbles ( Fig. 12 ). 

.2. Bubble parameters determination 

In order to accurately calculate the gas content after the bubble

s found in the image, it is necessary to determine its geometric

arameters. For this problem, different approaches were probed.

xperiments have shown that simple ellipse fitting algorithms op-

rate better compared to a NN trained one to perform the same

ask. Despite that such algorithms function slower than NNs on av-

rage, they are usually more robust and precise. 

It was also observed that the presence of noise in the images,

n the form of random background intensities and intensity peaks

rom particle images, deteriorates the result of an assessment of

he bubble parameters, regardless of the algorithm used. In order

o minimize errors introduced by extraneous noise, we propose to

se autoencoders described in Section 2.1 . To determine parame-

ers, images with bubbles, found and cleared by the autoencoder,

ere scanned by the algorithm that calculates the values of the

orrespondingly large and small semi-axes as well as the angle be-

ween the major axis and the line perpendicular to the jet axis for

he ellipse. In other words, this algorithm tries to fit an ellipse into

he considered bubble ring image most optimally. 

For ellipse fitting in this study, we use the modified approach

eveloped by Xie and Ji (2002 ), in which the authors suggested us-

ng the one-dimensional accumulator storing statistics of the five
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Algorithm 1 

Brightness enhancing algorithm. 

Require: input image brightness map, I 

Compute average, minimum and maximum brightness values: Ī , I min , I max ; 

Subtract Ī from the image brightness: I ← I − Ī ; 

Scale obtained I to the range [ I min , I max ]; 

return I 

Fig. 7. From left to right the steps of the contrast enhancement procedure of the input image are presented. 
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parameters of the ellipse being fitted - the coordinates of its cen-

ter, the size of the semi-axes and their orientation angle with re-

spect to the line, as described above. This method was first intro-

duced by Ho and Chen (1995 ). Such an approach of ellipse-fitting is

significantly faster, in contrast to the time-consuming Hough trans-

form algorithm for ellipse detection ( Davies, 1989 ). 

4.3. Experimental image processing algorithm 

The first step is image preprocessing. In the course of our ex-

periments, we found that increasing the contrast of the input ex-

perimental image provides better results ( Krizhevsky et al., 2012 )

in terms of the bubble recognition accuracy. We enhanced the
Algorithm 2 

Bubble recognition algorithm. 

Require: input image brightness map, I 

Require: sliding window size, a 

Require: sliding window moving step, s 

Require: classifier threshold, p clf 

Require: classifier threshold, p cen 

Initialize empty bubble _ centers list; 

for sliding window w i in I do 

Classifier outputs the probability P i of the 

If P > t clf , then Centers Finder returns bub

If max p i xy > t cen then add ( x 0 , y 0 ) = argmax
( x , y ) ∈ w i 

end for 

return bubble _ centers 

Algorithm 3 

Weighting clustering for bubble centers refining. 

Require: list of bubble centers, bubble _ centers 

Require: nearby bubbles criteria, R 

Initialize empty bubble _ clusters list; 

Append clusters with nearby points using maxi

Each cluster k i = { ( x j , y j ) , j = 0 . . . | k i | } is consid

for k i in bubble _ clusters do 

Find maximum probability: P i max = max 
j=0 ... | k i | 

( P 

Specify b i bubble center: ( x i , y i ) = 

1 
| k i |·P i max 

·
| k∑
j=

end for 

bubble _ centers ← bubble _ clusters ; 

return bubble _ centers 
ontrast as described in Algorithm 1 . Example of its operation is

hown in Fig. 7 . 

The second step uses images obtained from the previous stage,

n order to identify the bubbles. A square sliding window with

he side size a , moves through an experimental image with the

tep s . Every window is scanned by the trained classifier . If the

N is confident enough that the current window contains a bub-

le (i.e., outputted probability P is greater than some threshold

 clf ), then the most probable coordinates of its center are deter-

ined leveraging the centers finder . This NN uses a fixed thresh-

ld, t cen , for thresholding the output probability map. The op-

imum values of the aforementioned threshold parameters were

efined empirically, based on the NN classification accuracy as
bubble presence inside a given window; 

ble center probability distribution p i xy ; 

 ( p i xy ) to bubble _ centers ; 

mum distance R criteria into bubble _ clusters ; 

ered to contain points of bubble b i ; 

j ) ; 

 i | 
 

0 

[ ( x j , y j ) · P j ] ;
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Algorithm 4 

Bubble parameter determination algorithm. 

