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ABSTRACT
“How to learn image embeddings that capture fine-grained seman-
tics based on the instance of an image?” “Is it possible for such em-
beddings to further understand image semantics closer to humans’
perception?” In this paper, we present, Graph-Regularized Image
Semantic Embedding (Graph-RISE), a web-scale neural graph learn-
ing framework deployed at Google, which allows us to train image
embeddings to discriminate an unprecedented O(40M) ultra-fine-
grained semantic labels. The proposed Graph-RISE outperforms
state-of-the-art image embedding algorithms on several evaluation
tasks, including kNN search and triplet ranking: the accuracy is
improved by approximately 2X on the ImageNet dataset and by
more than 5X on the iNaturalist dataset. Qualitatively, image re-
trieval from one billion images based on the proposed Graph-RISE
effectively captures semantics and, compared to the state-of-the-art,
differentiates nuances at levels that are closer to human-perception.
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• Computing methodologies → Image representations; • In-
formation systems→ Web searching and information discovery;
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1 INTRODUCTION
Learning image embeddings that capture fine-grained semantics is
the core of many modern image-related applications such as image
search, either querying by traditional keywords or by an example
query image [14]. Albeit its importance, learning such embeddings
is a challenging task, partly due to the large variations seen among
images that belong to the same category or class.
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Figure 1: Spectrumof image semantic similarity.We provide
six image examples (two for each granularity) to illustrate
the difference from coarser (left) to ultra-fine granularity
(right). We refer to ultra fine-grained as “instance-level” to
contrast with category-level and fine-grained semantics.

Several previous works consider category-level image semantics
[9, 26], in which two images are considered semantically similar
if they belong to the same category. As illustrated in Figure 1,
category-level similarity may not be sufficient for modern vision-
based applications such as query-by-image, which often require
the distinction of nuances among images within the same category.

Recently, deep ranking models [29, 30] have been proposed
to learn fine-grained image similarity. These ranking models are
trained with image triplets, where each entry contains {query image,
positive image, negative image}. The goal is to rank (query, positive
image) as more similar than (query, negative image); this train-
ing formulation can encode distinctions that are as fine-grained
as the construction of the triplets allows. In practice, however, it
becomes increasingly difficult to generate a large corpus of triplets
that encode sufficiently fine-grained distinctions by ensuring the
negative image is similar enough to the query image, but not too
similar. Furthermore, since human raters need to be involved to
provide the triplet ranking ground truth, collecting high quality
image triplets for training is costly and labor-intensive. We instead
propose moving from triplet learning to a classification framework
that learns embeddings capable of associating an image to one of a
large number of possible query strings.

Such an approach produces image embeddings that are predic-
tive of queries that might lead to the image. In addition, we also
obtain similarity data between the images themselves, encoding for
example the fact that two images were both clicked in a particular
setting. This relational data encodes important aspects of human
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image perception but is not easily encapsulated by labels (i.e., image-
label pairs for training). To incorporate image-image similarity into
the training we employ neural graph learning, in which the model
is trained by minimizing the supervised loss combined with a graph
regularizer that drives the model to reduce embedding distance
between similar image pairs.

To the best of our knowledge, this work brings the following
contributions:

• Effective embedding learning via large scale classifica-
tion. We formulate the problem of image embedding learn-
ing as an image classification task at an unprecedented scale,
with label space (i.e., total number of classes) in O(40M) and
the number of images in O(260M). This is the largest scale
in terms of number of classes, and one of the largest in terms
of images used for learning image embeddings. Furthermore,
the proposed model is one of the largest vision models
in terms of the number of parameters (see Section 5.1 and
Section 5.2). No previous literature has demonstrated the
effectiveness of such a large-scale image classification for
learning image representation.

• Neural graph learning on image representation. We
propose a neural graph learning framework that leverages
graph structure to regularize the training of deep neural
networks. This is the first work deploying large-scale neural
graph learning for image representation. We will describe be-
low two techniques to construct image-image graphs based
on “co-click” rate and “similar-image click” rate, designed to
capture ultra-fine-grained notions of similarity that emerge
from human perception of result sets.

