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Recently, several approaches to solving linear systems on a quantum computer have been formulated
in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches have
enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated
variable-time amplitude amplification procedure. However, the most efficient of those procedures is still
asymptotically suboptimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem
that bounds the error in terms of the spectral gap for intrinsically discrete-time evolutions. In combination
with the qubitized quantum walk, our discrete adiabatic theorem gives a speed-up for all adiabatic algo-
rithms. Here, we use this combination to develop a quantum algorithm for solving linear systems that is
asymptotically optimal, in the sense that the complexity is strictly linear in κ , matching a known lower
bound on the complexity. Our O[κ log(1/ε)] complexity is also optimal in terms of the combined scaling
in κ and the precision ε. Compared to existing suboptimal methods, our algorithm is simpler and easier
to implement. Moreover, we determine the constant factors in the algorithm, which would be suitable for
determining the complexity in terms of gate counts for specific applications.
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I. INTRODUCTION

Finding the solution to a system of linear equations is
a fundamental task that underlies many areas of science
and technology. A classical linear-systems solver takes
time proportional to the number of unknown variables
even to write down the solution and thus has a prohibitive
computational cost for solving large linear systems. How-
ever, a quantum computer with a suitable input access
can produce a quantum state that encodes the problem
solution much faster than its classical counterpart. The
first quantum algorithm for the quantum linear-systems
problem (QLSP) was proposed by Harrow, Hassidim, and
Lloyd (HHL) [1] and has been subsequently refined by
later work. Due to the ubiquitous nature of the problem,
quantum algorithms for QLSP have found a variety of
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applications, such as computing electromagnetic scatter-
ing [2], solving differential equations [3,4], data fitting
[5], machine learning [6,7], and more general solution of
partial differential equations [8].

Specifically, the goal of QLSP is to produce a quan-
tum state |x〉 proportional to the solution of linear system
Ax = b, where A is an N -by-N matrix. The complexity of
solving QLSP depends on various input parameters, such
as the problem size N , the sparsity (for sparse linear sys-
tems), the norm of the coefficient matrix A, the condition
number κ , and the error ε in the solution. To simplify the
discussion, we assume that ‖A‖ = 1 and hence ‖A−1‖ = κ ,
where ‖·‖ denotes the spectral norm. To further simplify
the analysis, we assume that we have a block encoding of
the coefficient matrix A and a given operation to prepare
the target vector |b〉 and consider the number of queries
to these oracles. One can also consider the complexity in
terms of the number of calls to entries of a sparse matrix, as
in Ref. [1], but there are standard methods to block encode
sparse matrices [9], so our result can be easily applied to
that case. These simplifications mean that the only rele-
vant parameters on which our algorithm depends are κ
and ε.
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The original algorithm proposed by HHL has a com-
plexity scaling quadratically with the condition number κ
and linearly with the inverse accuracy 1/ε [1]. The scal-
ing with the condition number was improved by Ambainis
using “variable-time amplitude amplification” [10]; the
resulting algorithm has a near-linear dependence on κ but
a much worse dependence on 1/ε. A further improve-
ment was provided in Ref. [11], which yields a complexity
logarithmic in the allowable error ε using a linear combi-
nation of unitaries (LCU). Unfortunately, algorithms based
on variable-time amplitude amplification [10,11] perform
multiple rounds of recursive amplitude amplifications and
can be challenging to implement in practice.

To address this, recent work has suggested alterna-
tive approaches based on adiabatic quantum computing
(AQC). AQC is a universal model of quantum comput-
ing that has been shown to be polynomially equivalent to
the standard gate model [12,13]. In AQC, one encodes the
solution to a computational problem in the ground state
of a Hamiltonian H1. Then, one initializes a quantum sys-
tem in the ground state of an easy-to-prepare Hamiltonian
H0 and slowly deforms from the ground state of H0 to
the ground state of H1 under a time-dependent Hamilto-
nian that interpolates between the two, such as H(s) =
(1 − s)H0 + sH1. The advantage of using the adiabatic
approach to solve QLSP as in Ref. [14] is that it natu-
rally provides complexity close to linear in κ , without the
highly complicated variable-time amplitude amplification
procedure. That work has been further improved in Ref.
[15] and then Ref. [16], which gives complexity logarith-
mic in ε by using eigenstate filtering. We summarize key
developments reducing the complexity in Table I.

It is known that a quantum algorithm must make at least
�[κ log(1/ε)] queries in general to solve the sparse QLSP
problem [17]. Therefore, the method in Ref. [16] is already
optimal in the scaling with solution accuracy ε. However,
a question left open was: how can we achieve an optimal
scaling with the condition number κ or is it possible to
prove a lower bound ruling out this improvement? From

the algorithmic perspective, finding a quantum algorithm
with linear κ scaling is technically challenging. Previ-
ous fast linear systems solvers depend on polynomial
approximations to implement the inverse function 1/x on
x ∈ [1/κ , 1] [11] or truncations of the Dyson series to
implement the continuous adiabatic evolution [14–16]. In
either case, an extra polylog(κ) factor is required to sup-
press the truncation or approximation error, resulting in a
superlinear scaling with the condition number.

In this work, we develop a quantum algorithm for
solving systems of linear equations with complexity
O[κ log(1/ε)]. That is, we achieve a strictly linear scal-
ing with κ , while maintaining the logarithmic scaling with
1/ε from the best previous algorithms. Combining with the
lower bound of Ref. [17], we establish for the first time a
quantum linear-systems algorithm with optimal scaling in
the condition number. It is also optimal in the combined
scaling with κ and ε, because one cannot, for example,
reduce the scaling to O[κ + log(1/ε)]. We formally state
our result in Sec. V and preview it here.

Theorem: (QLSP with linear dependence on κ). Let Ax =
b be a system of linear equations, where A is an N-by-
N matrix with ‖A‖ = 1 and ‖A−1‖ = κ . Given an oracle
block encoding the operator A and an oracle preparing
|b〉, there exists a quantum algorithm that produces the
normalized state |A−1b〉 to within error ε in terms of the
�2 norm, using an average number

O[κ log(1/ε)] (1)

of oracle calls.

Our algorithm is conceptually simple and easy to
describe. All it requires is a sequence of quantum walk
steps corresponding to a qubitized form of the Hamil-
tonian used in prior work [15,16]. It completely avoids
the heavy mechanisms of variable-time amplitude ampli-
fication or the truncated Dyson-series subroutine from

TABLE I. The history of the lowest-scaling algorithms for solving linear systems of equations on a quantum computer. Specifically,
the problem is to prepare the state |x〉 given oracular access to the matrix A and the ability to prepare the initial state |b〉 encoding a
vector b with the relation Ax = b. Here, κ is the condition number of A and ε is the target precision to which we would like to prepare
the state |x〉. However, the cost of a query for all classical algorithms is expected to scale polynomially in N (the dimension of the
matrix A), whereas on a quantum computer it is possible to make queries in complexity scaling as O[polylog(N )] when A is a sparse
matrix. The query complexity of �[κ log(1/ε)] is a known lower bound on the complexity.

Year Reference Primary innovation Query complexity

2008 Harrow, Hassidim, and Lloyd [1] First quantum approach O(κ2/ε)

2012 Ambainis [10] Variable-time amplitude amplification O(κ(log(κ)/ε)3)
2017 Childs, Kothari, and Somma [11] Fourier or Chebyshev fitting using LCU O[κ polylog(κ/ε)]
2018 Subasi, Somma, and Orsucci [14] Adiabatic randomization method O((κ log κ)/ε)
2019 An and Lin [15] Time-optimal adiabatic method O[κ polylog(κ/ε)]
2019 Tong and Lin [16] Zeno eigenstate filtering O[κ log(κ/ε)]
2022 This paper Discrete adiabatic theorem O[κ log(1/ε)]
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previous methods. Moreover, we provide a bound on the
constant prefactor for our approach that allows estimation
of the complexity in terms of the number of gates for spe-
cific applications. We expect that our estimate of the pref-
actor can be tightened and that our algorithm will be the
most efficient for the early fault-tolerant regime of quan-
tum computation as well as having the best asymptotic
scaling for large-scale applications.

The new insight that allows us to establish the optimal κ
scaling is the use of a discrete quantum adiabatic theorem,
a result proved by Dranov, Kellendonk, and Seiler (DKS)
[18]. Unlike the continuous version, the discrete adiabatic
theorem is formulated based on a quantum walk operator
W(s). Provided that the steps of quantum walk vary suf-
ficiently slowly, the eigenstates of the walk operator can
be approximately preserved throughout the entire discrete
adiabatic evolution. Indeed, DKS have shown that the error
in the evolution scales as O(1/T) for T steps of the walk.
However, their analysis overlooks the scaling with other
parameters; in particular, the spectral-gap dependence. In
the case of solving QLSP, the gap depends on κ , so the
result of DKS is not sufficient to give the κ dependence
of the algorithm. Here, we give a complete analysis of the
discrete adiabatic theorem, keeping track of all the param-
eters of interest while fixing several minor mistakes in the
original proof.

In developing our quantum linear-systems algorithm, we
provide an improved method of filtering the final state that
may be of independent interest. Prior methods have been
based on singular-value processing [16], which requires
a sequence of rotations to be found by a numerically
demanding procedure [19–22].

Our method has two advantages; the sequence of oper-
ations needed is easily determined by an analytic formula
and the efficiency is improved because an incorrect mea-
surement result can be detected early. Thus, including
the gap dependence together with the replacement of the
asymptotic scaling by strict bounds over the total time in
Ref. [18] allows us to use the qubitized quantum walk. Our
discrete adiabatic theorem thus avoids the application of
the truncated Dyson series for the time evolution, which is
used in Refs. [15,16] and gives the extra logarithmic factor
in the complexity. Finally, combining our discrete evolu-
tion with the improved eigenstate filtering gives our result
on the solution of linear systems.

The remainder of the paper is organized as follows. In
the following, we give more detailed background and sum-
marize our result in Sec. II. Then, in Sec. III, we give a
thorough proof of the discrete adiabatic theorem. We base
our method on the approach of DKS but make many of
the details rigorous and provide a strict bound on the error,
including constant factors. We apply the discrete adiabatic
theorem to the QLSP in Sec. IV. In Sec. V, we provide our
general method of filtering, which is just as efficient as that
based on singular-value processing.

II. DISCRETE ADIABATIC THEOREMS

A. Background

Before presenting our results, let us present the main
ideas of the DKS bound on the error in discrete-time adi-
abatic evolution [18]. In this proposal, the model of the
adiabatic evolution is based on a sequence of T walk opera-
tors {W(n/T) : n ∈ N, 0 ≤ n ≤ T − 1}. That is, the system
is initially prepared in a state |ψ0〉, then the sequence of
unitary transformations W(n/T) have the effect |ψ0〉 �→
|ψ1〉 �→ · · · . To model this evolution, with s = n/T we can
write

U(s) =
sT−1∏
m=0

W (m/T) (2)

and U(0) ≡ I , such that |ψn〉 = U(s) |ψ0〉. The adiabatic
limit is then the limit T → ∞. Alternatively, we can
construct the total unitary evolution recursively as

U(s + 1/T) = W(s)U(s), U(0) = I . (3)

The adiabatic limit is then the limit T → ∞. For the pur-
pose of quantum algorithm design, we are trying to choose
U so that limT→∞ U(1) |ψ0〉 = |ψtarget〉, where |ψtarget〉 is a
desired “target” state that enables us to solve a computa-
tional problem. In order for this to be an accurate adiabatic
evolution yielding the target state, U(n/T) |ψ0〉 should be
approximately an eigenstate of W(n/T) for all n.

We need to establish some terminology before we can
present the statement of the result from Ref. [18]. For each
T ∈ R and n ∈ N, introduce a projector P(s) (with s ≡ n/T
as before) called the spectral projection, which projects
onto the eigenspace of interest. In addition, the comple-
mentary spectral projection Q(s) = I − P(s) projects onto
all eigenvectors orthogonal to the eigenspace of interest.
An operator representing the ideal adiabatic evolution is
denoted UA(s). The ideal adiabatic evolution is that where
each eigenvector of the walk operator remains an eigen-
vector of the walk operator throughout the evolution. That
implies

P(s) = UA(s)P(0)U
†
A(s). (4)

That is, evolving the original eigenspace to step n = sT
under the ideal adiabatic evolution gives the corresponding
eigenspace for the walk operator W(s).

The adiabatic theorem is a statement about how close the
evolution U(s) is to the ideal adiabatic evolution UA(s) at
a given time. Beginning with the initial state |φ(0)〉 in the
subspace of interest so (P(0) |φ(0)〉 = |ψ(0)〉), the goal is
to bound the error between UT and its ideal evolution UA
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by an expression of the form

‖(U(s)− UA(s)) |φ(0)〉‖ ≤ ‖U(s)− UA(s)‖ ≤ θ

T
, (5)

where ‖ · ‖ is the spectral norm. Proving this result shows
that increasing the number of steps reduces the error. The
constant θ in Eq. (5) is a constant independent of the
total time T but depends on the gap 	(s) between the
eigenspace of interest and the complementary eigenspace.

In Ref. [18], it has been shown that the error is O(1/T),
which means that there exists some constant θ but that
constant and its dependence on the gap have not been
determined. That is a crucial difficulty in applying the
result to the QLSP, because the gap in using the adiabatic
approach to the QLSP depends on the condition number κ .
Therefore, to determine the complexity of the algorithm in
terms of κ , we need to know the dependence of the error
on the gap. In particular, we show that the error scales as
O(κ/T), which means that to obtain the solution to fixed
error one can use T = O(κ) steps. Then, complexity linear
in κ and logarithmic in 1/ε can be obtained using filter-
ing. To show this result, we cannot simply use the result as
given [18] and we need to derive the bound for the error
far more carefully in order to give the dependence on the
gap.

B. Our result

Our main goal in this paper is to provide the explicit
dependence on the gap in the discrete adiabatic theorem in
order to improve the version given in Ref. [18]. In order to
do this, we need to replace a number of initial assumptions
that have just been given as order scalings in Ref. [18] and
to properly account for the gap when using consecutive
walk operators. We then work through the proof to give a
strict bound on the error in the adiabatic evolution with all
constant factors.

First, in Ref. [18] it has just been assumed that there is
the general order scaling

W (s + 1/T)− W(s) ≈ O(T−1). (6)

We replace that with an upper bound with explicit schedule
dependence,

‖W (s + 1/T)− W(s)‖ ≤ c(s)
T

. (7)

Implicit in this definition is the assumption that the behav-
ior of W(s) is sufficiently smooth that c(s) can be chosen
independently of T. This needs to be shown for the given
applications. More generally, we need to consider higher-
order differences, which result in values of ck(s) given in
the following definition.