Require: input image brightness map, I 

Require: autoencoder input image size, a 

Require: list of bubble centers, bubble _ centers 

Initialize empty bubble _ parameters list; 

for ( x i , y i ) in bubble _ centers do 

Select a window w i of size a centered at ( x i , y i ); 

Clean the window from (possibly) other bubbles: w i ← Autoencoder ( w i ); 

Run parameter determination procedure on w i : p i = ( a i , b i , θi ) ; 

Append p i to bubble _ parameters ; 

end for 

return bubble _ parameters 

Fig. 8. Image processing algorithm. From left to right outputs for Algorithms 2 –4 are presented. 
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 clf ≈ 0.2 and t cen ≈ 0.23, respectively. Such an approach, utilizing

wo confidence thresholds, allows minimizing the number of false

ositives in the bubble determination task. 

It is important to note that the lower value s increases the total

umber of processed windows N . The processing time increases as

 ( N ) (see Section 6.2 ). In addition, experiments with both smaller

nd higher values of s ∈ [5, 50] were carried out. We did not ob-

erve any significant impact on the bubble center determination

recision. Considering the aforementioned factors, we chose s = 15

s the trade-off value, using the sliding window with size a = 50

ixels. 

Furthermore, after processing the entire image, the obtained

earby centers were united, according to their probability weights

values of P defined above), as belonging to the single bubble. The

enters of bubble x 1 = ( x 11 , y 12 ) and x 2 = ( x 21 , y 22 ) were consid-

red nearby, if ‖ x 1 − x 2 ‖ L 2 ≤ R , where R is a parameter that de-

ends on the bubbly jet gas content. On average, for the gas con-

ent values of 1 − 2% , the optimal value - which was revealed in

he course of several experiments, is 20 px . 

All steps above can be grouped into the following two algo-

ithms ( Algorithms 2 and 3 ): 

When the obtained centers of the bubbles need to be refined: 

At the last step of the algorithm, all image sections with bub-

les recognized were cleaned up by the autoencoder . Thus, the

leaned bubbles were used for the determination of their approxi-

ate sizes (axis a , b ) and orientation (angle θ ), using the approach

escribed in Section 4.2 ( Algorithm 4 ): 

The successive outcomes of all four algorithms are illustrated in

ig. 8 . 

Additionally, an emphasis should be put on the fact that the

asic purpose of using the autoencoder in this study ( Algorithm 4 )

s to simplify the task of determining the geometrical characteris-

ics of the found bubble. Section 6.2 describes how this approach

ncreases the quality metrics. 

The described approach using NNs is not “tied” to operate with

ubbles of some specific size, they can be different depending on
he size of the sliding window. For example, for a window with

 size of 80 x 80 pixels, bubbles with radii from 17 to 20 pixels

o 29–33 pixels inside the window can be confidently recognized.

hese bubble sizes are set at the stage of synthetic image genera-

ion (see Section 3 ). 

It is also important to note that in order to process the second

ime-frame image with bubbles (experimental data is a sequence

f pairs of two nearby frames), information on the position of the

ubbles from the previous frame was used as well as information

n the maximum possible displacement of the bubble between the

wo frames. In this way, bubble centers were obtained as the re-

ults of the Algorithm 3 operation, for the first and second frames,

orrespondingly, were used to refine each other. This has resulted

n reducing the number of errors in the construction of the velocity

elds and also accelerated the processing of gathering experimen-

al data as a whole. 

. Neural network architecture selection 

In this study, we tested about 60 various configurations of CNNs

nd MLPs in each group to determine which architectures are the

ost appropriate for their specific tasks. The experimental frame-

ork was implemented in Python programming language, using

he «TensorFlow» library for symbolic calculations ( Abadi et al.,

016 ). 