• Graph-RISE for instance-level semantics. We present
a deployed framework at Google: Graph-RISE, an image
embedding that captures ultra-fine-grained, instance-level
semantics. Graph-RISE outperforms the state-of-the-art algo-
rithms for learning image embeddings on several evaluations
based on k-Nearest-Neighbor (kNN) search and triplet rank-
ing. Experimental results show that Graph-RISE improves
the Top-1 accuracy of the kNN evaluation by approximately
2X on the ImageNet dataset and by more than 5X on the
iNaturalist dataset. Case studies also show that, qualitatively,
Graph-RISE outperforms the state of the art and captures
instance-level semantics.

The remainder of this paper is organized as follows. Section 2
provides related work on learning image embeddings. Section 3
formulates the problem and provides the details of training datasets.
Section 4 explains the proposed learning algorithms, followed by
Section 5 with the details of network architecture and training in-
frastructure. Section 6 shows the experimental results and Section 7
concludes this paper.

2 RELATEDWORK
There are several prior works on learning image similarity [8, 26, 28].
Most of them focus on category-level image similarity, in which
two images are considered to be similar if they belong to the same
category. In general, visual and semantic similarities tend to be
consistent with each other across category boundaries [6]. Visual

variability within a semantically-defined category still exists, es-
pecially for broadly defined categories such as “animal,” or “plant,”
as a result of the broad semantic distinctions within such classes.
As classes become finer grained, however, the visual distinctions
within a class due to natural variations in image capture (angle,
lighting, background, etc) become larger relative to the fine dis-
tinctions between classes that are semantically closer; hence, new
techniques are required.

For learning fine-grained image similarity, local distance learning
[7] and OASIS [5] developed ranking models based on hand-crafted
features, trained with triplets wherein each entry contains {query
image, positive image, negative image} that characterizes the rank-
ing orders based on relative similarity. In [29], a DeepRankingmodel
that integrates the deep learning and ranking model is proposed to
learn a fine-grained image similarity ranking model directly from
images, rather than from hand-crafted features. As discussed above,
while these ranking models have been widely used for learning
image embeddings, the model performance relies heavily on the
quality of triplet samples, which involves pair-wise comparisons
that can be costly and labor-intensive to collect. As we will show
later in Section 3 and Section 6, Graph-RISE does not require models
to be trained by triplets and outperforms the state-of-the-art on
capturing image semantics for several evaluation tasks.

There has also been a significant amount of work on improving
image classification to near-human levels [18] by increasing the
representational capacity and the depth of network architectures.
See, e.g., VGG-19 [20], Inception [25], and ResNet [10]. To support
learning such deep networks with millions of parameters, large-
scale datasets such as ImageNet [13], iNaturalist [27] and YouTube-
8M [2] have played a crucial role. For example, the authors of [15]
demonstrate that the rich mid-level image features learned by Con-
volutional Neural Networks (CNNs) on ImageNet can be efficiently
transferred to other visual recognition tasks with limited amount of
training data. Their study suggests that the number of images and
the coverage of classes for training in the source task are important
for the performance in the target task. In [22], the authors reveal a
logarithmic relationship between the performance on vision tasks
and the amount of training data used for representation learning.
In this paper, we share the same observation and further show that
when increasing the number of classes to O(40M) with sufficient
amount of training data, the purposed Graph-RISE is able to capture
instance-level, ultra-fine-grained semantics.

3 PROBLEM FORMULATION
In this section, we formulate the task of learning an image embed-
ding model, and then provide the details of training dataset used
for this task.

Problem Formulation. Given the following inputs:
• A labeled setDL that contains image-label pairs (x ,y), where
label y provides ultra-fine-grained semantics to the corre-
sponding image x .

• An unlabeled set DU that contains images without labels.
The objective is to find an image embedding model that achieves
instance-level semantic understanding. Specifically, let ϕ(·) repre-
sent a function that projects an image to a dense vector representing
an embedding; given two images x1 and x2, the similarity in the
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Table 1: List of symbols.