Definition 1: (multistep differences). For a positive inte-
ger k, the kth difference of W is

D(k)W(s) := D(k−1)W
(

s + 1
T

)
− D(k−1)W(s),

D(1)W(s) := DW(s) = W
(

s + 1
T

)
− W(s). (8)

For T > 0, we define the function ck(s), which is implicitly
dependent of T, such that

∥∥D(k)W(s)
∥∥ ≤ ck(s)

Tk . (9)

We then define the ĉk(s) taking into account neighboring
steps as

ĉk(s) = max
s′∈{s−1/T,s,s+1/T}∩[0,1−k/T]

ck(s′). (10)

The principle of the gap is that it separates the eigen-
values of W(s) into two groups that depend on the time
parameter s. Since W(s) is unitary, these are groups on
the unit circle in the complex plane. Because it is on the
unit circle, we need to separate these groups of eigen-
values with gaps in two locations. We denote one set of
eigenvalues as σP(s) and the other as σQ(s), with corre-
sponding projectors P(s) and Q(s), respectively. That is,
P(s) projects onto the subspace where the eigenvalues of
W(s) are in the set σP(s). We call σP(s) the “spectrum
of interest” because we are concentrating on applications
where we attempt to maintain a state within this subspace.

We also need to account for the gaps for successive
operators W(s) and W(s + 1/T). That is, there needs to
be a gap between σP(s) ∪ σP(s + 1/T) and σQ(s) ∪ σQ(s +
1/T). Moreover, we need to ensure that these regions are
noninterleaved. The reason is that in order to place a bound
on the error, we need to place bounds on the norms of a
long sequence of operators, which depend on the differ-
ence of projection operators P(s) at successive steps. This
difference can be bounded using a contour integral but the
contour must simultaneously pass through the gaps for two
successive walk operators.

To ensure that the regions are not interleaved, we define
arcs that contain the eigenvalues, such that

σ
(1)
P ⊇ σP(s) ∪ σP(s + 1/T),

σ
(1)
Q ⊇ σQ(s) ∪ σQ(s + 1/T). (11)

To rule out interleaved regions, these arcs cannot intersect
and we consider the gap between these arcs. We are inter-
ested in the case where this only has a small effect on the
gap. In turn, this means that T should not be too large, so
we introduce a lower bound T∗ on the values of T allowed.
We therefore define the multistep gaps as follows.
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Definition 2: (multistep gap). For T ∈ N and k a non-
negative integer, 	k(s) is defined to be the minimum
angular distance between arcs σ (k)P and σ (k)Q , which satisfy

σ
(k)
P ⊇

k⋃
l=0

σP(s + l/T), σ
(k)
Q ⊇

k⋃
l=0

σQ(s + l/T).

(12)

The gap 	(s), which is also implicitly dependent on T, is
then in most cases the minimum gap for three successive
steps, except in the cases at the boundaries:

	(s) =

⎧⎪⎨
⎪⎩
	2(s), 0 ≤ s ≤ 1 − 2/T,
	1(s), s = 1 − 1/T,
	0(s), s = 1.

(13)

Finally, 	̌(s) is an adjustment for 	(s) at neighboring
points:

	̌(s) = min
s′∈{s−1/T,s,s+1/T}∩[0,1]

	(s′). (14)

Note that we have freedom to choose larger arcs than
necessary, so these are lower bounds on the gap, though
we often call them the “gap” for convenience. Also, given
	2(s), one can always choose arcs σ (k)P and σ (k)Q for k =
0, 1 such that 	k(s) ≥ 	2(s). This means that in Eq. (13),
we can simply use 	2(s), rather than taking the minimum
of 	k(s) for k ∈ {0, 1, 2}.

We prove two forms of the discrete adiabatic theorem.
One is highly complicated, so we give it explicitly later
in Sec. III B. Here, we instead give a simplified but looser
form of the discrete adiabatic theorem.

Theorem 3: (the second discrete adiabatic theorem).
Suppose that the operators W(s) satisfy

∥∥D(k)W(s)
∥∥ ≤

ck(s)/Tk for k = 1, 2, as per Eq. (9), and T ≥ maxs∈[0,1]

[4ĉ1(s)/	̌(s)]. Then, for any time s, such that sT ∈ N, we
have

‖U(s)− UA(s)‖ ≤ 12ĉ1(0)

T	̌(0)2
+ 12ĉ1(s)

T	̌(s)2
+ 6ĉ1(s)

T	̌(s)

+ 305
sT−1∑
n=1

ĉ1(n/T)2

T2	̌(n/T)3

+ 44
sT−1∑
n=0

ĉ1(n/T)2

T2	̌(n/T)2

+ 32
sT−1∑
n=1

ĉ2(n/T)

T2	̌(n/T)2
, (15)

where ĉk(s) and 	̌(s) are defined in Definitions 1 and 2,
respectively.

Note that this theorem depends on the first and sec-
ond differences, described by ĉ1(s) and ĉ2(s), respectively.
These are analogous to the first and second derivatives
in the continuous form of the adiabatic theorem, so we
can see that these results are analogous. We have three
single terms with 1/T scaling and three sums with 1/T2

scaling, which gives overall scaling of the complexity as
O(1/T). We also have a cubic dependence in the inverse
gap 1/	 in the first sum given. In choosing the quantum
walk, one would aim to schedule the variation of W such
that they vary more slowly where the gap is small, making
ĉ1 smaller. The condition T ≥ maxs∈[0,1][4ĉ1(s)/	̌(s)] is
implicit, because the definitions of ĉ1(s) and 	̌(s) depend
on T. In practice, the right side is only weakly dependent
on T and we ensure that this condition is satisfied where
we use this theorem.

III. THE ADIABATIC THEOREMS

In this section, we prove our first form of the discrete
adiabatic theorem, given later as Theorem 7, and then use
it to prove Theorem 3. Following the general method and
notation of Ref. [18], we use the wave operator

�(s) := U†
A(s)U(s). (16)

The aim of the discrete adiabatic theorem, the first and the
second, is to prove that�(s) is close to the identity because

‖U(s)− UA(s)‖ =
∥∥∥U†

A(s)U(s)− I
∥∥∥ = ‖�(s)− I‖ .

(17)

In Ref. [18], it has been shown that �(s) = I + O(1/T)
but we instead aim to provide the explicit bounds depen-
dent on the gap.

To prove the bound, one can define a kernel function
K(s) as well, which corresponds to the difference of a sin-
gle step of �(s) from the identity. The wave operator at
step n is then given by

�(n/T) = I − 1
T

n−1∑
m=0

K(m/T)�(m/T). (18)

The goal is then to show that the sum is small. This is done
with a summation-by-parts formula. The general principle
of a summation-by-parts formula is that it transforms a dif-
ference in one function in the sum into a difference in the
other function. Here, K(m/T) is essentially in the form of
a difference and our summation-by-parts formula gives a
sum where the difference is in �(m/T) instead. Although
the expression is still in the form of a sum, the difference
in �(m/T) is small enough that it is possible to usefully
bound the overall sum by bounding every term and using
the triangle inequality. That then yields our first discrete
adiabatic theorem.

040303-5



PEDRO C. S. COSTA et al. PRX QUANTUM 3, 040303 (2022)

FIG. 1. An illustration of the choice of the contour �(s, k) for
k = 0. That is, we consider the eigenvalues for only a single
step of the walk. The red dots indicate the spectrum of interest,
which will often just be a single eigenvalue; for example, for a
ground state. The contour around the spectrum of interest is used
to obtain a projector onto the spectrum of interest. For the illus-
tration, we use a contour with radius 2 but in practice, we take
the limit that the radius goes to infinity.

A. Operator definitions

We next define the operators that are needed to under-
stand the proof. Let �(s) be a sector contour enclosing the
spectrum of interest (see, e.g., Fig. 1). Then, the spectral
projection P(s) onto the spectrum of interest is given by
the integral

P(s) = 1
2π i

∮
�(s)

R(s, z)dz, (19)

where

R(s, z) := (W(s)− zI)−1 , (20)

is the resolvent of W(s). Let

S(s, s′) := P(s)P(s′)+ Q(s)Q(s′), (21)

v(s, s′) :=
√

S(s, s′)S†(s, s′) =
√

I − (P(s)− P (s′))2,
(22)

and

V(s, s′) := v(s, s′)−1S(s, s′), (23)

which is the unitary of the left polar decomposition of
S(s, s′) (see Eq. (11) of Ref. [18]).

The general principle is that S(s, s′) uses P(s)P(s′)
to map the eigenspace of interest for W(s′) to that for
W(s) and similarly uses Q(s)Q(s′) to map the orthogonal

eigenspaces. This operator is not unitary but by apply-
ing v(s, s′)−1 we can obtain the unitary operation V(s, s′)
that also performs this exact mapping of eigenspaces. This
provides a unitary operator with the effect of exactly map-
ping the eigenspaces like the ideal adiabatic evolution
but does not apply phase factors like the walk operator
W(s). If we apply V(s + 1/T, s)W(s), then we obtain the
phase factors from W(s) and then V(s + 1/T, s) maps the
eigenspaces to those for W(s + 1/T). This is then a good
description of an ideal adiabatic step, denoted WA(s), that
has eigenvalues similar to W(s) but perfectly maps the
eigenspaces. The ideal adiabatic evolution UA(s) can then
be constructed from a sequence of these walk steps. Note
that this ideal adiabatic evolution is never applied in real-
ity; it is a purely theoretical construct to quantify how close
the actual evolution is to adiabatic.

We use the shorthand notations S(s) = S(s + 1/T, s),
v(s) = v(s + 1/T, s), V(s) = V(s + 1/T, s), and define
(see Eqs. (7) and (10) of Ref. [18])

WA(s) := V(s)W(s), (24)

UA (s + 1/n) := WA(s)UA(s), (25)

UA(0) := I . (26)

It can be checked from the definition that V(s) is a unitary
operator and thus WA and UA are unitary. In fact, WA is
exactly the adiabatic walk operator and the corresponding
UA is the corresponding adiabatic evolution operator.

To describe the proof, we use the wave operator

�(s) := U†
A(s)U(s), (27)

which describes the difference between the actual evolu-
tion given by U(s) and the ideal adiabatic evolution UA(s).
To demonstrate that the evolution is close to adiabatic, we
should have�(s) close to I . The ripple operator is defined
as

(s) := �(s + 1/T)�†(s), (28)

so the wave operator is a product of ripple operators for
each time step. The kernel function is defined as

K(s) := T[I −(s)] (29)

and should be close to zero for the evolution to be close to
adiabatic. It can be seen here that K(s) is in the form of a
difference.

Now, we provide some properties of the operators from
Ref. [18]. But first, we give properties of the adiabatic
operators and the projectors onto the subspaces, with the
proofs presented in Appendix B.

Proposition 4: For any integers T, n, and m, and the cor-
responding discrete times s = n/T and s′ = m/T, we have
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that WA(s) and UA(s) are unitary and

P(s + 1/T)WA(s) = WA(s)P(s), (30)

UA(s)P(0) = P(s)UA(s), (31)

P(s + 1/T)W(s)P(s) = P(s + 1/T)v(s)WA(s)P(s), (32)

Q(s + 1/T)W(s)Q(s) = Q(s + 1/T)v(s)WA(s)Q(s). (33)

Here, Eqs. (30) and (31) are the key properties showing
that WA(s) is a true adiabatic walk step. That is, projecting
onto the desired subspace at the beginning is the same as
projecting onto the desired subspace at the end after the
walk, so the subspace must have been preserved.

Next, we consider properties of the wave operator�(s),
the ripple operator (s), and the kernel function K(s).
One can simply prove that the ripple operator is a rota-
tion of the operator V and � satisfies a discrete form of the
Volterra equation. The key results are as in the following
proposition, which is equivalent to Eqs. (19) and (20) from
Ref. [18], and proofs are also given in Appendix B.

Proposition 5: For any integers T and n and the discrete
time s = n/T, we have

(s) = U†
A(s + 1/T)V†(s)UA(s + 1/T) (34)

and the Volterra equation

�(n/T) = I − 1
T

n−1∑
m=0

K(m/T)�(m/T). (35)

B. Summation by parts and discrete adiabatic theorem

In order to show that the evolution is close to adiabatic,
we aim to show that �(n/T) is close to the identity, and
to do that we use the expression given in Eq. (35). In
the sum, we substitute the identity being equal to the sum
of projections onto the desired subspace and the orthogo-
nal subspace. That gives us four sums. Two of these are
“diagonal” sums with two projections onto the same sub-
space and two are “off-diagonal” sums with two different
projections.

The diagonal sums are relatively easily bounded,
whereas for the off-diagonal sums are more difficult. For
those, we use the “summation-by-parts formula” given
below in Theorem 6.

Theorem 6: (summation-by-parts formula). Let W(s), s ∈
Z/T, be a sequence of unitaries, let UA(s) be the corre-
sponding ideal adiabatic evolution, let P(s) be a projection
onto an eigenspace of W(s), let �(s) be a contour around
the eigenvalues corresponding to P(s), Q(s) = I − P(s),

and suppose that X (s) and Y(s) are sequences of opera-
tors. Then,

l∑
n=1

Q0U†
A

( n
T

)
X
( n

T

)
UA

( n
T

)
P0Y

( n
T

) = B − 1
T
S , (36)

where P0 = P(0) and Q0 = Q(0),

B = Q0U†
A

( l
T

)
X̃
(

l+
T

)
UA

(
l+
T

)
P0Y

(
l+
T

)

− Q0U†
A(0)X̃

( 1
T

)
UA

( 1
T

)
P0Y

( 1
T

)
(37)

is the boundary term,

S =
l∑

n=1

Q0U†
A

( n
T

) (
Z
( n

T

)
UA

( n
T

)
P0Y

( n
T

)

+ X̃
( n+

T

)
WA

( n
T

)
UA

( n
T

)
P0T DY

( n
T

))
(38)

is the sum, and

X̃ (s) := − 1
2π i

∮
�(s)

R(s, z)X (s)R(s, z)dz, (39)

A(s) := W(s)− WA(s) = (
V†(s)− I

)
WA(s), (40)

B(s) := DX̃ (s)WA(s)+ DWA (s − 1/T) X̃ (s), (41)

Z(s) := T
([

A(s), X̃ (s)
] + B(s)

)
. (42)

This formula is given in Theorem 1 of Ref. [18], with
a typographical error in the sign of both operators S and
B. Here, we correct the sign slightly differently for the two
quantities, taking B to be the negative of the B defined
in Ref. [18] and taking S to be the same but placing
a minus sign in the statement of the theorem (so there
is B − S/T). Throughout the lemma and its proof, we
encounter slight shifts of the discrete time very frequently.
To simplify the notation, for any positive integer n, we
define n+ = n + 1 and n− = n − 1. As we are making a
correction to the theorem and it is quite lengthy, we give a
proof in Appendix C.