.1. Final models 

The selection of the final architecture was based on the evalua-

ion of different precision and recall metrics via tests on synthetic

ata ( Fig. 3 ). Validation of these finally chosen models was carried

ut on the real experimental data. The GPU was used for all the

umerical calculations (see Section 6.2 ). During the experiments,

ll models were trained on 24,0 0 0 train examples, and the quality

etrics were measured on 60 0 0 test examples. 
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Fig. 9. Selection of the classifier . Obtained quality metrics are compared depending 

on the number of training epochs used. The accuracy difference between CNNs and 

MLPs is about 13–14% on average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Final results on the synthetic data. 

NN Best obtained results on the test set, % 

Classifier 97.6 

Centers finder ∗ 94.5 

∗ With precision of 3 pixels. 

Table 3 

Comparison of optimization algorithms efficiency for CNN_8_16_75 classifier. 

Algorithm Epoch number ∗ Accuracy,% 

Adam 56 96.7 

AdaDelta 65 96.1 

AdaGrad 85 95.9 

SGD + Nesterov 102 95.5 

SGD 128 94.1 

∗ Epoch when the accuracy on the test data set exceeds 90%. 

Table 4 

Optimal training settings. 

Architecture Optimizer Learning rate Batch size 

Classifier Adam 0.002 256 

Centers finder Adam 0.001 64 

Autoencoder SGD + momentum 0.01 (0.9) 128 
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According to these architecture selection experiments (see ex-

ample in Fig. 9 ), we found that the most appropriate architec-

tures for the classifier, centers finder and autoencoder NNs are:

CNN_8_16_75, CNN_8_16_100 and MLP_10 0_50_10 0 , respectively

(see Section 2 for the architectures abbreviations). Table 1 shows

the summary of their characteristics. 

For the correct operation of the bubble parameter determina-

tion algorithm (see Section 4.2 ), it is important that the images of

bubbles after cleaning by the autoencoder remain intact and stay

in the same place. After several numerical tests on the real experi-

mental images ( Fig. 10 ), the MLP-based architecture of the autoen-

coder (see Table 1 ) was selected as the most robust to background

noise. 

Similarly, after conducting a series of numerical experiments,

architectures for the other tasks have been chosen. For example,

CNN_8_16_75 ( Fig. 1 ) is identified as the most effective for the clas-

sification task. Table 2 shows the best results for the trained clas-

sifier and centers finder models on the synthetic data. 

5.2. Optimizer selection 

Besides the architecture, it was also important to choose the

most efficient optimization algorithm for each NN to be trained

( Sutskever et al., 2013 ), to speed up the training and obtain better

results. During the computational experiments for the loss func-

tion optimizers ( Haykin, 1999 ), we tried the following algorithms:

Adam, AdaDelta, AdaGrad and SGD and their various modifications

( Goodfellow et al., 2016 ; Kingma and Ba, 2015 ). For training the

classifier , a cross-entropy loss function was used. While for train-

ing the autoencoder and centers finder the NS Kullback–Leibler di-

vergence and mean squared error loss functions were used, respec-

tively. 
Table 1 

Characteristics of the final NN architectures . 

Task Architecture configuration Inp

Classifier CNN_8_16_75 25

Centers Finder CNN_8_16_100 25

Autoencoder MLP_100_50_100 25
All convolutional architectures were trained using the “ReLU”

ctivation function for all non-linear transformations. MLPs and au-

oencoders were trained using the sigmoidal activation function. 

For the architecture evaluation, we used the partition of the

rain data set into two parts - the train and the test set with a

atio of 4:1. Test samples do not occur in the training set. Table 3

elow shows the optimization algorithms comparison done on a

:1 train/test data set partitioning. 

We also conducted various similar tests to identify the most ef-

ective optimizers for other NN types. The final set of the best hy-

erparameters is given in Table 4 . 