Symbol Definition and description
(x, y) Image-label pair
DL , DU Labeled dataset, unlabeled dataset
K Total number of classes
E Set of edges
wu,v Edge weight
η Margin for triplet distance
ϕ(·) Embedding mapping function
d (·) Distance function
p(·), q(·) Probability and ground-truth distribution
L(·) Loss function
Ω(·) Graph regularizer
θ Model parameters

golden gate bridge

lamborghini aventador red taipei 101 at night

green salad with prawn

white husky puppy flowers mauritius

Figure 2: Six potential samples of image-query pairs. Each
image is labeled with the corresponding textual search
query.

image embedding space is defined according to a distance metric:
d(ϕ(x1),ϕ(x2)), where d(·) is a distance function (e.g., Euclidean
distance or cosine distance). If x1 and x2 belong to the same class,
an ideal ϕ(·) minimizes the distance between ϕ(x1) and ϕ(x2), indi-
cating these two images to be semantically similar. Table 1 provides
the symbols and the corresponding definitions used throughout
this paper.

Dataset. In order to achieve instance-level semantic understand-
ing, the classes should be ultra-fine-grained. Thus, we created a
training dataset DL derived from Google Image Search. It contains
approximately 260 million images; selection data are used to char-
acterize how frequently anonymous users selected an image when
that image appeared in the results of a particular textual search
query. After the characterization, a search query is then treated
as the “label” annotated to the corresponding image to provide
semantics as labeled samples. Each image is labeled with one or
more queries (2.55 queries per image on average), and the total
number of unique queries (used as classes) is around forty million.
Figure 2 illustrates six potential image-query pairs1. To the best of

1In this paper, “image-query pairs” and “image-label pairs” are used interchangeably
since queries are used as labels.

our knowledge, this is the largest scale of training data for learning
image embedding in terms of the number of classes2, and one of
the largest in terms of the number of training images [19, 22, 29].

Unlabeled datasetDU contains approximately 20 million images,
without any annotation or labeling. Unlabeled dataset is mainly for
constructing similarity graphs (see Section 4.2) and for evaluation
purposes (see Section 6.1).

4 LEARNING ALGORITHMS
In this section, we first introduce the algorithm that takes image-
query pairs as training data in a supervised learning manner. Then
we elaborate on neural graph learning, a methodology incorporat-
ing graph signals into the learning algorithm.

4.1 Discriminative Embedding Learning
From triplet loss to softmax loss. In order to train image em-

bedding models, metric learning objectives (such as contrastive
loss [9, 23] and triplet loss [29]), and classification objectives (such
as logistic loss and softmax loss) have been widely explored. When
using metric learning objectives, collecting high quality samples
(e.g., triplets) is often challenging. Furthermore, optimizing metric
learning objectives suffers from slow convergence or poor local op-
tima if sampling techniques are inappropriately applied [21, 30]. In
order to achieve instance-level semantic understanding, we employ
softmax loss for training the image embedding model. When the
size of classes is sufficiently large, O(40M) in our case, classification
training (with softmax loss) works better than triplet loss [29].

For each training example x , the probability of each label k ∈

{1, . . . ,K} in our model is computed via softmax:

p(k |x) =
exp{zk }∑K
i=1 exp{zi }

(1)

where zi are the logits or unnormalized log probabilities. Here, the
zi are computed by adding a fully connected layer on top of the
image embeddings, i.e., zi = WT

i ϕ(x) + bi , whereWi and bi are
weights and bias for target label, respectively. Let q(k |x) denote
the ground-truth distribution over classes for this training example
such that

∑K
i=k q(k |x) = 1. As one image may have multiple ground-

truth labels, q(k |x) is uniformly distributed to the ground-truth
labels. The cross-entropy loss for the example is computed as:

ℓ = −

K∑
k=1

loд(p(k |x))q(k |x) (2)

While softmax loss works well when the number of classes is
not large (say 10K or 100K), several challenges arise if the number
of classes is increased to millions or even billions. First, the com-
putational complexity involved in computing the normalization
constant of the target class probability p(k |x) is prohibitively ex-
pensive [3, 11]. Second, as the training objective encourages the
logits corresponding to the ground-truth labels to be larger than all
other logits, the model may learn to assign full probability to the
ground-truth labels for each training example. This would result in
over-fitting and make the model fail to generalize [25].