The summation-by-parts formula is given for arbitrary
operator sequences X (s) and Y(s), but when applied to the
proof of the discrete adiabatic theorem these are taken to
be T(I − V†) and �, respectively. Note from Eq. (34) that
X (s) is unitarily related to K(s) and is in the form of a
difference. Moreover, we use � for Y(s) in Eq. (38) and
there it is given in the form of a difference. The form of
the summation-by-parts formula is somewhat more subtle
than this, though, because we also have the first term in
Eq. (38), which does not have this intuitive interpretation.
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In our proof, we find that DY(s) is then sufficiently small
that we can usefully bound the entire sum using the trian-
gle inequality. To bound the norms of the terms, we need
to prove a sequence of bounds on the operators and their
differences at successive steps, starting from the simplest,
such as P, and working toward the most complicated, such
as DY(s) and Z. The core feature of these bounds is that
they rely upon taking a contour integral between the groups
of eigenvalues for successive steps of the walk. Bound-
ing these operators then enables us to provide the complete
explicit form of the discrete adiabatic theorem.

Theorem 7: (the first discrete adiabatic theorem). Let
U(s) = ∏sT−1

l=0 W (l/T) for s ∈ Z/T be a product of uni-
tary operators W (l/T) as per Eq. (2) and let UA(s) be
the corresponding ideal adiabatic evolution that maps
an eigenstate of W(0) to the corresponding eigenstate
of W(s). Suppose further that the operators W(s) satisfy∥∥D(k)W(s)

∥∥ ≤ ck(s)/Tk for k = 1, 2, as per Definition 1,
we consider the gaps 	k(s) as defined in Definition 2,
and T ≥ maxs∈[0,1][2c1(s)/	1(s)]. Then, for any time s, we
have

‖U(s)− UA(s)‖

≤ 4
	0(1/T)

D2

(
2c1(0)
T	1(0)

)
+ 4
	0(s)

D2

(
2c1(s − 1/T)
T	1(s − 1/T)

)
+ 2D2

(
2c1(s − 1/T)
T	1(s − 1/T)

)

+
sT−1∑
n=1

4
(

1
	0(n+/T)

+ 2
	0(n/T)

)
D2

(
2c1(n/T)
T	1(n/T)

)
D2

(
2c1(n−/T)
T	1(n−/T)

)

+
sT−1∑
n=1

4G3(n−/T)
T2	1(n/T)

+
sT−1∑
n=1

4c1(n/T)
πT[1 − cos(	1(n/T)/2)]

D2

(
2c1(n−/T)
T	1(n−/T)

)

+
sT−1∑
n=1

4G4(n−/T)
T	0(n/T)

D2

(
2c1(n−/T)
T	1(n−/T)

)
+

sT−1∑
n=0

24c1(n/T)2

T2	1(n/T)2
+

sT−1∑
n=0

4c1(n/T)2

T2	1(n/T)2

(
1 − 2c1(n/T)

T	1(n/T)

)−1

, (43)

where

D1(z) := 1√
1 − z2

, D2(z) :=
√

1 + z
1 − z

− 1,

D3(z) := z
(1 − z2)3/2

, (44)

G1(s) := c1(s)2 + c1(s)c1(s+)
π [1 − cos(	2(s)/2)]

+ 2c2(s)
	2(s)

, (45)

G2(s) := G1(s)D3

(
max

(
2c1(s + 1/T)
T	1(s + 1/T)

,
2c1(s)
T	1(s)

))
,

(46)

G3(s) := G2(s)
(

1 + 2c1(s)
T	1(s)

)
+ D1

(
2c1(s)
T	1(s)

)

×
(
G1(s)+ 8c1(s)2

	1(s)2

)
, (47)

G4(s) := G3(s)
T

+ c1(s). (48)

Proof. Starting from the definition of K and Proposition 5,
for any discrete time s,

‖U(s)− UA(s)‖ = ‖�(s)− I‖

=
∥∥∥∥∥

1
T

sT−1∑
n=0

K
( n

T

)
�
( n

T

)∥∥∥∥∥

=
∥∥∥∥∥

sT−1∑
n=0

(
I −

( n
T

))
�
( n

T

)∥∥∥∥∥

=
∥∥∥∥∥

sT∑
n=1

U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
�
( n−

T

)∥∥∥∥∥ . (49)

We now split the sum into “diagonal” and “off-diagonal”
terms, where the “diagonal” ones are those where two pro-
jectors of the same type are used and the “off-diagonal”
ones are those where two different projectors are used. In
the summation-by-parts formula, only the “off-diagonal”
term is considered; we use that formula to bound that more
difficult term. The splitting of the sum gives

‖U(s)− UA(s)‖ =
∥∥∥∥∥

sT∑
n=1

(P0 + Q0)UA
†( n

T

) (
I − V†( n−

T

))

× UA
( n

T

)
(P0 + Q0)�

( n−
T

)∥∥∥∥∥ (50)

040303-8



OPTIMAL SCALING QUANTUM LINEAR-SYSTEMS... PRX QUANTUM 3, 040303 (2022)

≤
∥∥∥∥∥

sT∑
n=1

P0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥ (51)

+
∥∥∥∥∥

sT∑
n=1

Q0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
Q0�

( n−
T

)∥∥∥∥∥
(52)

+
∥∥∥∥∥

sT∑
n=1

Q0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥
(53)

+
∥∥∥∥∥

sT∑
n=1

P0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
Q0�

( n−
T

)∥∥∥∥∥ ,

(54)

where Eqs. (51) and (52) are the diagonal and Eqs. (53) and
(54) are the off-diagonal components. For the “diagonal”
term, it is possible to show that∥∥∥∥∥

sT∑
n=1

P0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥

≤
sT−1∑
n=0

∥∥I −F( n
T

)∥∥ (1+ ∥∥DP
( n

T

)∥∥)+3
sT−1∑
n=0

∥∥DP
( n

T

)∥∥2.

(55)

This is shown in Appendix E 1, where the result is given
in Eq. (E5). The reasoning for the term with Q0 is identi-
cal and gives the same result. Using Lemma 13, one can
show that

‖F(s)− I‖ ≤ D1

(
2c1(s)
T	1(s)

)
− 1. (56)

The steps for deriving the above bound are given in
Eq. (E6) and the function D1 is defined in Eq. (44). There-
fore, one obtains the following bound for the “diagonal”
term:∥∥∥∥∥

sT∑
n=1

P0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥

≤
sT−1∑
n=0

(
D1

(
2c1(n/T)
T	1(n/T)

)
− 1

)(
1 + 2c1(n/T)

T	1(n/T)

)

+
sT−1∑
n=0

12c1(n/T)2

T2	1(n/T)2

≤
sT−1∑
n=0

2c1(n/T)2

T2	1(n/T)2

(
1 − 2c1(n/T)

T	1(n/T)

)−1

+
sT−1∑
n=0

12c1(n/T)2

T2	1(n/T)2
, (57)

where in the last inequality we use [(1 − z2)−1/2 − 1](1 +
z) ≤ z2/[2(1 − z)] for all 0 ≤ z < 1. The exact same
bound holds for the second diagonal term with Q0 in
Eq. (52). The reason is we are treating the eigenspace
of interest and the complementary eigenspace completely
symmetrically. Therefore, exactly the same bounds hold
with P replaced with Q and the above bound must continue
to hold.

For the “off-diagonal” term, we can similarly consider
only the term with Q0 on the left and P0 on the right,
as in Eq. (53), and exactly the same bound holds for the
other off-diagonal term in Eq. (54). Using Theorem 6 with
X (s) = T[I − V†(s − 1/T)] and Y(s) = �(s − 1/T) (note
the slight shift in time), it is possible to show that
∥∥∥∥∥

sT∑
n=1

Q0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥
≤ 1

T

∥∥X̃
( 1

T

)∥∥ + 1
T

∥∥X̃ (s)
∥∥ + 1

T
‖X (s)‖

+ 1
T2

sT−1∑
n=1

∥∥Z
( n

T

)∥∥ + 1
T

sT−1∑
n=1

∥∥X̃
( n+

T

)∥∥ ∥∥DY
( n

T

)∥∥ .

(58)

See Appendix E 2 for the derivation and see the result
in Eq. (E7). We then can derive a sequence of lemmas
in order to bound the norms of the operators, which are
proven in Appendix D:

(a) In Lemma 12, we bound the norms ‖DP‖ and
‖D(2)P‖. The quantity DP(s) is the difference in P
at successive time steps and D(2)P is the difference
in DP. These quantities are bounded in terms of the
bounds on DW and D(2)W.

(b) Lemma 13 gives V in terms of P and a new opera-
tor F .

(c) Lemma 14 uses F to place an upper bound on the
norm of V − I . Because X is T(I − V†), that enables
us to place an upper bound on X .

(d) Lemma 15 provides an upper bound on the norm
of DF , which enables us to place an upper bound
on DV. This uses the upper bounds on ‖DP‖ and
‖D(2)P‖ from Lemma 12.

(e) Lemma 16 places an upper bound on ‖DWA‖
using the upper bound on DV from Lemma 15.
Recall that WA is the ideal step for adiabatic
evolution.

(f) Lemma 17 places an upper bound on ‖D�‖ using
the upper bound on ‖V − I‖ from Lemma 14.

(g) Lemma 18 places upper bounds on ‖X̃ ‖ and ‖DX̃ ‖
in terms of ‖X ‖ and ‖DX ‖. Recall that X corre-
sponds to T(I − V†).

(h) Lemma 19 places upper bounds on the norms of the
A, B, and Z operators. The bound on ‖A‖ uses the
bound on ‖V − I‖ from Lemma 14. The bounds on
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‖B‖ and ‖Z‖ use the bounds on ‖X̃ ‖ and ‖DX̃ ‖ from Lemma 18 as well as the bound on ‖DWA‖ from Lemma 16.
By using these lemmas, we can show that

∥∥X
( n

T

)∥∥ ≤ TD2

(
2c1(n−/T)
T	1(n−/T)

)
, (59)

∥∥X̃
( n

T

)∥∥ ≤ 2T
	0(n/T)

D2

(
2c1(n−/T)
T	1(n−/T)

)
, (60)

∥∥Z
( n

T

)∥∥ ≤ 4T2

	0 (n/T)
D2

(
2c1(n/T)
	1(n/T)

)
D2

(
2c1(n−/T)
	1(n−/T)

)
+ 2Tc1(n/T)
π(1 − cos(	1(n/T)/2))

D2

(
2c1(n−/T)
T	1(n−/T)

)

+ 2TG4(n−/T)
	0(n/T)

D2

(
2c1(n−/T)
T	1(n−/T)

)
+ 2G3(n−/T)

	1(n/T)
, (61)

∥∥DY
( n

T

)∥∥ ≤ D2

(
2c1(n−/T)
T	1(n−/T)

)
, (62)

with D2(x), G3(n/T), and G4(n/T) given in Eqs. (44), (47), and (48), respectively. The details of how to give these
expressions are given in Appendix E 2; see Eqs. (E11), (E12), (E20), and (E21).

Therefore,
∥∥∥∥∥

sT∑
n=1

Q0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥
≤ 2
	0(1/T)

D2

(
2c1(0)
T	1(0)

)
+ 2
	0(s)

D2

(
2c1(s − 1/T)
T	1(s − 1/T)

)
+ D2

(
2c1(s − 1/T)
T	1(s − 1/T)

)

+
sT−1∑
n=1

2
(

1
	0(n+/T)

+ 2
	0(n/T)

)
D2

(
2c1(n/T)
T	1(n/T)

)
D2

(
2c1(n−/T)
T	1(n−/T)

)

+
sT−1∑
n=1

2G3(n−/T)
T2	1(n/T)

+
sT−1∑
n=1

2c1(n/T)
πT[1 − cos(	1(n/T)/2)]

D2

(
2c1(n−/T)
T	1(n−/T)

)
+

sT−1∑
n=1

2G4(n−/T)
T	0(n/T)

D2

(
2c1(n−/T)
T	1(n−/T)

)
.

(63)

Finally, by using Eqs. (57) and (63) in Eq. (50),
we obtain the required overall bound in Eq. (43). �

Because the first form of the discrete adiabatic theorem
is quite complicated, we give a simplified but looser
form in Theorem 3. The key ideas to obtain Theorem
3 from Theorem 7 are as follows: replace the func-
tions c1(s) and c2(s) by Eq. (10), which take into
account neighboring steps; replace the gaps 	k(s) by
	̌(s) as defined in Eq. (14), which takes into account
the minimum gap in neighboring steps; and bound the
higher-order terms by lower-order terms with a slightly
more strict assumption on T, that it is no less than
maxs[4ĉ1(s)/	̌(s)].

By using that bound, we are able to restrict to a regime
where D1 is upper bounded by a constant, whereas D2 and
D3 are upper bounded by linear functions in z. As a result,
the expressions on the right-hand side of Eq. (43) simplify
as follows:

(a) The first three terms in the first line give the first
three terms in Theorem 3.

(b) The sum in the second line simplifies to a sum over
ĉ1(s)2/[T2	̌(s)3], contributing to the first sum in
Theorem 3.

(c) The first sum in the third line gives both
ĉ2(s)/[T2	̌(s)2], contributing to the last sum in
Theorem 3, as well as ĉ1(s)2/[T2	̌(s)3], contribut-
ing to the first sum in Theorem 3.

(d) The second sum in the third line gives ĉ1(s)2/
[T2	̌(s)3] again.

(e) The first sum in the last line gives ĉ1(s)2/[T2	̌(s)3],
ĉ2(s)/[T2	̌(s)2], and ĉ1(s)2/[T2	̌(s)2] after some
simplifications using the bound on T.

(f) The second and third sums in the last line both give
ĉ1(s)2/[T2	̌(s)2].