To prevent overfitting ( Goodfellow et al., 2016 ), we used

 variety of methods, such as batch normalization ( Ioffe and

zegedy, 2015 ) and dropout ( Srivastava et al., 2014 ), for all layers

f the networks. Finally, owing to such regularization techniques,

t became possible to obtain the absolute additive in the test accu-

acy of the synthetic images, at about 7 − 9% on average. 

. Approach verification on experimental data 

.1. Experimental conditions and the measurement system 

We tested NNs on a free gas-saturated axisymmetric jet flow

hat was reproduced in a hydrodynamic rig in the Kutateladze In-

titute of Thermophysics SB RAS. Its description, along with the

nformation on all instrumentation used to control flow parame-

ers is available in Alekseenko et al., 2015 ) and Pervunin and Tim-

shevskiy (2016 ). The temperature of the operating liquid (distilled

ater) was kept constant at 30 ± 0.1 °C. The bubbly upward jet

as formed by a round converging nozzle of 100 mm height with

n inner diameter at its outlet D N = 20 mm. The contraction ratio

f the nozzle (i.e., the ratio of its inlet and outlet cross-section ar-
ut size Output size Parameters (x10 3 ) 

00 1 ~175 

00 625 ~270 

00 2500 ~584 
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Fig. 10. Example of the experimental images processed by the autoencoder. 

Fig. 11. Examples of original PFBI/PIV images of the free axisymmetric bubbly jet for different air volume fractions βexp = (a) 0.5%, (b) 1.0%, (c) 1.5%, (d) 2% and (e) 2.5%. For 

the flow regime corresponding to mark (a), we show the whole field of the flow under investigation for clarity, whereas, for the flow conditions with marks (b–e), merely 

half-images are provided as, hereinafter, only the left-hand sides of these flows are analyzed in detail because of the jet symmetry. 
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as) was 9. In order to saturate the flow with air bubbles of close-

o-monodisperse size distribution, an air-water mixer of a special

onstruction was utilized ( Timkin and Gorelik, 2009 ). 

The length of a stainless-steel pipe, with a 20 mm inner diam-

ter between the mixer outlet and nozzle inlet, was 0.57 m. Dif-

erent air-water flow-rate ratios (or air volume fractions) βexp =
 A / ( Q W 

+ Q A ) , where Q A and Q W 

are volume flow rates of the

upplied air and distilled water (measurement error within 2%),

ere achieved by changing Q A using a fine-tuning needle valve.

he experiments were carried out for βexp = 0, 0.5, 1, 1.5, 2

nd 2.5%. The mean diameter of air bubbles D B was estimated

o be approximately 1 mm for all βexp . The Reynolds number

ased on D N and the superficial air-water mixture velocity V 0 =
 · ( Q W 

+ Q A ) / ( π · D 

2 
N 
) = 0 . 5 m/s was equal to Re = 12 , 500 for the

ne-phase flow ( Q W 

= 9.32 l/min, Q A = 0 std. l/min) and 13,0 0 0

hen βexp = 2 . 5% ( Q W 

= 9.32 l/min, Q A = 0.46 std. l/min). To

alidate the bubble identification procedure ( Section 4 ), we con-

idered only an initial region of the free jet limited to a distance

f the double nozzle diameter (2 D N ) downstream from the nozzle

dge ( Fig. 11 a). 

In order to implement the planar fluorescence for bubbles

maging (PFBI) approach ( Akhmetbekov et al., 2010 ; Dulin et al.,

012 ) together with a PIV technique, Rhodamine 6G was used as a

uorescent dyeand fluorescent PMMA seeding particles filled with

hodamine B (fraction 1–20 μm) of Microparticles GmbH produc-

ion were premixed into the operating liquid. The concentration

f Rhodamine 6G was quite low (about 20 μg/l), so the water
roperties (especially its viscosity and surface tension) could be

onsidered unchanged. A PIV-system with a high spatial resolu-

ion consisting of a double-pulse Nd:YAG Quantel EVG0 020 0 laser

wavelength 532 nm, repetition rate 15 Hz, pulse duration 10 ns,

ulse energy 200 mJ), an IMPERX IGV-B4820M CCD-camera (digit

apacity 16 bits, resolution 4904 × 3280 pixels, acquisition rate

 Hz) equipped with a Sigma DG Macro 105 mm 1:2.8 lens and a

ow-pass optical filter (transmission edge at 570 nm) and a POLIS

ulse/delay generator for external synchronization were employed

o illuminate and register bubbles and tracer particles suspended

n the flow simultaneously in the same image. 