2In prior arts (such as [29]), the training dataset contains up to O(15M ) samples with
O(100K ) classes.
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Figure 3: An illustration of a graph-regularized neural network. The image similarity subgraph of a training image xu (with
the ground-truth labels yu ) is factorized into image-image pairs, where the neighbor image xv is semantically similar to xu .
The training objective consists of both the supervised loss L and the graph regularization Ω; minimizing Ω drives the distance
between the embeddings of similar images—ϕ(xu ) and ϕ(xv )—to be minimized, which means the neural network is trained to
encode the local structure of a graph.

Instead of computing the normalization constant for all the
classes, we sample a small subset of the target vocabulary L ∈

{1, . . . ,K} to compute the normalization constant in p(k |x) for
each parameter update. Then, the target label probability can be
computed as:

p′(k |x) =
exp{zk }∑
i ∈L exp{zi }

(3)

which leads to much lower computational complexity and allows
us to efficiently use Tensor Processing Units (TPUs) [12] to train
this deep image embedding model with sampled softmax.

Furthermore, to discourage the model from assigning full prob-
ability to the ground-truth labels (and therefore becoming prone
to over-fitting), we follow [25] to “smooth” the label distribution
by replacing the label distribution with a mixture of the original
ground-truth distribution q(k |x) and the fixed distribution u(k):

q′(k |x) = (1 − ϵ)q(k |x) + ϵu(k) (4)

where u(k) is a uniform distribution over the sampled vocabulary
u(k) = 1

|L | , and ϵ is a smoothing parameter.
Finally, the discriminative objective for training the neural net-

work can be defined as the cross-entropy of the target label proba-
bility on the sampled subset and the smoothed ground-truth distri-
bution:

L(θ ) = −
∑

xi ∈DL

∑
k ∈Li

loд(p′(k |xi ))q
′(k |xi ) (5)

where θ denotes the neural network parameters. The ground-truth
labels of xi are always selected within the sampled labels Li . In our
experiments, we randomly sample 100K classes for each training
instance and ϵ is selected to be 0.1.

4.2 Neural Graph Learning
While the discriminative objective indeed paves the way to learn-
ing an image representation that captures fine-grained semantics,
there is more information available in human interactions with
images. Many of these additional data sources can be represented
as graphs (such as image-image co-occurrence), and yet current

vision models (e.g., ResNet) cannot consume such graphs as in-
puts. Thus, we propose to train the network using graph structure
about the relationships among images. In particular, images that
are more strongly connected in the graph should reflect stronger
semantic similarity based on user feedback (see Section 4.3 for the
details of graph construction), and should be closer in the embed-
ding space. To achieve this goal, we deploy graph regularization [4]
to train the neural network for encouraging neighboring images
(from the graph) to lie closer in the embedding space. The final
graph-regularized objective is the sum of the discriminative loss
and the graph regularization:

R(θ ) = L(θ ) + α
∑

(u,v)∈E

wu,vd
(
ϕ(xu ),ϕ(xv )

)
︸                                ︷︷                                ︸

Ω(θ )

(6)

where Ω(θ ) denotes the graph regularizer, E represents a set of
edges between images,wu,v represents the edge weight between
image u and v , ϕ(·) is the representation extracted from the embed-
ding layer3, d(·) is the distance metric function, and α ≥ 0 is the
multiplier (applied on regularization) that controls the trade-off be-
tween the discriminative loss and the regularization induced from
the graph structure. An illustration of the graph-regularized neural
network is given in Figure 3.

The multiplier α (applied on regularization) controls the balance
between the discriminative information (i.e., predictive power) and
the contributions of the graph structure (i.e., encoding power). In
other words, the neural network is trained to both (a) make accurate
classification (or prediction), and (b) encode the graph structure.
When α = 0, the proposed objective ignores the graph regular-
ization and degenerates to a neural network with only supervised
objective in Eq. (5). On the other hand, when p′(x) = ϕ(x), where
p′(x) is the predicted label distribution, we have a label propaga-
tion objective as in [17] by training with the objective using p′(x)
directly without parameters θ (i.e., no neural network involved),

3In general, the embedding layer refers to the layer right before the softmax layer.
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and letting the distance function d(·) and the loss function ℓ(·) to
be mean squared errors (MSE). The label propagation objective en-
courages the learned label distribution p′(x) of similar images to be
close. Furthermore, the label distribution of a sample is aggregated
from its neighbors to adjust its own distribution. Thus, the proposed
objective in Eq. (6) could be viewed as a “graph-regularized version
of neural network objective” or as a “non-linear version of label
propagation.”