The complete proof of the second adiabatic theorem is
given in Appendix E 3.
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IV. APPLICATION: SOLVING LINEAR SYSTEMS

A high-level description of the algorithm is as fol-
lows:

(1) The matrix A is described by a block encoding and
the vector b is described by a unitary operation to
prepare |b〉.

(2) From those descriptions, we construct a block
encoding of a Hamiltonian H(s), where an eigen-
state of H(0) is |b〉 and an eigenstate of H(1) is the
solution |A−1b〉.

(3) The unitary operator for the block encoding of H(s),
together with a reflection on the control ancilla,
gives the (unitary) qubitized walk operator W(s).

(4) The discrete sequence of walk operators W(s) for s
varying from 0 to 1 is shown to give a good overlap
with the solution |A−1b〉 via the discrete adiabatic
theorem.

(5) At the end, we apply filtering via a linear combi-
nation of powers of W(1) in order to obtain |A−1b〉
with precision ε. If there is failure of the filtering,
then the adiabatic evolution is repeated.

The error in the discrete walk is shown to scale as a con-
stant times κ/T, so one can take T proportional to κ to
obtain reasonable overlap with the solution. The use of
a walk here, instead of Hamiltonian evolution as in prior
work, gives complexity that is strictly linear in κ . It is the
final filtering that gives the solution to accuracy ε and gives
the multiplicative factor of log(1/ε) in the complexity.
The filtering method is described in Sec. V and improves
over prior work by using a more efficient form of linear
combinations of unitaries.

A. Preparing the walker

In this section we apply Theorem 7, about adiabatic
evolution in the discrete setting, to solve the quantum
linear-systems problem. The key feature is to transform the
Hamiltonian into a discrete quantum walk. This is done
via qubitization [23,24]. That is, when there is a block
encoding of the Hamiltonian, one can simply combine the
unitary operation that is used for the block encoding with
a reflection on the ancilla qubits used and one obtains a
step of a walk with eigenvalues related to those of the
Hamiltonian. We show that this discrete walk can be used
for adiabatic evolution in a similar way as the continuous
Hamiltonian evolution.

In adiabatic quantum computation, one usually uses a
Hamiltonian that is a combination of two Hamiltonians, as

H(s) = [1 − f (s)]H0 + f (s)H1, (64)

where the function f (s) : [0, 1] → [0, 1] is called the
schedule function. Normally, H0 is the Hamiltonian where

the ground state is easy to prepare and H1 is the one
where the ground state encodes the solution of the prob-
lem that we are trying to determine. For the case of
linear-systems solvers, the ground state of H(1) should
encode the normalized solution for a linear system. In other
words, for A ∈ CN×N an invertible matrix with ‖A‖ = 1
and a normalized vector |b〉 ∈ CN , the goal is to pre-
pare a normalized state |x̃〉 that is an approximation of
|x〉 = A−1 |b〉 /‖A−1 |b〉 ‖. For precision ε of the approxi-
mation, we require ‖ |x̃〉 − |x〉 ‖ ≤ ε. One can also bound
the error in terms of ‖ |x̃〉 〈x̃| − |x〉 〈x| ‖, as has been done
in some prior work [14,15], which is asymptotically equal
(for small error). Translating this problem to our theorem
for the adiabatic evolution, |x̃〉 would be the state achieved
from the steps of the walk and |x〉 would be obtained from
the ideal adiabatic evolution.

Beginning with the simplest case, where A is Hermitian
and positive definite, one takes the Hamiltonians [15]

H0 :=
(

0 Qb
Qb 0

)
(65)

and

H1 :=
(

0 AQb
QbA 0

)
, (66)

where Qb = IN − |b〉 〈b|. The state |0, b〉 is an eigenstate of
H0 with eigenvalue 0 and one would aim for this to evolve
adiabatically to eigenstate |0, A−1b〉 of H1. There is also an
eigenstate |1, b〉 for both H0 and H1 with the same eigen-
value 0 but it is orthogonal and we show that there is no
crossover in the ideal adiabatic evolution using the walk.

Denoting the condition number of the matrix as κ , a
lower bound for the gap of H(s) is [15]

	0(s) = 1 − f (s)+ f (s)/κ . (67)

Note that according to Definition 2,	0(s) is a lower bound
on the exact gap between the eigenvalues, so we use an
equality here rather than an inequality.

Since the goal is to obtain a schedule function that slows
down the evolution as the gap becomes small, a standard
condition for the schedule is [25]

ḟ (s) = dp	
p
0(s), (68)

where f (0) = 0, p > 0 and dp = ∫ 1
0 	

−p
0 (u) du is a nor-

malization constant chosen so that f (1) = 1. It is possible
to show that [15]

f (s) = κ

κ − 1

[
1 − (

1 + s
(
κp−1 − 1

)) 1
1−p

]
(69)

satisfies Eq. (68) but with 	0(s) replaced with the lower
bound on the gap from Eq. (67). This schedule function has
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two properties that have useful applications in estimating
the upper bounds for the difference between consecutive
walker operators, namely that f (s) is monotonic increasing
and that ḟ (s) is monotonic decreasing.

Distinct from the continuous version of the adiabatic
theorem, in our discrete version of the theorem, we have
to take into account the gap between the different groups
of eigenvalues of W(s) for s, s + 1/T, and s + 2/T, as
described in Eq. (12). From the property that the gap
function is monotonically increasing, we have

	k(s) = 1 − f (s + k/T)+ f (s + k/T)/κ , k = 0, 1, 2.
(70)

To address the case where A is not positive definite or Her-
mitian, we take a different approach than Ref. [14]. We take
the Hamiltonian

H(s) =
(

0 A[f (s)]Qb
QbA[f (s)] 0

)
, (71)

where

A(f ) := (1 − f )σz ⊗ IN + f A =
(
(1 − f )I fA

fA† −(1 − f )I

)

(72)

with

A :=
(

0 A
A† 0

)
, (73)

and Qb = I2N − |1, b〉 〈1, b| is a projection. This is equiva-
lent to taking H(s) = [1 − f (s)]H0 + f (s)H1 with

H0 = σ+⊗ [(σz ⊗ IN )Qb] + σ−⊗ [Qb(σz ⊗ IN )] (74)

H1 = σ+⊗ [AQb] + σ−⊗ [QbA] , (75)

where σ+ = |1〉 〈0|, σ− = |0〉 〈1|.
Then, it is found that

H 2(s) =
(

A[f (s)]QbA[f (s)] 0
0 QbA2[f (s)]Qb

)
(76)

As per the analysis in the Supplemental Material of Ref.
[14], the spectra of A[f (s)]QbA[f (s)] and QbA2[f (s)]Qb
are identical. Moreover, following that analysis, the gap
of A[f (s)]QbA[f (s)] is lower bounded by the minimum
eigenvalue of A2[f (s)]. In this case, since

A2(f ) =
(
(1 − f )2I + f 2AA† 0

0 (1 − f )2I + f 2A†A

)
,

(77)

the minimum eigenvalue is (1 − f )2 + (f /κ)2. This trans-
lates to a minimum gap of H(s) of

√
[1 − f (s)]2 + (f (s)/κ)2. To avoid the need to use this

formula, one can use the relation that for 0 ≤ f (s) ≤ 1,

√
[1 − f (s)]2 + (f (s)/κ)2 ≥ (1 − f (s)+ f (s)/κ)/

√
2.
(78)

By using the qubitized quantum walk for the implemen-
tation of W, we can avoid the logarithmic factor in the
complexity that arises from using the Dyson series to
simulate continuous Hamiltonian evolution.

In order to block encode the Hamiltonian H(s), one can
use block encodings of both H0 and H1, supplemented with
an ancilla qubit that is rotated to select between H0 and H1.
The rotation is given by

R(s) = 1√
(1 − f (s))2 + f (s)2

(
1 − f (s) f (s)

f (s) −[1 − f (s)]

)
.

(79)

To block encode A[f (s)], instead of using symmetric rota-
tions, we use the initial rotation R(s), then apply the
controlled operations

SEL = |0〉 〈0| ⊗ U0 + |1〉 〈1| ⊗ U1, (80)

where U0 and U1 are unitaries used for the block encod-
ings of σz ⊗ IN and A. Then, after this operation, instead
of applying the inverse of R(s), we simply perform a
Hadamard. This means that, instead of block encoding
A[f (s)], we have block encoded

1√
2[[1 − f (s)]2 + f (s)2]

A[f (s)]. (81)

This prefactor is between 1/
√

2 and 1 and it reduces the
gap. Thus the overall gap is reduced by a maximum factor
of 2. That is, when we consider the gap of the block encod-
ing when A is not positive definite, one can keep using the
same schedule function from Eq. (69) but the spectral gaps
can instead be lower bounded by

	′
k(s) = [1 − f (s + k/T)+ f (s + k/T)/κ] /2,

k = 0, 1, 2. (82)

In order for the walk operator constructed as in Refs.
[23,24] to have the simple relation with the eigenvalues of
the Hamiltonian, the unitary used for the block encoding
of the Hamiltonian needs to be self-inverse. That can be
achieved by constructing a symmetric sequence of oper-
ators such that applying the unitary twice in succession
gives the identity. For the complete qubitization of H(s) as
in Eq. (71), the principle is to apply Qb in a controlled way
before and after A[f (s)], making the sequence symmetric.
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Similarly, instead of applying R(s) at the beginning and the
Hadamard at the end, we apply it in a controlled way each
time, reversing the order between the two blocks.

The qubitized operator W(s) is then obtained by com-
bining the block encoding of H(s) with a reflection on the
control qubits. For a complete description of the procedure
for block encoding the Hamiltonian, see Appendix F.

B. Choosing values for c1(s) and c2(s)

Now, to apply Theorem 3 for the QLSP, two things
that should be estimated are the functions c1(s) and
c2(s), which in turn require upper bounds for DW(s) and
D(2)W(s). In order to bound the difference in W(s), we can
use the fact that the only way W(s) is dependent on s is
through R(s). The key feature of this operation is that it

has R(s) in two cross-diagonal blocks (in the matrix repre-
sentation). As a result, the spectral norm of the difference
of operators is equal to the spectral norm of the difference
of R(s). Note that this feature is identical regardless of the
specific way of encoding H in terms of A from the pre-
ceding subsection. All that is required is that H0 and H1
are combined using the rotation R(s). The result can be
described as in the following lemma.

Lemma 8: For any 0 ≤ s ≤ 1 − 1/T, with W(s) encoded
using the block encoding of H(s) where H0 and H1 are
combined using the rotation R(s) given in Eq. (79), it is
consistent with Definition 1 to choose

c1(s) = 2T[f (s + 1/T)− f (s)] (83)

and

c2(s) =
{

2 maxτ∈{s,s+1/T,s+2/T}
(
2|f ′(τ )|2 + |f ′′(τ )|) , 0 ≤ s ≤ 1 − 2/T,

2 maxτ∈{s,s+1/T}
(
2|f ′(τ )|2 + |f ′′(τ )|) , s = 1 − 1/T.

(84)

Proof. As discussed above, to bound the difference in
W(s), we can use the difference in the rotation operation
R(s), which can be upper bounded as

‖R(s + 1/T)− R(s)‖ =
∥∥∥∥
∫ s+1/T

s

dR
ds

ds
∥∥∥∥

=
∥∥∥∥
∫ s+1/T

s

dR
df

df
ds

ds
∥∥∥∥

≤
∫ s+1/T

s

∥∥∥∥dR
df

df
ds

∥∥∥∥ ds

≤ 2
∫ s+1/T

s

∣∣∣∣df
ds

∣∣∣∣ ds

= 2 (f (s + 1/T)− f (s)) . (85)

Here, we upper bound the norm of dR/df by 2. To show
this, we take the derivative of R(s) with respect to f ,

dR
df

= 1
[(1 − f (s))2 + f (s)2]3/2

( −f (s) 1 − f (s)
1 − f (s) f (s)

)
,

(86)

so the norm of dR/df is 1/[[1 − f (s)]2 + f (s)2], which
varies between 1 and 2. We also use the fact that df /
ds > 0. Since ‖W(s + 1/T)− W(s)‖ = ‖R(1 + 1/T)−

R(s)‖ and c1(s) required in Definition 1 to satisfy

‖W(s + 1/T)− W(s)‖ ≤ c1(s)
T

, (87)

we can take c1(s) as in Eq. (83).
Now, for the second difference of the walk operator, we

use Taylor’s theorem in two directions to give

W(s + 2/T) = W(s + 1/T)+ 1
T

dW(s + 1/T)
ds

+
∫ s+2/T

s+1/T
(s + 2/T − τ)

d2W(τ )
dτ 2 dτ (88)

and

W(s) = W(s + 1/T)− 1
T

dW(s + 1/T)
ds

+
∫ s+1/T

s
(τ − s)

d2W(τ )
dτ 2 dτ . (89)

That gives

‖D(2)R(s)‖ =
∥∥∥∥
∫ s+2/T

s+1/T
(s + 2/T − τ)R′′(τ )dτ

+
∫ s+1/T

s
(τ − s)R′′(τ )dτ

∥∥∥∥
≤ 1

T2 max
τ∈[s,s+2/T]

‖R′′(τ )‖. (90)
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Moving to the second derivative of R(s), we have

d2R(s)
ds2 = d2R

df 2

(
df (s)

ds

)2

+ dR
df

df 2(s)
ds2 , (91)

where

d2R
df 2 = 1

[(1 − f (s))2 + f (s)2]5/2

×
(
(4f (s)− 1)f (s)− 1 (4f (s)− 7)f (s)+ 2
(4f (s)− 7)f (s)+ 2 [1 − 4f (s)]f (s)+ 1

)
,

(92)

and its norm is
√

16(f (s)− 1)f (s)+ 5
[2(f (s)− 1)f (s)+ 1]4 , (93)

which varies between
√

5 and 4. Then, we conclude that

∥∥D(2)R(s)
∥∥ ≤ 2

T2 max
τ∈{s,s+1/T,s+2/T}

(
2|f ′(τ )|2 + |f ′′(τ )|) .

(94)

Now, we have ‖D2W(s)‖ = ‖D2R(s)‖ and Definition 1
requires that ‖D2W(s)‖ ≤ c2(s)/T2, so we can take c2(s)
as in Eq. (84). �

C. Linear κ for p = 3/2

Our next step is to show the strict linear dependence in
κ for the QLSP based on our discrete adiabatic theorem. In
the continuous case, it has been shown in Ref. [15] that
for all 1 < p < 2, the corresponding AQC-based linear-
systems solver can achieve κ/ε scaling. This suggests that
taking p as the midpoint of 3/2 will give high efficiency.
Here, we consider this case to estimate the constant factors
in the algorithm.