A laser light sheet was formed by an optical head (divergence

ngle 7 °, focal distance from 0.3 to 1.5 m) containing a cylindri-

al lens with antireflection coating for the 532 nm wavelength.

he thickness of the laser sheet was approximately 1 mm in the

egion of interest. The distance between the camera matrix and

he measurement section that intersected the jet axis of symme-

ry was 437 mm, and the one from the laser optical head to the

et axis of symmetry was about 410 mm. The optical magnifi-

ation of the measurement system equaled 0.48. The actual size

f registered images was 3960 × 3080 pixels, but the processed

mage domain was subsequently reduced to 2640 × 3080 pixels,

hich corresponded to a 40.56 × 47.32 mm area in space (e.g.,

ig. 11 a), to shorten processing time, discarding those image parts

here bubbles were absent. The measurements were performed at

 sampling rate of 2 Hz. For each flow regime on βexp (apart from

exp = 0%), 10 0 0 0 PFBI/PIV image pairs were gathered continu-
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Table 5 

Average processing time of the experimental image, 

sec. 

Algorithm βexp = 0 . 5% βexp = 2 . 5% 

NNs 5.2 6.3 

Correlation method 38 24 

Fig. 12. Illustration of processing a part of the experimental image with the original 

gas content βexp = 2 . 5% . Left: correlation method. Right: NNs-based approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Dependence of the average number of bubbles in one frame N f rame for 

NNs and the correlation method for different values of the experimental gas con- 

tent. Errors are estimated depending on the approximate number of misclassi- 

fied/unrecognized bubbles. 

a  

1  

f  

p

 

c  

�  

j  

(  

g  

c  

b

α

α
 

w  

a  

h  

t  

a  

T  

w  

s  

l  

t

 

F

 

i  

t  

t  

g  

s  

f

 

t

 

d  
ously during 50 0 0 s. For βexp = 0%, half of the series (i.e., 50 0 0

image pairs) was regarded to be sufficient and the total acquisition

time was, thereby, reduced to 2500 s. 

6.2. Performance comparison of neural networks and the correlation 

method 

For all numerical calculations, the following hardware was

used: 

• NNs. CPU: AMD Opteron Processor 6168 1.9 GHz; GPU: Nvidia

GeForce GTX Titan 

• Correlation algorithm . CPU: Intel Core i7-3970X 3.5 GHz 

The experiments have shown that the overall increase in effi-

cacy is about 6 to 8 times ( Table 5 ). It is worth noting that, in the

single-threaded mode on a single CPU core, the correlation method

spends, on average, 30–35 s per image, whereas all three NN joint

execution time does not exceed 5 to 6 s while utilizing a GPU. 

An example of the joint operation of all three final NN archi-

tectures is shown in Fig. 12 . Fig. 13 illustrates the average number

of the bubbles found in the entire frame by both methods. As the

experiment has shown, the correlation algorithm finds, on average,

half the bubbles within the entire possible range of bubble sizes. 

Moreover, it was determined that on average, the left part of

the area of the jet contains 1.2–1.3 times more bubbles than the

right one. This stems from the fact that the laser light was scat-

tered during the movement and flowed, losing intensity, making

the conditions for identifying bubbles less suitable. Therefore, for

further statistics collection, only the information from the left half

of the jet was used. For all the data presented below, the image of

the jet is mirrored relative to the central vertical axis. 

During the calculations, data on the bubble size distribution ob-

tained by both methods for different gas contents were also ob-

tained ( Fig. 14 ). 

It was discovered that the average value of the bubble diame-

ter was about 1.01 and 1.12 mm for the NNs and the correlation
lgorithm, respectively. Both these values are close enough to the

 mm that was originally specified during the experiment. There-

ore, the calculated diameter fluctuated within ± 5–6% for all five

ossible gas contents used during the experiments. 