4.3 Graph Construction
In this section, we provide the details for constructing graphs used
by the regularizer Ω(θ ) in Eq. (6). In addition to image-query pairs
(described in Section 3) where images are annotated by queries
for obtaining semantics, we propose to find “image-image” pairs
where the semantics shared by these two images are closer to
human perception and beyond textual search queries. Each image
is treated as a “vertex” and an image-image pair is treated as an
“edge,” together forming a graph that can be included as ancillary
training data.

Specifically, each image-image pair contains one source vertex
xu ∈ DL and one target vertex xu ∈ {DL

⋃
DU }. In this work, we

introduce two methods to construct edges: (a) based on co-click rate
of the image pair, and (b) based on similar-image click rate of the
image pair. The co-click rate of the image pair characterizes how
often users select both the source image xu and the target image
xv in response to both xu and xv being concurrently identified
by search results from a textual search query. This type of image-
image relationship sheds light on the question: “Given that one
image is selected from the resulting images, what other images that
are sufficiently similar will also be selected?” If the co-click rate
between xu and xv is higher than a pre-defined threshold, xu and
xv are considered to be sufficiently similar and an edge between
them is constructed; the edge weightwu,v is calculated based on
the co-click rate. Then xu and xv will be used for calculating the
graph regularization Ω(θ ) in Eq. (6).

Different from the co-click rate, the similar-image click rate
of the image pair characterizes how often users select the source
image xu in response to xu being identified by a search result
for a search query using the target image xv (instead of a textual
query). This type of image-image relationship sheds the light upon
the question: “Given an image issued as the query, what other
images that are sufficiently similar will be selected in response to
the query image?” Similar with how edges are constructed based
on the co-click rate, if the similar-image click between xu and xv is
higher than a pre-defined threshold, xu and xv are considered to be
sufficiently similar and an edge between them is constructed. Edge
weightwu,v is calculated based on the similar-image click rate.

5 TRAINING FRAMEWORK
In this section, we provide the details of network architecture and
training infrastructure along with the configurations we used in
this work.

5.1 Network Architecture
Figure 4 illustrates the proposed network architecture. The main
model is the 101-layer ResNet (referred as ResNet-101) [10]. Com-
pared to Inception [24], ResNet-101 has larger model capacity,
which yields more than 2% of performance improvement on our
internal metric for embedding evaluation. While the major archi-
tecture of ResNet-101 remains unchanged, several detailed config-
urations have been modified. The input layer is modified to take
enlarged input images from 224×224 to 289×289 pixels. The out-
put 10×10×2K feature map is first avg pooled to 4×4×2K using
a 4×4 kernel of stride 2, and then flattened and projected to 64-
dimensional layer representing image embeddings. The activation
function is ReLU-64. Finally, a softmax layer is added to produce a
multinomial distribution across 40 million classes (e.g., queries).

During training, both training samples and their neighbors pro-
vided from graphs (described in Section 4.3) are fed into the model
for enabling graph regularization; the 64-dimensional embedding
layer is selected as the target layer to be regularized as described
in Eq. (6). Furthermore, 100K out of 40 millions labels are sampled
via an important sampling technique [3] for each parameter update
Eq. (3). Finally, batch normalization is applied during training.

During the inference phase, a 64-dimensional L2 normalized em-
bedding 5 is generated for each input image as a new, semantically-
meaningful representation. Note that neighbors and graph regu-
larization is not required when making inference (see the flow in
red in Figure 4). In addition to the embedding, the queries with the
top-k predicted probabilities are also outputted. Since the focus of
this paper is image embedding, the output queries will largely be
ignored in the rest of this paper.