Theorem 9: (strict linear dependence in κ). Consider solv-
ing the QLSP Ax = b for a normalized state |A−1b〉, where
‖A‖ = 1 and ‖A−1‖ = κ . By using T ≥ max(κ , 39

√
κ)

steps of a quantum walk and the schedule function of
Eq. (69) with p = 3/2, the error in the solution may be
bounded as

‖U(s)− UA(s)‖ ≤ 44864
κ

T
+ O

(√
κ

T

)
, (95)

using the encoding of H(s) as in Eq. (71).

Proof. In Theorem 3, there are six terms to bound, three
which are individual terms and three of which are sums.

The details of the derivations of bounds on these are given
in Appendix G. Namely, for the individual terms, it is
shown in Appendix G 1 [Eqs. (G5), (G10) and (G11)] that

ĉ1(0)

T	̌(0)2
= 4

√
κ

T
+ O

( κ
T2

)
, (96)

ĉ1(1)

T	̌(1)2
= 4κ

T
+ O

( κ
T2

)
, (97)

ĉ1(1)

T	̌(1)
= 4

T
+ O

(
1
T2

)
, (98)

and for the sums with c1(s), it is shown in Appendix G 2
that

T−1∑
n=1

ĉ1(n/T)2

T2	̌(n/T)3
= 16κ

T
+ O

(
κ3/2

T2

)
, (99)

T−1∑
n=0

ĉ1(n/T)2

T2	̌(n/T)2
≤ 16κ

T
+ O

(√
κ

T

)
. (100)

Finally, for the sum with c2(s), it is shown in Appendix G 3
that

T−1∑
n=1

ĉ2(n/T)

T2	̌(n/T)2
≤ 22κ

T
+ O

(
κ3/2

T2

)
. (101)

These results are for the case where A is positive definite
and Hermitian. However, we are interested in the general
case of A with the qubitized implementation of W, which
has the gap given by Eq. (82). This means that the upper
bounds on the terms with 	̌(s), 	̌(s)2 and 	̌(s)3 in the
denominator may be multiplied by 2, 4, and 8, respec-
tively. Then, by adding all the inequalities above, after the
respective corrections of the gaps of the general case, and
including the constant factors in Theorem 3, we obtain the
total upper bound in Eq. (95). Note that we only include the
leading term proportional to κ/T and terms with scalings
such as κ3/2/T2 are order

√
κ/T due to the requirement that

T > κ .
There are two further subtleties in using the adiabatic

algorithm for the solution. One is that the zero eigenvalue
of the Hamiltonian is degenerate, with one giving the solu-
tion and the other just the state |b〉 but with a bit flip in
an ancilla. Because these eigenstates are orthogonal (due
to the bit flip), there is no crossover between them in the
adiabatic evolution. This means that the degeneracy has no
effect on the quality of the solution (see Appendix H).

A further subtlety is that the qubitized quantum walk
yields two eigenstates for each eigenstate of the Hamilto-
nian. For the case here, the eigenvalue of the Hamiltonian
we are interested in is 0, which gives eigenvalues ±1 of the
walk operator. We may use the discrete adiabatic theorem
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separately on each of these eigenvalues to show that the
eigenstate is preserved in the discrete adiabatic evolution.
The problem is that we need to have a positive superpo-
sition of these two eigenstates, which means that there
should be no relative phase factor introduced in the adi-
abatic evolution. It is shown that there is no relative phase
factor in Appendix H. Therefore, neither of these subtleties
has an effect on the solution and no adjustment to the
bounds is required. �

D. General p

In this subsection, we show that the κ/ε scaling also
holds for all 1 < p < 2 in the discrete setting. This result
is more general but due to a number of approximations will
not be as tight an estimate as that for the specific case of
p = 3/2. Since here we do not assume a specific value of
p , the direct-computation approach in proving Theorem
9 is not applicable. Instead, we approximate the upper
bound of the discrete error by some continuous integrals
and then bound both the integrals and the approximation
errors. More precisely, we first note that in Theorem 3, the
dominant terms are the last three terms, the summations
over equidistant discrete time steps. These summations are
exactly in the form of Riemann sums and approximate
some integrals. Then, the dominant part of the discrete adi-
abatic errors can be bounded by some integrals plus the
difference between the integrals and corresponding Rie-
mann sums. Similar to what has been shown in Ref. [15],
the integrals scale exactly O(κ/T). The difference between
the integrals and Riemann sums is indeed of higher order
according to the error bound of the first-order quadra-
ture formula. Combining all these together, we can prove
that the discrete adiabatic error for general 1 < p < 2 also
scales as O(κ/T), which further implies an O(κ/ε) com-
plexity of the discrete AQC-based algorithm to solve the
linear-systems problem within ε error.

We summarize the main result in the following theorem.
A detailed proof is given in Appendix I.
Theorem 10: (linear dependence on κ for general p). Con-
sider using T steps of the discrete adiabatic evolution with
the schedule function defined in Eq. (69) for 1 < p < 2 to
solve the QLSP with general matrix A. Then:

(1) For any κ > 2 and T ≥ 38dp = O(κp−1), with dp =∫ 1
0 	

−p
0 (u) du, there exists a positive constant Cp ,

which only depends on p, such that the differ-
ence between the discrete adiabatic evolution and
the solution of the linear-systems problem can be
bounded by

Cp

(
κ

T
+ κp−1

T
+ κ

T2 + 1
T

)
. (102)

(2) In order to prepare an ε approximation of the
solution of the linear-systems problem, it suffices

to choose

T = O
(κ
ε

)
. (103)

We give an explicit formula for Cp in Eq. (I50) in
Appendix I. We remark that Theorem 10 only guarantees
the asymptotic performance of the discrete AQC-based
solvers and the preconstant Cp is much larger than we
obtained in Theorem 9 for p = 3/2 and for what we
observe numerically for the other values. This is because
in Theorem 10 we use a general proof strategy, which is
applicable for all 1 < p < 2 at a sacrifice of using poten-
tially unnecessary inequalities to simplify the analysis.

E. Numerical results

We first report the numerical results for the case where
A is a Hermitian and positive-definite matrix. In order to
compute these results, we use the bound in Theorem 7
(rather than any specific examples of A). Theorem 7 can
give much tighter bounds than Theorem 9 if we do not
use the approximations made in deriving that theorem but
requires computation for example values of κ , p , and T.
Rather than using the upper bounds for the first and second
differences of the walk operator from Lemma 8, we exactly
compute the norm of DR and D(2)R in order to give values
of c1(s) and c2(s) in Theorem 7. We also account for the
fact that the actual gap for the quantum walk operator is the
arcsin of that in Eq. (82) and solve the differential equation
for the scheduling function with the actual gap.

In Fig. 2, we show the numerical results for the (upper
bound on the) error as a function of the condition number
κ of the matrix A. That is, we replace the arbitrary gap
dependence in the upper bound of Theorem 7 by the gap of
the QLSP given in Eq. (67) and then we use a fixed number
of steps T = 105 and three different values of p . In each
case, it can be seen that the error is approximately linear

10 20 30 40 50

0.5

1.0

1.5

bo
un

d

p =1.0

p =1.3

p =1.8

FIG. 2. The upper bound on the error in the adiabatic evolution
versus the condition number κ for a range of values of p used in
the scheduling function f (s). The upper bound on the error is
computed using Theorem 7 and in all cases the number of steps
of the walk is T = 105.
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FIG. 3. The upper bound on the error in the adiabatic evolution
as a function of p used in the scheduling function f (s). In this
plot, we use constant values κ = 40 and T = 105.

in κ , which is what results in an overall complexity that
is linear in κ . The different values of p result in different
scaling constants with values close to 1 or 2 giving poorer
scaling, which is as expected, since we require 1 < p < 2.

To more clearly see the dependence of the error in p ,
in Fig. 3 we show the error as a function of p for con-
stant κ (of 40). In this case, it turns out that the smallest
error is for p = 1.3, which is on the lower side of the
range (1, 2) and smaller than the value p = 3/2 chosen for
Theorem 11. From Fig. 3, we can also estimate the con-
stant factors for the κ/T scaling of the error. In the case
with p = 3/2, for instance, as used in Theorem 9, we have
‖U(s)− UA(s)‖ � 2305κ/T. The estimate of the constant
factor in Theorem 9 is around 20 times larger. This is not
unreasonable considering the many approximations made,
though it indicates that the constant factor in the analysis
can be improved by a more careful analysis.

V. FILTERING FOR SOLVING LINEAR
EQUATIONS

To provide a solution to linear equations using the
adiabatic method, one can use the approach of Ref. [16],

where the initial adiabatic algorithm is used to find the
solution to some constant error (independent of ε) and
then the solution can be filtered. The approach used in
Ref. [16] is to apply filtering by singular-value processing
(similar to quantum signal processing), which is efficient
and only needs one ancilla qubit but has the drawback that
it requires a highly complicated procedure for finding the
correct rotation angles. Here, we provide a method using a
linear combination of unitaries with similar efficiency and
only requiring two ancilla qubits (one more than singular-
value processing). This has the advantage that it is much
simpler to determine the sequence of gates needed.

For filtering by a linear combination of unitaries with
weights wj , we would initially prepare the control register
in the state

1√∑
j wj

∑
j

√
wj |j 〉 . (104)

Given that we are performing j steps of the walk and
the input system state is an eigenvector of the walk with
eigenvalue eiφ , the resulting state is

1√∑
j wj

∑
j

√
wj eijφ |j 〉 . (105)

The inner product with the state in Eq. (104) gives

1∑
j wj

∑
j

wj eijφ . (106)

In practice, the adiabatic walk prepares the target register
in a superposition of the eigenstates

|ψ〉 =
∑

k

ψk |k〉 , (107)

|0〉 R0 • • • R†
0 〈0|

|0〉 R1 • • • R†
1 〈0|

|0〉 R2 • • • R†
2 〈0|

|0〉 R3 • R†
3 〈0|

|ψ〉 W W W W

FIG. 4. A linear combination of steps using control registers prepared in unary using a linear sequence of controlled rotations. The
state |ψ〉 would be the state output by the adiabatic walk and W is used to indicate the final walk step W(1) from the adiabatic walk. In
this example, the four control qubits would encode |j 〉 in unary and the rotations would prepare the amplitudes proportional to √wj .
The rotations on the right invert this preparation. Given that the control qubits are measured in the state |0〉, the target will be in a state
proportional to that given in Eq. (108).
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where we are using |k〉 to indicate the eigenstate of W(1)
corresponding to eigenvalue φk. The state after applying
the linear combination of unitaries is then

1∑
j wj

∑
j ,k

wjψkeijφk |k〉 =
∑

k

w̃(φk)ψk |k〉 , (108)

where

w̃(φ) = 1∑
j wj

∑
j

wj eijφ . (109)

Note that the state is not normalized, with the norm giving
the probability of the success of this linear combination
of unitaries. We aim to have w̃(φ) = 1 for φ in the spec-
trum of interest, which is {0,π} for the solution of linear
equations. Now, let us assume that the initial probability
of the state on the spectrum of interest is at least 1/2. One
can then show that the resulting normalized state obtained
after the filtering has error, as quantified by the norm of the
difference of states, upper bounded by

max
k∈⊥

w̃(φk), (110)

where ⊥ is the set of k such that φk is not in the spectrum
of interest (so eiφk �∈ σP) (for the proof, see Appendix J).

The result of this reasoning is that to bound the error
in the filtering, we need to bound the maximum of w̃(φk),
which is minimized by the Dolph-Chebyshev window.
This is obtained by taking the discrete Fourier transform
of the Chebyshev polynomials, so that w̃(φ) is given
by Chebyshev polynomials in a similar way as for Ref.
[16]. In particular, the Fourier transform of the Dolph-
Chebyshev window is given by

w̃(φ) = εT� (β cos (φ)) (111)

for φ taking discrete values πk/� for k from −� to �

and where β = cosh[ 1
�

cosh−1(1/ε)]. Taking the discrete
Fourier transform of these values gives the window and
the Fourier transform simply yields the formula for w̃(φ)
in terms of Chebyshev polynomials. One obtains powers
of e2iφ from −�/2 to +�/2, which means that we need a
maximum power of eiφ of �. One can obtain the positive
and negative powers simultaneously with negligible cost
by simply controlling whether the reflection is performed
in the qubitization. As a result, the cost in terms of calls to
the block-encoded matrix is �, as compared to 2� for the
singular-value-processing approach.

The peak for w̃(φ) will be at 0 and π , which is what is
needed because the qubitized operator produces duplicate
eigenvalues at 0 and π . The width of the operator can be
found by noting that the peak is for the argument of the

Chebyshev polynomial equal to β and the width is where
the argument is 1, so β cos(φ) = 1. This gives us

cosh[ 1
�

cosh−1(1/ε)] cos(φ) = 1. (112)

Now, because the width of the peak should be equal to the
gap and the gap is 1/κ , we can replace φ with 1/κ and
solving for � gives

� = cosh−1(1/ε)
cosh−1[1/ cos(1/κ)]

≤ κ ln(2/ε). (113)

Note that Eq. (112) is for finding the width given an integer
� but solving for � with a width of 1/κ , we should round �
up to the nearest integer to provide a width no larger than
κ .

In comparison, in Ref. [16] the error is given as 2e−√
2�	,

which would imply that one can take � ≈ √
1/2κ ln(2/ε).

Since the order of the polynomial is 2�, which is also the
number of applications of the block encoding needed, this
would imply a cost of

√
2κ ln(2/ε), which is greater than

what we have here by a factor of
√

2. However, it turns out
that the scaling given in Ref. [16] is overly conservative
and the actual scaling is 2e−2�	, which then gives the same
complexity as we have here.

Next, we consider how to apply the linear combination
of unitaries with minimum ancilla qubits. To do this, we
first represent the control registers in unary. That is, for
each of the � controlled operations, we use a single qubit
that is 1 or 0 depending on whether or not this opera-
tion is to be performed. It may seem counterproductive to
expand the size of the ancilla in this way but it has the
advantage that it has a simple state-preparation procedure,
where an initial qubit is rotated and then the following
qubits are prepared by controlled rotations. When doing
this procedure, we can apply a just-in-time preparation pro-
cedure, where each qubit is prepared just as it is needed
to be used as a control. An example of this is shown in
Fig. 4.