Additionally, various gas content profiles and distributions were

alculated, using the following approach. Let us assume, that

V gas [ i, j ] is the bubble volume inside corresponding to the ( i,

 )th pixel with a fixed area S = 1p x 2 . H is the laser sheet depth

 Fig. 15 ). Then, the local gas content for every pixel α[ i, j ], local

as content averaged along the i -th axis 〈 α〉 I , and the average gas

ontent in the three-dimensional region for the I-section 〈 α〉 I can

e averaged for N given images and estimated as follows: 

[ i, j ] = 

�V gas [ i, j ] 
H·S N 

; αi = 

∑ 

X 

�V gas [ i, j ] 
H·S N 

· 1 
max x i 

;

I = 

∑ 

x ∈ I 

∑ 

y ∈ I 
�V gas [ x i , y i ] 

H·S N 
· 1 

max 
x ∈ I 

x ·max 
y ∈ I 

y 
; βcalc = αX 

(4)

here, βcalc is the estimation of the real βexp value, given by

veraging 〈 α〉 inside the cylindrical region X above the nozzle. The

eight and diameter of this cylinder were chosen to be equal to

he diameter of the nozzle D N . In this approach, we assume that

ll bubbles which participate in the gas content are independent.

hus, it is required to correspondingly process the pixels which

ere considered more than once (i.e., overlapping volumes). To do

o, during the gas content calculation, each pixel accumulated the

ocal gas content, so that ultimately this value was truncated by

he laser sheet depth H . 

Some examples of the calculations using (4) are shown in

ig. 16 . 

As it can be seen from these gas content distributions, bubbles

n the jet have a feature of forming the clusters on the edges of

he nozzle, which later spread upstream. This figure also illustrates

he gas content profiles along three different sections. The average

as content 〈 αι〉 Z values are preserved similarly, from section to

ection (with a certain degree of accuracy ±6%). This confirms the

ulfillment of the mass conservation law along the jet. 

The gas content was also averaged over the radial direction of

he flow. This value 〈 α〉 r is shown in Fig. 17 . 

We should note that the precision of the gas content estimation

epends on the number of analyzed images. Fig. 16 (right) illus-
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Fig. 14. Distribution of the bubble diameter obtained by processing 500 pairs of the experimental images with βexp = 0 . 5% by the NNs (left) and the correlation algorithm 

(right). 
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rates the comparison of the profiles of 〈 α〉 r for βexp = 2% , calcu-

ated for 500 and 1250 pairs of images, respectively. Such behavior

f NNs indicate that the analyzed images number increase signif-

cantly, contributing to the edge effects leveling off that is associ-

ted with the PFBI approach peculiarity. 

Obtained two-dimensional gas content maps ᾱ were also used

o calculate the average gas content values βcalc in the cylindrical

egion above the nozzle, using (4). These calculations also take into

ccount the bubble size determination inaccuracy (see Section 7 ).

or both the correlation method and NNs, the same depth of the

veraging H was used ( Fig. 15 ). This parameter might be assumed

s the ratio coefficient that considers the constant portion of those

ubbles which were not included in the gas content calculations.

he results of these calculations are shown in Fig. 18 . According to

he obtained data, for H ≈ 3.2mm, both methods provide the most

ccurate estimations of the average gas content, βcalc . This averag-

ng depth is in good agreement with the fact that there may be

ecognized overlapping bubbles located at different depths relative

o the laser sheet plane (see Fig. 14 ). 
Fig. 16. Two-dimensional map of local relative gas content ᾱ (left) and profile
The obtained results are in good agreement with the estimates

f the average number of bubbles recognized in the image (see

ig. 13 ). NNs provide a slight overvalue for most gas content values.

his is due to the presence of some number of false positives, that

s, some areas of the image were mistakenly regarded as bubbles.

evertheless, for gas content βexp of two or more percent, the ef-

ect of overvaluing is leveled due to too many bubbles overlapping

ach other, making themselves difficult to distinguish. Moreover,

he final calculations presented in Fig. 18 clearly indicate a system-

tic underestimation of the gas content obtained by the correlation

ethod, in fact, for all experiments that were carried out. 