5.2 Training Infrastructure
We implement the network architecture described in Section 5.1
using TensorFlow[1]. The details of training configurations are
as follows. We select the batch size to be 24, and the momentum
[16] as the optimizer; the initial learning rate is 0.001 and will be
decayed with an exponential rate of 0.9 every 100,000 steps. The
label smoothing ϵ is 0.1. The multiplier for applying L2 regulariza-
tion (a.k.a. “weight decay”) is 0.00004. For configurations related to
graph regularization, the multiplier for applying graph regulariza-
tion α is 1.0, and the distance function d(·) in Eq. (6) is selected to
be cosine distance6. For constructing graphs, the threshold is set
to 0.1, and we combine the edges (approximately 50 million edges,
built from co-clicks and similar-image clicks) into one graph for
calculating regularizer Ω(θ ) in Eq. 6.

Since our model is one of the largest vision models in terms of
number of parameters (40M ×64 plus the parameters of ResNet-101
architecture), together with the scale of the training dataset, us-
ing TPUs [12] to train the model is the only feasible solution. The
training is distributed to 8×8 TPU cores, and takes two weeks to
converge from scratch after 5M steps. Training with graph regular-
ization costs additional computation that grows with the number

4ReLU-6 computes Rectified Linear Unit as: min(max(x, 0), 6).
5L2 normalization is not applied on embedding during training as it makes the training
hard to converge.
6We have also experimented with using the Euclidean (L2) distance as d (·); when
using Euclidean distance with α = 0.01, it achieves almost the same performance as
using cosine distance with α = 1
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Figure 4: An illustration of the Graph-RISE framework. Flow in red is added to enable graph regularization and required only
during training. In the input layer, a labeled image is associated with one of its neighbor images, which can be either labeled
or unlabeled, and then fed into the ResNet together with its neighbor image. Then, the image embeddings generated from
ResNet are used to both (a) compute the cross-entropy loss and (b) graph regularization.

of neighbors used (in this work, approximately 40% training time
increase due to the use of neighbors). To reduce the computation,
we compare the performance of two models: one is trained without
graph regularization from scratch; the other is trained with graph
regularization with α set to zero until it is converged, and then set
α = 1 to fine-tune the model. We find that the performance of the
first model (w/o graph regularization) is slightly better in the be-
ginning of the training, and two models achieves almost the same
performance after 4M steps. With these setting, the fine-tuning
model (the one with graph regularization) takes approximately 2
additional days to train for 500K extra steps until convergence.

6 EXPERIMENTS
In this section, we explain the details of evaluation setup, and then
show the experimental results for performance evaluation. We also
provide the case studies for the qualitative analysis.

6.1 Evaluation Setup
We are interested in providing image embeddings with instance-
level semantics, such that the similarity between embeddings ap-
proximates the relationships (of images) in terms of semantics. To
evaluate the performance of the proposed image embedding model,
we conduct both k-Nearest-Neighbor (kNN) search and triplet eval-
uation as metrics; these two are the most popular methods used for
evaluating embedding models.

For kNN evaluation, we conduct experiments on ImageNet [13]
and iNaturalist [27] datasets, and then report two metrics in the
experiments: Top-1 and Top-5 accuracy, where Top-k accuracy
calculates the percentage of query images that find at least 1 image—
from the top k searched image results—carrying the exact same
labels as the query images. For the ImageNet dataset, the images in
the validation set are used as the query images, and the training
set is used as the index set to search for top-k results. For the
iNaturalist dataset, for each class two images are randomly sampled

to construct the query set, and the remainder of the images in that
class are used as the index set.

For triplet evaluation, we follow the evaluation strategy in [29] to
sample triplets (A, P ,N )—representing Anchor, Positive, Negative
images—from Google Image Search and ask human raters to verify
if P is more semantically closer to A than N. We sample the triplets
in a way such that A and P have the same or a very similar instance-
level concept, and N is slightly less relevant (“hard-negative”). Each
triplet is independently ranked by three raters and only the triplets
receiving unanimous scores are used for evaluation. Assume pos-
itive image P is rated to be more similar to anchor image A than
negative image N, the prediction of a model is considered to be
accurate if the following condition holds:

η + d(ϕ(A),ϕ(P)) − d(ϕ(A),ϕ(N )) < 0 (7)

where η is the hyper-parameter that controls the margin between
the distance of two image projections.