Then, in inverting the preparation, one could simply per-
form the reverse of all the controlled rotations as in Fig. 4.
However, the trick is that the sequential state-preparation
procedure for the unary can be performed from either end.
The preparation could be achieved by performing rotations
starting from the last qubit and working back to the first.
We do not do that for the preparation but we do the reverse
of that for the inverse preparation. An example of this is
shown in Fig. 5. Then, the operations are performed in a
sequence from the first qubit to the last, the same as for
the preparation. That means that we only need to use two
ancillas at once, by rearranging the operations as shown in
Fig. 6. See Appendix J for a more explicit description of
the sequence of rotations.

The major advantage of this procedure over singular-
value processing or quantum signal processing is that there
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|0〉 R0 • • R′
0 〈1|

|0〉 R1 • • R′
1 〈1|

|0〉 R2 • • R′
2 〈1|

|0〉 R3 • R′
3 〈1|

|ψ〉 W W W W

FIG. 5. A linear combination of steps using control registers prepared in unary using a linear sequence of controlled rotations but
with the inverse preparation performed with the linear sequence in the reverse order.

is a very simple prescription for finding the sequence of
operations. A second advantage is that, instead of the mea-
surement being performed at the end, the measurements
are performed sequentially and a failure (the incorrect mea-
surement result) can be flagged early. That means that in
cases where there is a failure, it will on average be flagged
halfway through, with the result that half the number of
operations are needed, since one can discard the state and
start again.

Combining our result for the solution of QLSP with the
filtering, we find that the overall complexity of the QLSP
algorithm can be given as O[κ log(1/ε)]. In particular, the
result is as follows.

Theorem 11: (QLSP with linear dependence on κ). Let
Ax = b be a system of linear equations, where A is an
N-by-N matrix with ‖A‖ = 1 and ‖A−1‖ = κ . Given an
oracle block encoding the operator A and an oracle
preparing |b〉, there exists a quantum algorithm that pro-
duces the normalized state |A−1b〉 to within error ε in
terms of the �2 norm, using an average number

O[κ log(1/ε)] (114)

of oracle calls.

Proof. In this theorem, we use standard assumptions that
access to the oracles includes forward, reverse, and con-
trolled uses. We initially apply the oracle for preparing |b〉
to prepare the initial state. This preparation is also used
to construct the projection operator Qb. Together with the
oracle for block encoding A, we can construct the oper-
ator for block encoding H(s) as described in detail in
Appendix F. A reflection on the ancillas yields the walk
operator.

Now use the discrete adiabatic theorem for the QLSP
as given in Theorem 10 for fixed precision, such as 1/2.
That step has complexity O(κ) and the only error is the
overlap with other states that are not the solution. Next,
use the filtering as described above, which has complexity
O[κ log(1/ε)]. In the case of success, one has produced
the state |A−1b〉 to within norm-distance ε. In the case of
failure of the filtering, repeat the procedure. Since the prob-
ability of success may be made at least 1/2 by suitably
choosing the fixed precision for the adiabatic procedure,
the adiabatic and filtering steps need only be applied 2
times on average before success. This gives a factor of 2 to
the total complexity of O(κ) plus O[κ log(1/ε)]. The total
complexity is therefore O[κ log(1/ε)] as claimed. �

Perhaps surprisingly, in this complexity, the largest
asymptotic complexity is for the filtering step, because it

|0〉 R0 • • R′
0 〈1|

|0〉 R1 • • R′
1 〈1|

|0〉 R2 • • R′
2 〈1|

|0〉 R3 • R′
3 〈1|

|ψ〉 W W W W

FIG. 6. A linear combination of steps using control registers prepared in unary but with the order of the operations changed so that
we only need to use two ancilla qubits at a time.
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has a factor of log(1/ε), which is absent from the adiabatic
step. In practice, we find quite large constant factors for
the adiabatic evolution, so it is likely that the adiabatic step
will still be the most costly part of the algorithm for realis-
tic values of the parameters. In particular, for the numerical
calculation of the upper bound, it is found that the scaling
constant is about 638, so to obtain our requirement of an
initial probability on the spectrum of interest of at least 1/2
(corresponding to needing to repeat the algorithm twice on
average), we would need about 834κ steps of the adiabatic
evolution. In contrast, the ln(2/ε) factor is only about 20
for ε as one part in 109.

VI. CONCLUSIONS

In this work, we show the first QLSP algorithm that
scales optimally in terms of the condition number. We
achieve this by adapting prior algorithms for the QLSP
based on adiabatic evolutions so that they do not require
the additional overhead of the Dyson-series algorithm for
precisely evolving under time-dependent Hamiltonians on
a gate-model quantum computer. Instead, we show that one
can directly discretize the time evolution using quantum
walks and that the error in this procedure can be obtained
using a discrete adiabatic theorem. We also obtain rigor-
ous new error bounds on the performance of those discrete
adiabatic theorems.

While this improvement is “only” by a log factor, the
fact that we can asymptotically match the lower bound is
of fundamental interest. Furthermore, there is widespread
anticipation that compelling practical applications of the
QLSP may eventually be found and that error-corrected
quantum computers capable of realizing those applications
may eventually be realized. Should this occur, then it will
be crucial to program those devices using the best possi-
ble scaling versions of these algorithms in order to have
the fastest implementations requiring the least overhead
due to error correction. Our expectation is that the QLSP
approach described in this paper would be more perfor-
mant than any other approach in the literature both in terms
of asymptotic scaling and also in terms of the constant
factors associated with realizing finite instances. Thus, we
also foresee practical value in these results.

As well as scaling optimally in the condition number,
our algorithm scales optimally in terms of the combina-
tion of the condition number and the precision ε. As has
recently been proven, a lower bound to the complexity is
O[κ log(1/ε)] [17]. Our result matches this lower bound,
showing that it is optimal. It is interesting that the complex-
ity is multiplicative between κ and log(1/ε), in contrast
to Hamiltonian simulation, which is additive between the
time and log(1/ε). In this approach to solving linear equa-
tions, the log(1/ε) factor only comes from the filtering
step, which in practice would have lower complexity than
the initial adiabatic step.

Another question is the scaling with the sparsity in the
case where the matrix is sparse and given by oracles for
positions of nonzero entries. In this work, we give the com-
plexity in terms of calls to a block encoding of the matrix,
rather than those more fundamental oracles. The lower
bound in terms of those oracles has a multiplicative fac-
tor of

√
d in the sparsity d. One could obtain such a scaling

if there was a way of block encoding the matrix with com-
plexity

√
d but the standard methods are linear. It is shown

in Ref. [9] how to simulate a Hamiltonian with complexity√
d up to logarithmic factors using a nested-interaction-

picture approach. One could use that combined with the
adiabatic approach to obtain this scaling with sparsity but
it would reintroduce logarithmic factors, so the complexity
would no longer be strictly linear in κ .

More generally, we expect that other quantum algo-
rithms based on continuous time evolutions might benefit
from using discrete-time adiabatic algorithms. For exam-
ple, there are quantum algorithms for optimization that use
adiabatic evolution. There has been some analysis demon-
strating that discrete adiabatic evolution could be used in
Ref. [26] but our analysis here is far tighter. There has
also been recent work showing that digital adiabatic sim-
ulation based on Trotter-type formulas is robust against
discretization [27], whereas our approach does not intro-
duce any discretization error, since we directly invoke the
discrete adiabatic theorem. Our analysis here could be
tightened further in terms of the constant factors. There is
over an order of magnitude difference between the numeri-
cal results and the analytically proven scaling constants. A
more careful accounting for the inequalities could tighten
this difference, but we do not do that in this work because
our analysis is already very lengthy.
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APPENDIX A: LIST OF VARIABLES

Here, we give a list of variable names with links to their
definitions.
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1. List of variables presented in Sec. II

(a) W(s)—The discrete-walk operator
(b) n—An integer index used for the discrete-walk

operators, so s = n/T
(c) U(s)—The product of walk operators up to s
(d) P(s)—The projector onto the spectrum of interest
(e) Q(s)—The projector onto the complementary spec-

trum
(f) UA(s)—The ideal adiabatic evolution, in contrast to

U(s) given by the actual walk operators
(g) WA(s)—Ideal adiabatic walk operators that exactly

preserve eigenstates
(h) s—A variable used to index adiabatic evolution,

starting from 0 and ending at 1
(i) T—An integer corresponding to the number of

discrete-walk operators in discrete adiabatic evolu-
tion

(j) D—A difference operator; so, for example, DW(s)
= W(s + 1/T)− W(s)

(k) D(k)—The iterated difference operator
(l) ck(s)—A bound on the norm of D(k)W(s) as in

Definition 1
(m) ĉk(s)—The maximum of ck(s) over neighboring

time steps, as in Eq. (10)
(n) σP(s)—The spectrum of interest
(o) σQ(s)—The complementary spectrum
(p) σ (k)P —An arc including the spectrum σP(s) at k + 1

successive steps, as in Eq. (12)
(q) σ (k)Q —Similar to σ

(k)
P but for the complementary

spectrum
(r) 	k(s)—The gap between the spectra accounting for

k + 1 successive steps; see Definition 2
(s) 	(s)—The gap accounting for up to three succes-

sive steps as defined in Eq. (13)
(t) 	̌(s)—The maximum of	(s) accounting for neigh-

boring steps; see Eq. (14)

2. List of variables presented in Sec. III

(a) R(s, z)—The resolvent of W(s); see Eq. (20)
(b) S(s, s′)—The operator exactly mapping from the

spectrum at step s′ to s; see Eq. (21). We also use
S(s) = S(s + 1/T, s)

(c) V(s, s′)—The unitary obtained from a polar decom-
position of S(s, s′); see Eq. (23). We also use V(s) =
V(s + 1/T, s)

(d) V(s, s′)—The correction to obtain V(s, s′) from
S(s, s′). We also use V(s) = V(s + 1/T, s)

(e) �(s)—The wave operator, accounting for the differ-
ence between the ideal and adiabatic walk; see Eq.
(16)

(f) (s)—The ripple operator, corresponding to a step
of �(s); see Eq. (28)

(g) K(s)—The kernel function; see Eq. (29)

(h) X (s)—This operator is arbitrary in the summation-
by-parts formula in Theorem 6 but then is used
as T[I − V†(s − 1/T)] in the proof of the adiabatic
theorem

(i) Y(s)—Again, this operator is arbitrary in the
summation-by-parts formula but then it is used as
�(s − 1/T) in the proof of the adiabatic theorem

(j) X̃ (s)—Obtained from a contour integral of X (s) as
in Eq. (39)

(k) A(s)—A variable used in the proof of the discrete
adiabatic theorem; see Eq. (40)

(l) B(s)—Used in the proof of the discrete adiabatic
theorem; see Eq. (41)

(m) Z(s)—Used in the proof of the discrete adiabatic
theorem; see Eq. (42)

(n) �(s)—A contour that encloses the spectrum of inter-
est

(o) �(s, k)—A contour that encloses the spectrum of
interest for k + 1 successive steps of the walk

(p) F(s)—A function of DP(s) used for expressing
V(s); see Eq. (D18)

(q) B—The boundary term used in Theorem 6
(r) S—The sum used in Theorem 6
(s) n±—We use n+ = n + 1 and n− = n − 1; we also

use this notation for l
(t) s±, s++—We use s+ = s + 1/T, s++ = s + 2/T and

s− = s − 1/T
(u) P0—The initial projector onto the spectrum of inter-

est, P0 = P(0)
(v) Q0—Similarly for the complementary spectrum

Q0 = Q(0)
(w) Dj (x)—The simple scalar functions D1(x), D2(x),

and D3(x) are defined in Eq. (44)
(x) ξj —Constants used for upper bounds on Dj (x) as in

Eq. (E23)
(y) GT,j (s)—These functions for j = 1, 2, 3, 4 are

defined in Eqs. (45)–(48)

3. List of variables presented in Sec. IV

(a) A—The matrix in the QLSP Ax = b
(b) b—The vector in the QLSP
(c) x—This is usually used as the solution vector in

Ax = b but in Appendix D as a real variable of
integration

(d) N—The dimension of the QLSP
(e) κ—The condition number of A
(f) ε—The allowable error in the solution
(g) H0—The initial Hamiltonian in adiabatic evolution
(h) H1—The final Hamiltonian in adiabatic evolution
(i) |b〉—The state with amplitudes proportional to the

entries of b
(j) Qb—The projector eliminating |b〉, given as IN −

|b〉〈b|
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(k) f (s)—Used for the scheduling function, which we
take as in Eq. (69)

(l) dp—A constant used in constructing f (s); see Eq.
(68)

(m) p—An adjustable parameter used in the scheduling
function, taking values in the range (1, 2]

(n) A—A matrix constructed from A so as to be Hermi-
tian; see Eq. (73)

(o) A(f )—The intermediate value of A used in the
adiabatic evolution; see Eq. (72)

(p) H(s)—The Hamiltonian constructed from A(f ); see
Eq. (71)

(q) R(s)—A rotation used in block encoding H(s); see
Eq. (79)

4. List of variables presented in Sec. V

(a) wj —Weights used for the linear combination of
unitaries for filtering

(b) φk—Used to label eigenvalues of the walk operator,
so the eigenvalue is eiφk

(c) w̃(φ)—A Fourier transform of wj as in Eq. (109)
(d) ⊥—A set of k such that φk is not in the spectrum of

interest
(e) T�—The Chebyshev polynomial of the first kind
(f) �—The order of the Chebyshev polynomial

APPENDIX B: PROOF OF PROPOSITIONS

1. Proof of Proposition 4

In order to simplify the notation in the calculations, we
define s+ := s + 1/T, s++ := s + 2/T, and s− := s − 1/T.
First, we find that

P(s+) (P(s)− P(s+))2 = P(s+) (P(s)+ P(s+)

− P(s+)P(s)− P(s)P(s+))

= P(s+)P(s)+ P(s+)

− P(s+)P(s)− P(s+)P(s)P(s+)

= P(s+)− P(s+)P(s)P(s+)

= (P(s)+ P(s+)− P(s+)P(s)− P(s)P(s+))P(s+)

= (P(s)− P(s+))2 P(s+). (B1)

We can write v(s+) = v(s+, s) explicitly in terms of P to
give

v(s+, s) =
√

I − (P(s)− P (s+))2,

= I − 1
2
(P(s)− P(s+))2

− 1
8
(P(s)− P(s+))4 + · · · . (B2)

Therefore, we see that

P (s+) v (s+, s) = v (s+, s)P (s+) , (B3)

which implies that

P (s+) v (s+, s)−1 = v (s+, s)−1 P (s+) . (B4)

Using this relation, we obtain

P (s+)WA(s) = P (s+) v (s+, s)−1 S (s+, s)W(s)

= v (s+, s)−1 P (s+) S (s+, s)W(s)

= v (s+, s)−1 P (s+)P(s)W(s)

= v (s+, s)−1 P (s+)P(s)P(s)W(s)

= v (s+, s)−1 P (s+)P(s)W(s)P(s)

= WA(s)P(s). (B5)

This is the equality of Eq. (30) in Proposition 4.
Next, we use this relation to show that

UA(s)P(0) = WA(s−)WA(s − 2/T) · · · WA(1/T)WA(0)P(0)

= WA(s)WA(s−) · · · WA(1/T)P(1/T)WA(0)

= P(s)WA(s−)WA(s − 2/T) · · · WA(1/T)WA(0)

= P(s)UA(s). (B6)

This is Eq. (31) from Proposition 4.
Next, we use

P(s+)v(s)WA(s)P(s) = P(s+)v(s)v(s)−1S(s+, s)W(s)P(s)

= P(s+) (P(s+)P(s)

+ Q(s+)Q(s))W(s)P(s)

= P(s+)P(s)W(s)P(s)

= P(s+)W(s)P(s) (B7)

where in the last row we use the fact that W(s)P(s) =
P(s)W(s). This gives Eq. (32) in Proposition 4. The same
steps can be performed to prove Eq. (33), where the pro-
jectors involved are Q(s+) and Q(s) rather than those
for P.