. Approach constraints 

The final algorithm of bubble pattern recognition chosen in this

esearch (see Section 4 ) does not pretend to be the most accu-

ate approach, because it can be definitely refined. Furthermore,

he bubble center recognition precision can be improved by gen-

rating more varied and realistic data, for example, having added
s of gas content for different sections I, II and III (right). NNs, βexp = 2% . 
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Fig. 15. Illustration of the averaging scheme (4). Bubbles located outside of the 

laser sheet are not taken into account in the gas content estimation and shown 

in white, whereas the ones which are inside are in black. Bubbles which cross the 

laser sheet borders are marked by the dotted boundary. 
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elliptical arcs as the separate training examples. It is worth empha-

sizing that all steps of Algorithms 1 –4 were chosen after having

performed a lot of evaluation experiments. Besides, different other

approaches were considered as the alternative options for some of

the steps. For instance, to determine bubble sizes, the nonlinear

least squares method and its modifications were probed as well as

the Hough tra nsform or even CNN. 

It is important to note that the key limitation at this moment in

the general developed approach is the relative complexity of set-

ting the range of variation of bubble sizes in the images. In or-

der to change this configuration, it is necessary to regenerate the

training set with the new parameters and the sizes of the input

windows that the speed of the NN operations depend on. How-

ever, perhaps the existing approach can be modified to solve this

problem, in the sense that the window scanning of the original im-

age (see Algorithm 1 ) can be automatically scaled, depending on

the size of the bubble getting into it. This will eliminate the need

to change the training set due to the variation in the sizes of the

bubbles. 
Fig. 17. Left: Distributions 〈 α〉 r for different βexp . Regions shown in gray (from z/ D N = 0

due to the edge effects. The dotted lines correspond to the gas distribution values 〈 α〉 r 
depending on the number of processed image pairs. RMS σ values for the averaged 〈 α〉
image number. 
It is also worth noting that in the future, it is necessary to im-

rove the methodology for calculating the gas content to take into

ccount the contribution of coalescence of the bubbles more ac-

urately. It is required to properly tackle the variety of the bubble

urvature participating in coalescence and their relative depth lo-

ation. 

. Error analysis 

In this section we discuss the errors associated with the algo-

ithm of the bubble recognition. Accuracy of the calculated vol-

me of gas fraction depends upon the accuracy of the obtained

alues of the bubble sizes and the coordinates of their centers. In

he present paper the discretization step for the mentioned quan-

ities equals 1.0 pixel. Actually this step can be set arbitrarily small

fraction of the pixel) for the bubbles size. However, the smaller

he step, the longer the operation time of the size determination

lgorithm is. It should be noted that, when counting the volume of

as fraction, the bubbles are considered as spheres, although it is

ot always the case. Referring to the local gas volume for a spher-

cal bubble from (4) , it is calculated according to the following

ormula: �V gas [ i, j ] = 2 S 

√ 

r 2 
B 

− ( i − x 0 ) 
2 − ( j − y 0 ) 

2 
, where r B , x 0 , y 0 

re known with absolute inaccuracy of 1 pixel. It can be shown

hat the approximate absolute accuracy for �V gas [ i, j ] is a sum of

he absolute accuracies for r B , x 0 and y 0 . The region with minimal

elative accuracy is located at the center of the bubble, having ap-

roximately 3/40 or 7.5% for our case. The worst relative accuracy

or the local gas volume �V gas will be at the rim of a bubble, and

t can reach 100% or more for the transient or instantaneous gas

ontent distribution. The above reasoning presumes that one has

ound all the bubbles at the right places, which is unlikely, so one

eeds to consider the detection accuracy separately while dealing

ith the average gas content. It is known that during the calcula-

ion of the mean quantities, an uncertainty decreases 
√ 

N times.

his means that the gas content relative accuracy at the rim of

he bubbles can be decreased to the reasonable values of several

ercentages, using 10,0 0 0 images for the calculation of the mean

uantities. 