Two triplet datasets are created for calculating triplet evaluation
metrics: (a) Product-Instance-Triplets (PIT) is a dataset designed
to focus on evaluating the semantic concepts of images in the
commercial product vertical, which consists of 10,000 triplets; (b)
Generic-Instance-Triplets (GIT) is a dataset focusing on evaluating
the semantic concepts of general images, including all possible
image verticals from Google Image Search, consisting of 14,000
triplets.

6.2 Model Comparisons
We compare the proposed method with the following state-of-the-
art models:

• DeepRanking model [29] that employs triplet loss on multi-
scale Inception network architecture [25] with an online
triplet sampling algorithm.

• Inception network architecture [25] that employs sampled
softmax loss over 8 millions labels.
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ImageNet [13] iNaturalist [27]
Top-1 Top-5 Top-1 Top-5

DeepRanking 35.20 60.93 6.03 13.71
Inception (8M) 61.92 84.77 17.30 34.58
ResNet (8M) 62.49 84.65 17.36 34.15
ResNet (40M) 66.20 86.41 27.05 47.44
Graph-RISE (40M) 68.29 87.75 31.12 52.76

Table 2: Performance comparisons (in %) via kNN search ac-
curacy on publicly available datasets.

PIT GIT
DeepRanking 74.95 77.25
Inception (8M) 82.81 86.54
ResNet (8M) 85.46 87.72
ResNet (40M) 86.70 88.90
Graph-RISE (40M) 87.16 89.53

Table 3: Performance comparisons (in %) via triplet accuracy
(η = 0) on the internal evaluation datasets.

DeepRanking

Inception (8M)

ResNet (8M)

Graph-RISE

Margin (η)

R
ec

al
l

Figure 5: PIT triplet evaluation on Recall v.s. Margin.

• ResNet-101 network architecture [10] that employs sampled
softmax loss over 8 millions and 40 millions labels (referred
as ResNet (8M) and ResNet (40M) in Table 2, respectively).

• Graph-RISE model based on ResNet-101 network architec-
ture proposed in Section 4.2.

The input layers in DeepRanking model and Inception model both
use 224×224 image pixels, while the ResNet-101 andGraph-RISE use
289×289. Label smoothing is applied to all the classification-based
models. When the graph regularization multiplier α = 0, Graph-
RISE is equivalent to the ResNet-101 model. In all the experiments,
the Euclidean (L2) distance of the embedding vectors extracted from
the penultimate layer—the layer before the final softmax or ranking
layer—is used as similarity measure. To evaluate the effectiveness
of image embeddings, no individual fine-tuning is performed for
each dataset, and all the experiments are conducted directly based
on the learned embeddings of the input images.

6.3 Performance Evaluation
Table 2 provides the performance comparisons (in terms of per-
centage) on kNN evaluations, and Table 3 shows the triplet evalu-
ations (also in terms of percentage). From these results, we have
several observations. First, Graph-RISE significantly outperforms
the previous state-of-the-art [29] and other models without graph
regularization in all the evaluation criteria. We attribute this to the

DeepRanking

Inception (8M)

ResNet (8M)

Graph-RISE

Margin (η)

R
ec

al
l

Figure 6: GIT triplet evaluation on Recall v.s. Margin.

fact that Graph-RISE leverages the graph structure via neural graph
learning to drive the embeddings of similar images to be as close
as possible. Notice that, compared to the previous state-of-the-art
[29], Graph-RISE improves the Top-1 accuracy by almost 2X
(from 35.2% to 68.29%) on ImageNet dataset, and bymore than 5X
(from 6.03% to 31.12%) on the iNaturalist dataset.

Second, compared to the Inception network architecture, training
image embeddings with ResNet-101 improves the performance for
most datasets. This confirms the observation from [22] that to fully
exploit O(300M) images, a higher capacity model is required to
achieve better performance. Furthermore, we confirm that sampled
softmax is an effective technique to train image embedding model
with datasets that have extremely-large label space; by comparing
Inception (8M) and DeepRanking [29] (both based on Inception
network), we observe that sampled softmax helps achieve better
performance in triplet loss, even if DeepRanking directly aims at
optimizing the triplet accuracy.