2. Proof of Proposition 5

From the definition of the ripple operator, given in Eq.
(28), and the wave operator, given in Eq. (27), we have

(s) = U†
A(s+)U(s+)U†(s)UA(s). (B8)

Now, since W(s)U(s) = U(s+), the above equality
becomes

(s) = U†
A(s+)W(s)UA(s). (B9)

By inserting I = V†(s)V(s) and from the definition of the
adiabatic walk, i.e., WA(s) = V(s)W(s), the first equation
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of the proposition can be proved:

(s) = U†
A(s+)V†(s)V(s)W(s)UA(s)

= U†
A(s+)V†(s)WA(s)UA(s)

= U†
A(s+)V†(s)UA(s+). (B10)

For the Volterra equation, the idea is even simpler. From
the fact that the � operator is unitary and that �(0) = I ,
we have

�(n/T) = I − (�(0)−�(n/T))

= I −
n−1∑
m=0

(�(m/T)−�(m + 1/T))

= I −
n−1∑
m=0

(
I −�(m + 1/T)�†(m/T)

)
�(m/T)

= I −
n−1∑
m=0

(I −(m/T))�(m/T) (B11)

where in the last row, we use the definition of the rip-
ple operator as given in Eq. (28). Therefore, the Volterra
equation can be concluded by replacing the kernel operator
given in Eq. (29) on the right-hand side in the last equality
above.

APPENDIX C: PROOF THEOREM 6

Our initial point is to note the following identity:

Q(s)X (s)P(s) = −Q(s)[W(s), X̃ (s)]P(s), (C1)

which follows from

[W(s), X̃ (s)] = − 1
2π i

∮
�(s)

[W(s), R(s, z)X (s)R(s, z)]dz

= − 1
2π i

∮
�(s)

[W(s)− zI , R(s, z)

× X (s)R(s, z)]dz

= − 1
2π i

∮
�(s)

[X (s)R(s, z)− R(s, z)X (s)]dz

= [P(s), X (s)]. (C2)

Now, using the definition Eq. (24) for WA, we obtain
W(s) = V†(s)WA(s). Substituting into Eq. (C1), we obtain

Q(s)X (s)P(s) = −Q(s)[WA(s), X̃ (s)]P(s)

− Q(s)[A(s), X̃ (s)]P(s), (C3)

where A(s) is given in Eq. (40). Now, we can use P(s) =
UA(s)P0U†

A(s) and Q(s) = UA(s)Q0U†
A(s) in Eq. (C3) to

obtain

Q0U†
A(s)X (s)UA(s)P0 = −Q0U†

A(s)[WA(s), X̃ (s)]UA(s)P0

− Q0U†
A(s)[A(s), X̃ (s)]UA(s)P0; (C4)

then,

U†
A(s)

[
WA(s), X̃ (s)

]
UA(s)

= U†
A(s)WA(s)X̃ (s)UA(s)− U†

A(s)X̃ (s)WA(s)UA(s)

= U†
A(s)WA(s)X̃ (s)UA(s)− U†

A(s)X̃ (s)UA(s+)

= U†
A(s)WA(s−)X̃ (s)UA(s)− U†

A(s)X̃ (s)UA(s+)+ U†
A(s)

(
WA(s)− WA(s−)

)
X̃ (s)UA(s)

= U†
A(s−)X̃ (s)UA(s)− U†

A(s)X̃ (s)UA(s+)+ U†
A(s)DWA(s−)X̃ (s)UA(s)

= U†
A(s−)X̃ (s)UA(s)− U†

A(s)X̃ (s+)UA(s+)+ U†
A(s)DWA(s−)X̃ (s)UA(s)

+ U†
A(s)DX̃ (s)UA(s+)

= U†
A(s−)X̃ (s)UA(s)− U†

A(s)X̃ (s+)UA(s+)+ U†
A(s)B(s)UA(s), (C5)

where B(s) is given in Eq. (41). To complete this proof, we have to multiply by Y(s) on the right-hand side of Eq. (C4)
and then do a sum from 1/T to l/T. First, let us look to the boundary term, which is derived from the first part on the
right-hand side of Eq. (C4), i.e.,
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−
l∑

n=1

Q0U†
A

( n
T

) [
WA

( n
T

)
, X̃

( n
T

)]
UA

( n
T

)
P0Y

( n
T

)

=
l∑

n=1

Q0U†
A

( n
T

)
X̃
( n+

T

)
UA

( n+
T

)
P0Y

( n
T

) −
l∑

n=1

Q0U†
A

( n−
T

)
X̃
( n

T

)
UA

( n
T

)
P0Y

( n
T

)

−
l∑

n=1

Q0UA†( n
T

)
B
( n

T

)
UA

( n
T

)
P0Y

( n
T

)

=
l∑

n=1

Q0UA†( n
T

)
X̃
( n+

T

)
UA

( n+
T

)
P0Y

( n
T

) −
l−1∑
n=0

Q0U†
A

( n
T

)
X̃
( n+

T

)
UA

( n+
T

)
P0Y

( n+
T

)

−
l∑

n=1

Q0U†
A

( n
T

)
B
( n

T

)
UA

( n
T

)
P0Y

( n
T

)

= B −
l∑

n=1

Q0U†
A

( n
T

)
X̃
( n+

T

)
UA

( n+
T

)
P0 DY

( n
T

) −
l∑

n=1

Q0U†
A

( n
T

)
B
( n

T

)
UA

( n
T

)
P0Y

( n
T

)
. (C6)

Here, we combine two sums using Y(s) = −DY(s)+
Y(s+), and B is a correction accounting for the extra term
at n = 0 and the missing term at n = l. It is given by

B = Q0 U†
A

( l
T

)
X̃
(

l+
T

)
UA

(
l+
T

)
P0Y

(
l+
T

)

− Q0 U†
A(0)X̃

( 1
T

)
UA

( 1
T

)
P0 Y

( 1
T

)
. (C7)

We then insert the above result into Eq. (C4), to give

l∑
n=1

Q0U†
A

( n
T

)
X
( n

T

)
UA

( n
T

)
P0Y

( n
T

)

= B −
l∑

n=1

{
Q0U†

A

( n
T

)
X̃
( n+

T

)
UA

( n+
T

)
P0DY

( n
T

)

+ Q0 U†
A

( n
T

) ([
A
( n

T

)
, X̃

( n
T

)]
+ B

( n
T

))
UA

( n
T

)
P0 Y

( n
T

) }
,

= B − 1
T
S , (C8)

where

S =
l∑

n=1

{
Q0 UA†( n

T

)
X̃
( n+

T

)
UA

( n+
T

)
P0T DY

( n
T

)

+ T Q0 UA†( n
T

) ([
A
( n

T

)
, X̃

( n
T

)]
+ B

( n
T

))
UA

( n
T

)
P0 Y

( n
T

)}
. (C9)

APPENDIX D: BOUNDING THE OPERATORS

Here, we show the bounds for operators of interest with
explicit dependence in terms of the gap. A key part of the
method is that we need to consider a contour �(s) that
encloses the spectrum of interest for successive steps of the
walk. In particular, we use the notation �(s, k) to indicate
a contour that encloses the spectrum of interest for k + 1
successive steps of the walk.

In particular, it encloses the spectrum of interest for
steps W(s), W(s + 1/T) up to W(s + k/T); that is, it
encloses the set

⋃k
j =0 σP(s + j /T). Moreover, it does not

enclose any eigenvalues in the complementary spectra⋃k
j =0 σQ(s + j /T).
In order to bound the operators, we choose a specific

contour for �(s, k) that passes in straight lines from the
center through the gaps in the spectrum, as shown in Figs. 1
and 7. Those figures indicate that the contour is closed by
an arc at radius 2. We take the closure of the contour to
be at a distance that approaches infinity for the contours
�(s, k). The results can be obtained by taking the closure
at a finite radius and then taking that radius to infinity
but for simplicity of the explanation, we do not give that
limit explicitly except for one illustrative example. Note
that we only take this limit when the integrand approaches
zero more quickly than 1/|z|. That will be true for all the
contour integrals that we consider except that for P(s).

We start with the bounds for DP and D(2)P, which can
be obtained by direct calculations from the definitions.

Lemma 12: For any integer T and n and the correspond-
ing discrete time s = n/T, we have
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FIG. 7. An illustration of the choice of the contour �(s, k) for
k = 1. That is, there are two successive steps of the walk and
we would need to consider the spectrum for both. We need to be
able to use a contour that separates out the spectrum of interest
for both steps of the walk. This ensures that we have projectors
onto the spectrum of interest that are consistent for both steps,
with a gap between the contour and the eigenvalues. We do not
allow eigenvalues of interest to cross the gap between one step
and the next. Again, we show a contour with radius 2 but we
would take the infinite limit of the radius.

‖DP(s)‖ ≤ 2c1(s)
T	1(s)

(D1)

and

‖D(2)P(s)‖ ≤ G1(s)
T2 , (D2)

with

G1(s) := c1(s)2 + c1(s)c1(s+)
π [1 − cos(	2(s)/2)]

+ 2c2(s)
	2(s)

. (D3)

Proof. In order to bound DP(s), we first rewrite DR(s, z)
as

DR(s, z) = (W (s+)− zI)−1 − (W(s)− zI)−1

= (W (s+)− zI)−1 (W(s)− zI) (W(s)− zI)−1

− (W (s+) − zI)−1 (W (s+)−zI) (W(s)− zI)−1

= (W (s+) − zI)−1 (W(s)− W (s+)) (W(s)− zI)−1

= −R(s+, z)DW(s)R(s, z). (D4)

Using this expression, we can then express DP(s) in terms
of a contour integral as

DP(s) = 1
2π i

∮
�(s,1)

[R(s+, z)− R(s, z)] dz

= − 1
2π i

∮
�(s,1)

R(s+, z)DW(s)R(s, z)dz. (D5)

When we consider P(s), the integrand drops off as 1/|z|,
so the contour must be at a finite distance as illustrated in
Fig. 8. For DP(s), we can use the same contour for both
P(s) and P(s+). The principle now is that the integrand
falls off as 1/|z|2, so the contribution from the arc falls to
zero for large radius. We denote the contour as �(s, 1, a),
which is a sector of radius (a + 1) for some real number a,
and we take the limit a → ∞. Then, we have

‖DP(s)‖ = 1
2π

∥∥∥∥
∮
�(s,1,a)

R(s+, z)DW(s)R(s, z)dz
∥∥∥∥

≤ 1
2π

∮
�(s,1,a)

‖R(s+, z)‖ ‖DW(s)‖‖R(s, z)‖|dz|

≤ c1(s)
T

1
2π

∮
�(s,1,a)

‖R(s+, z)‖ ‖R(s, z)‖|dz|,
(D6)

where in the last line we use the bound from Eq. (9).
Since R(s, z) is the resolvent of the unitary operator

W(s), we know that

‖R(s, z)‖ = ∥∥(W(s)− zI)−1
∥∥ = 1

d (σ [W(s)], z)
, (D7)

where d (σ [W(s)], z) is the distance between the spectra of
W and z. Therefore, by separating the contour integral into
three parts, two of them along the radius and one along the
arc, we have that

∮
�(s,1,a)

‖R(s+, z)‖ ‖R(s, z)‖ |dz|

≤ 2
∫ a+1

0

dx
[x − cos(	1(s)/2)]2 + [sin(	1(s)/2)]2

+
∫ arg[g2,1(s)]

arg[g1,1(s)]

1
a2 (a + 1)dθ

≤ 2
∫ a+1

0

dx
[x − cos(	1(s)/2)]2 + [sin(	1(s)/2)]2

+ 2π(a + 1)
a2 . (D8)

Here, we denote the complex numbers in the centers of the
gaps by g1,1(s) and g2,1(s). By taking the limit a → ∞, we
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have

lim
a→∞

∮
�′(s,1,a)

‖R(s+, z)‖ ‖R(s, z)‖ |dz|

≤ 2
∫ ∞

0

dx
(x − cos (	1(s)/2))2 + sin (	1(s)/2)2

= 2π −	1(s)
sin (	1(s)/2)

≤ 4π
	1(s)

, (D9)

where in the last line we use (π − x)/ sin x ≤ π/x for
0 < x ≤ π/2. Note that taking the limit of a → ∞, the
contribution from the arc completely vanishes and we have
integrals to infinity along the two straight lines for the
contour. That gives a bound on ‖DP(s)‖ as

‖DP(s)‖ ≤ 2c1(s)
T	1(s)

. (D10)

A number of other integrals can be obtained in a similar
way. In exactly the same way, we have
∮
�(s,1)

‖R(s+, z)‖2 ‖R(s, z)‖ |dz|

≤ 2
∫ ∞

0

dx
[(x − cos (	1(s)/2))2 + sin (	1(s)/2)2]3/2

= 2
1 − cos(	1(s)/2)

. (D11)

The same bound holds for similar products of three terms.
Here, we write the integral as for the contour �(s, 1). This
contour can be regarded as the limit as a → ∞ of the
contour �(s, 1, a) but from now on we omit the explicit
procedure in taking the limit.