In this study, we assume that the number of coalesced bubbles

s very small and, therefore, all overlapping bubbles that are in-

olved in the gas content calculation are separated. This, of course,

egatively affects the overall precision of the gas content calcula-

ion because some overlapping bubbles are actually involved in the

oalescence, although this effect is regarded as neglectable com-
 to 0.35 and from z/ D N = 1 . 8 to 2.25) were not included in the calculation of βcalc 

averaged over the region shown in white. Right: Distributions 〈 α〉 r for βexp = 2% , 

 r distributions are shown to illustrate the error decrease with the increase of the 
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Fig. 18. Comparison of the methods: Values of the calculated average gas content over the nozzle. β∗
calc 

and βcalc - calculated average gas content values with different 

depths of averaging. βexp is the real gas content in the pipe. 
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ared to other errors given by the inaccuracy of the bubble po-

ition and size determination. Thus, in some cases, the gas con-

ent can be overestimated, but the probability of such a situation

s quite low. This is due to the overall homogeneity of the studied

ubbly jets. Specifically, bubbles are typically strongly deformed

efore their coalescence and neighboring bubbles, at the moment

hereupon they coalesce, are not highlighted brightly enough in

FBI images to be recognized by the algorithms. 

Another important factor that has a great impact on the gas

ontent estimation uncertainty is the bubble recognition error. A

uman-evaluated NN-based approach showed that bubble recogni-

ion accuracy on the real data drops from 95% to 86% for βexp =
 . 5% and βexp = 2 . 5% , respectively. In total, all discussed factors to-

ether lead to the 10 − 20% error in the estimation of the actual

as content value βcalc , calculated near the nozzle. These errors are

epicted in Figs. 13 and 18 . 

. Conclusions 

This study demonstrates that modern computational tech-

iques, drawn from machine learning, can be successfully applied

o the analysis of physical data. The key result of this research is

 ready-to-use software package that utilizes a newly developed

eural network (NN)-based multi-step algorithm for bubble pat-

erns recognition. Several numerical experiments allowed us to de-

ermine optimal NN architectures for performing specific tasks. For

nstance, it was found that convolutional neural networks (CNNs)

re better suited for the problem of classifying bubbles and de-

ermining their geometrical centers, while multilayer perceptron

MLP) functions are better for the task of removing noise from im-

ges. 

The proposed approach was thoroughly tested on real experi-

ental data to evaluate local gas content in a turbulent bubbly jet,

ith volume air fractions varied from 0% to 2.5%. The new algo-

ithm is shown to allow detecting bubbles with a 20% higher pre-

ision for a noticeably shorter period (6–8 times less) compared

o the correlation-based algorithm ( Akhmetbekov et al., 2010 ). The

rocessing time of an 8-megapixel image using the developed al-

orithm is only several seconds on a GPU-equipped standard office

C. Furthermore, the new bubble-detection algorithm is proved to

e robust to deviations of the bubble shape from circularity. 

Additionally, in this study, we developed an automatic method

or the generation of realistic synthetic data based on typical

FBI/PIV images, which was used to train all NNs. This procedure
ade the data processing pipeline adaptable to various experimen-

al conditions, with a much wider range of possible volume gas

ractions. According to the performed tests, the new algorithm de-

ects two times as many bubbles as the bubble mask correlation

lgorithm in the same images for the considered range of volume

as fractions from 0% to 2.5%. 

The errors introduced by various components of the developed

lgorithm were also analyzed. The estimation uncertainty of inte-

ral volume gas fractions in the near-to-nozzle region and close

o the edge of the measurement area is considered to be equal to

0–20%. In order to enhance the volume gas fraction estimation,

ore sophisticated algorithms to identify highly overlapping and

artially illuminated bubble patterns should be employed. Finally,

his study opens new opportunities for further improving bubble

etection methods using more advanced architectures of NNs. This

ill facilitate an analysis of complex gas-liquid two-phase flows,

aking it possible to find ways to control momentum and mass

ransfer. 
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