Moreover, increasing the number of labels (from 8M to 40M) sig-
nificantly improves the kNN accuracy. We conjecture that the labels
in 40M are more fine-grained than 8M, and therefore the learned
image embeddings also need to capture fine-grained semantics in
order to distinguish these 40M labels. In addition, we find that train-
ing ResNet-101 using larger input size (289×289) instead of smaller
input size (224×224) also helps improve the model performance
(from 85.13% to 86.7%, in terms of accuracy on PIT triplet evalua-
tion), since larger input size encapsulates more detailed information
from training images.

Figure 5 and Figure 6 depict the comparisons of triplet evalu-
ation among four models: DeepRanking, Inception (8M), ResNet
(8M) and Graph-RISE, on PIT dataset and GIT dataset respectively.
Note that ResNet (40M) is ignored in the figures since the curves of
ResNet (40M) and Graph-RISE are visually difficult to distinguish.
In these two figures, x-axis is “Margin” and y-axis is “Racall” rate
(the higher the better). “Margin” is the η in Eq. 7 representing the
margin between the distance of “Anchor-Negative pair” and the
distance of “Anchor-Positive pair.” A large margin means “the Nega-
tive image is further away from the Anchor image than the Positive
image.” “Recall” rate represents the percentage of triplets that sat-
isfy η + d(ϕ(A),ϕ(P)) < d(ϕ(A),ϕ(N )). From these two figures, the
performance of Graph-RISE is consistently better the other models.
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Figure 7: Retrieval results for 6 randomly-chosen query images. For each query image, we provide the Top-4 images retrieved
(from 1 billion images) by DeepRanking, ResNet (40M), and Graph-RISE. Each retrieval result is rated and color-coded by
human raters: retrieved images colored by green are rated to be strongly similar with the query image, whereas images colored
by red are rated to be not (or somewhat) similar. Notice that images retrieved by Graph-RISE generally conform to experts’
ratings.

6.4 Qualitative Analysis
Next, we evaluate the quality of images retrieved by DeepRanking
[29], ResNet (40M), and Graph-RISE models. Given a randomly-
selected query image, each method retrieves the most semantically
similar images from an index containing one billion images. The
top-ranked results are sent out to be rated by human experts. Fig-
ure 7 illustrates the retrieval results for 6 randomly-selected query
images; for each query imagewe provide the Top-4 images retrieved.
The images colored by green are rated to be strongly similar with
the query image, whereas the images colored by red are rated to
be not (or somewhat) similar. Compared to other models, images
retrieved by Graph-RISE generally conform to experts’ ratings,
meaning that Graph-RISE captures the semantic meaning of images
more effectively as judged by human raters. For example, given a
query image of “scroll with ribbon” (top-left in Figure 7), the top

three images retrieved by Graph-RISE are also “scroll with ribbon”
(with similar colors, textures and shapes), and are rated as strongly
similar by human experts. Another example is a query image of
a landmark (top-right in Figure 7); Graph-RISE is able to retrieve
images of the exact same landmark, while the other methods are
only able to retrieve images of somewhat similar buildings.

In addition, we observe that the images retrieved by DeepRank-
ing tend to be only visually similar to the query images, rather than
semantically similar. This is probably because generating triplets
that reflect the semantic concepts is very difficult, especially when
the classes are ultra-fine-grained.
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7 CONCLUSION
In this work, we present Graph-RISE to answer the motivational
question: “Is it possible to learn image content descriptors (a.k.a., em-
beddings) that capture image semantics and similarity close to human
perception?” Graph-RISE confirms that ultra-fine-grained, instance-
level semantics can be captured by image embeddings extracted
from training a sophisticated image classification model with large-
scale data: O(40M) classes and O(260M) images. Graph-RISE is
also the first image embedding model based on neural graph learn-
ing that leverages graph structures of similar images to capture
semantics close to human image perception. We conduct exten-
sive experiments on several evaluation tasks based on both kNN
search and triplet ranking, and experimental results confirm that
Graph-RISE consistently and significantly outperforms the state-of-
the-art methods. Qualitative analysis of image retrieval tasks also
demonstrates that Graph-RISE effectively captures instance-level
semantics.
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