Now, we move on to the D(2)P. Since we are deal-
ing with the second-order difference, the contour should
be chosen to be �(s, 2), which passes through the eigen-
value gap for three consecutive steps. The above reasoning
for the contour integrals is unchanged, except that the gap
	1(s) is changed to 	2(s) for three consecutive steps. We
therefore have

D(2)P(s) = DP (s+)− DP(s)

= − 1
2π i

∮
�(s,2)

[R (s++, z)DW (s+)R(s+, z)− R(s+, z)DW(s)R(s, z)] dz

= − 1
2π i

∮
�(s,2)

[R (s++, z)− R(s+, z)] DW (s+)R(s+, z)dz − 1
2π i

∮
�(s,2)

R(s+, z)D(2)W(s)R(s+, z)dz

− 1
2π i

∮
�(s,2)

R(s+, z)DW(s) [R(s+, z)− R(s, z)] dz

= 1
2π i

∮
�(s,2)

R (s++, z)DW(s)R(s+, z)DW (s+)R(s+, z)dz − 1
2π i

∮
�(s,2)

R(s+, z)D(2)W(s)R(s+, z)dz

− 1
2π i

∮
�(s,2)

R(s+, z)DW(s)R(s+, z)DW(s)R(s, z)dz. (D12)

We can bound the first term as
∥∥∥∥ 1

2π i

∮
�(s,2)

R (s++, z)DW(s)R(s+, z)DW (s+)R(s+, z)dz
∥∥∥∥

≤ 1
2π

∮
�(s,2)

‖R (s++, z)‖ ‖DW(s)‖ ‖R(s+, z)‖ ‖DW (s+)‖ ‖R(s+, z)‖ |dz|

≤ c1(s)c1(s+)
T2

1
2π

∮
�(s,2)

‖R (s++, z)‖ ‖R(s+, z)‖ ‖R(s+, z)‖ |dz|

≤ c1(s)c1(s+)
T2

1
π

∫ ∞

0

dx
[[x − cos(	2(s)/2)]2 + sin[	2(s)]/2)2]3/2

= c1(s)c1(s+)
πT2

1
1 − cos(	2(s)/2)

. (D13)
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FIG. 8. The contour �(s, 1, a) that passes through the two gaps
and has a closure of the contour via an arc at radius a + 1. The
centers of the two gaps are denoted g1,1(s) and g2,1(s) and the
contour is taken to have two straight lines that are multiples of
these complex numbers.

For the second term, we have the upper bound
∥∥∥∥ 1

2π i

∮
�(s,2)

R(s+, z)D(2)W(s)R(s+, z)dz
∥∥∥∥

≤ 1
2π

∮
�(s,2)

‖R(s+, z)‖ ∥∥D(2)W(s)
∥∥ ‖R(s+, z)‖ |dz|

≤ c2(s)
T2

1
2π

∮
�(s,2)

‖R(s+, z)‖ ‖R(s+, z)‖ |dz|

≤ c2(s)
πT2

∫ ∞

0

dx
[x − cos(	2(s)/2)]2 + sin(	2(s)/2)2

= c2(s)
πT2

π −	2(s)/2
sin(	2(s)/2)

≤ 2c2(s)
T2

1
	2(s)

. (D14)

For the third term, we have identical reasoning as for the
first term, except that DW(s+) is replaced with DW(s). This
gives an upper bound

c2
1(s)
πT2

1
1 − cos(	2(s)/2)

. (D15)

The three bounds together give us

‖D(2)P(s)‖ ≤ c1(s)2 + c1(s)c1(s+)
πT2[1 − cos(	2(s)/2)]

+ 2c2(s)
T2	2(s)

.

(D16)

�
Now, we move on to bounding the finite difference of the

kernel function and the adiabatic walk operator. The key

here is to express and bound the operator V, because it is
related to both the kernel and the adiabatic walk operator.
First, we reexpress V in terms of P.

Lemma 13: For a discrete time s, we have

V(s) = F(s) [I + DP(s)(2P(s)− I)] , (D17)

where

F(s) := [
I − (DP(s))2

]−1/2
. (D18)

Proof. By the definition of V(s) in Eq. (23),

V(s) = [
I − (P(s)− P (s+))2

]−1/2
S (s+, s)

= [
I − (P(s)− P (s+))2

]−1/2
[I − P(s)− P (s+)

+2P (s+)P(s)]

= [
I − (P(s)− P (s+))2

]−1/2
[I + (P (s+)

− P(s)) (2P(s)− I)]

= F(s) [I + DP(s)(2P(s)− I)] , (D19)

where in the second equality above we use the definition
of S(s, s′) in Eq. (21) with Q(s) = I − P(s). �

This enables us to bound the difference of V from the
identity.

Lemma 14: For a discrete time s,

‖V(s)− I‖ ≤ ‖F(s)− I‖ + ‖DP(s)‖‖F(s)‖. (D20)

Proof. From Lemma 13, we have

V(s)− I = F(s)+ F(s)[DP(s)(2P(s)− I)] − I . (D21)

Then, the triangle inequality gives

‖V(s)− I‖ ≤ ‖F(s)− I‖ + ‖F(s)[DP(s)(2P(s)− I)]‖
= ‖F(s)− I‖ + ‖F(s)DP(s)‖, (D22)

where in the second line we use the fact that 2P(s)− I is a
unitary reflection operator. The inequality ‖F(s)DP(s)‖ ≤
‖F(s)‖ ‖DP(s)‖ then gives the required bound. �

Next, we bound the change in V.

Lemma 15: For a discrete time s,

‖DV(s)‖ ≤ (1 + ‖DP(s+)‖)
∥∥D(2)P(s)

∥∥
× D3 (max(‖DP(s+)‖, ‖DP(s)‖))
+ ‖F(s)‖ (∥∥D(2)P(s)

∥∥ + 2‖DP(s)‖2) ,
(D23)

with
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D3(z) := z
(1 − z2)3/2

. (D24)

Proof. For the difference operator D, there is the product rule D[X (s)Y(s)] = DX (s)Y(s+)+ X (s)DY(s) for any two
operators X (s) and Y(s). Then, from Eq. (D19), we have

DV(s) = DF(s)[I + DP(s+)(2P(s+)− I)] + F(s)D [DP(s)(2P(s)− I)]

= DF(s)[I + DP(s+)(2P(s+)− I)] + F(s) [D(2)P(s)(2P(s+)− I)
] + F(s)DP(s)D [2[P(s)] − I ]

= DF(s)[I + DP(s+)(2P(s+)− I)] + F(s) [D(2)P(s)(2P(s+)− I)+ 2[DP(s)]2] . (D25)

By the triangle inequality and using the fact that the reflection operator is unitary, we obtain

‖DV(s)‖ ≤ ‖DF(s)‖ (1 + ‖DP(s+)‖)+ ‖F(s)‖ (‖D(2)P(s)‖ + 2‖DP(s)‖2) . (D26)

Now, from the Taylor expansion of F ,

F(s) = I +
∞∑

k=1

�k
j =1(2j − 1)

2kk!
[DP(s)]2k, (D27)

the bound of DF in terms of P can be computed, i.e.,

‖F(s+)− F(s)‖ =
∥∥∥∥∥

∞∑
k=1

�k
i=1(2i − 1)

2kk!
[
(DP(s+))2k − (DP(s))2k]

∥∥∥∥∥

=
∥∥∥∥∥∥

∞∑
k=1

�k
i=1(2i − 1)

2kk!

2k−1∑
j =0

(DP(s+))j [DP(s+)− DP(s)] (DP(s))2k−1−j

∥∥∥∥∥∥

≤
∞∑

k=1

�k
i=1(2i − 1)

2kk!

∥∥D(2)P(s)
∥∥ 2k−1∑

j =0

‖DP(s+)‖j ‖DP(s)‖2k−1−j

≤ ∥∥D(2)P(s)
∥∥ ∞∑

k=1

�k
i=1(2i − 1)

2kk!
(2k) [max(‖DP(s+)‖, ‖DP(s)‖)]2k−1

= ∥∥D(2)P(s)
∥∥D3 (max(‖DP(s+)‖, ‖DP(s)‖)) , (D28)

where we use the Taylor expansion of the function D3. Substituting this into Eq. (D26) gives the required bound. �

Lemma 16: For any discrete time s with WA(s) defined as in Eq. (24), we have

‖DWA(s)‖ ≤ c1(s)
T

+ ‖DV(s)‖. (D29)

Proof. According to the definition of WA(s) as V(s)W(s),

DWA(s) = DV(s)W(s+)+ V(s)DW(s). (D30)

Since W and V are unitary and using the triangle inequality, we have

‖DWA(s)‖ ≤ ‖DV(s)‖ + ‖DW(s)‖ .

Use of Eq. (9) with k = 1 for ‖DW(s)‖ then gives Eq. (D29). �
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Lemma 17: For any discrete time s, � as defined in Eq. (27), and F defined as in Eq. (D18), we have the upper bound
on D�(s),

‖D�(s)‖ ≤ ‖F(s)− I‖ + ‖DP(s)‖‖F(s)‖. (D31)

Proof. Using the definition of the ripple operator (s) in Eq. (28), we have

D�(s) = �(s+)−�(s)

= ((s)− I)�(s)

= UA(s+)†(V(s)− I)†UA(s+)�(s). (D32)

In the third line, we use Eq. (34) for (s). Since UA and � are unitary, we have

‖D�(s)‖ = ‖(V(s)− I)†‖ = ‖V(s)− I‖. (D33)

Then, the desired bound follows from Lemma 14. �
Finally, we summarize the bounds for the operators related to the summation-by-parts formula.

Lemma 18: For any discrete time s in X̃ (s) as defined in Eq. (39) and any bounded operator X (s), we have

∥∥X̃ (s)
∥∥ ≤ 2

	0(s)
‖X (s)‖ (D34)

and

∥∥DX̃ (s)
∥∥ ≤ 2

	1(s)
‖DX (s)‖ + 2c1(s)

πT[1 − cos(	1(s)/2)]
‖X (s)‖. (D35)

Proof. The bound for X̃ follows directly from the definition in Eq. (39) and choosing an appropriate contour �(s, 0). As
shown in Fig. 1, the contour passes in a straight line from the center through both gaps and has a circular arc of radius 2
between these two straight lines. That is, Eq. (39) gives

‖X̃ (s)‖ ≤ 1
2π

∮
�(s,0)

‖R(s, z)‖2‖X (s)‖ |dz|

≤ 1
2π

‖X (s)‖ 4π
	0(s)

= 2
	0(s)

‖X (s)‖, (D36)

where we use Eq. (D9) but replace 	1(s) with 	0(s) because we need only consider the eigenvalues for a single step of
the walk.

For DX̃ (s), using �(s, 1) (for two consecutive steps of the walk) and using Eq. (39), we have

DX̃ (s) = − 1
2π i

∮
�(s,1)

(R(s+, z)X (s+)R(s+, z)− R(s, z)X (s)R(s, z)) dz

= − 1
2π i

∮
�(s,1)

R(s+, z)DX (s)R(s+, z)dz

− 1
2π i

(∮
�(s,1)

R(s, z)X (s)DR(s, z)dz +
∮
�(s,1)

DR(s, z)X (s)R(s+, z)dz
)

. (D37)

Using Eq. (D4), we have

DR(s, z) = −R(s+, z)DW(s)R(s, z), (D38)
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so

‖DR(s, z)‖ ≤ ‖R(s+, z)‖ ‖DW(s)‖ ‖R(s, z)‖

≤ c1(s)
T

‖R(s+, z)‖ ‖R(s, z)‖ . (D39)

We can therefore write an upper bound as

‖DX̃ (s)‖ ≤ ‖DX (s)‖
2π

∮
�(s,1)

‖R(s+, z)‖2 |dz|

+ c1(s)
2πT

‖X (s)‖
(∮

�(s,1)
‖R(s, z)‖2 ‖R(s+, z)‖ |dz| +

∮
�(s,1)

‖R(s, z)‖ ‖R(s+, z)‖2 |dz|
)

. (D40)

Using the bounds on the contour integrals given in Eqs. (D9) and (D11), we then obtain

∥∥DX̃ (s)
∥∥ ≤ 1

2π
‖DX (s)‖ 4π

	1(s)
+ 1
π

‖X (s)‖c1(s)
T

2
1 − cos(	1(s)/2)

= 2
	1(s)

‖DX (s)‖ + 2c1(s)
πT[1 − cos(	1(s)/2)]

‖X (s)‖. (D41)

�

Lemma 19: For a discrete time s in A(s), B(s) and Z(s) defined in Eqs. (40), (41), and (42), respectively, and any bounded
operator X (s), we have

‖A(s)‖ ≤ ‖F(s)− I‖ + ‖DP(s)‖‖F(s)‖, (D42)

‖B(s)‖ ≤ 2
	1(s)

‖DX (s)‖ + 2c1(s)
πT[1 − cos(	1(s)/2)]

‖X (s)‖

(D43)

+ 2
	0(s)

(
c1(s−)

T
+ ‖DV(s−)‖

)
‖X (s)‖, (D44)

and

‖Z(s)‖ ≤ 4T
	0(s)

(‖F(s)− I‖ + ‖DP(s)‖‖F(s)‖) ‖X (s)‖ + 2T
	1(s)

‖DX (s)‖

+ 2c1(s)
π [1 − cos(	1(s)/2)]

‖X (s)‖ + 2
	0(s)

(c1(s−)+ T‖DV(s−)‖) ‖X (s)‖. (D45)

Proof. From the definition of A in Eq. (40), we have

‖A(s)‖ = ∥∥(V(s)† − I
)

WA(s)
∥∥ ≤ ∥∥(V(s)† − I

)∥∥ ‖WA(s)‖ = ∥∥(V(s)† − I
)∥∥ . (D46)

The bound for ‖A‖ follows from Lemma 14.
For B, from Eq. (41), we have that

‖B(s)‖ ≤ ∥∥DX̃ (s)WA(s)
∥∥ + ∥∥DWA(s−)X̃ (s)

∥∥ ≤ ∥∥DX̃ (s)
∥∥ + ‖DWA(s−)‖

∥∥X̃ (s)
∥∥ . (D47)

By inserting the bounds previously computed for DX̃ (in Lemma 18) and DWA (in Lemma 16), the desired bound for B is
established.
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Finally, for Z, the definition in Eq. (42) immediately gives

‖Z(s)‖ ≤ T
(
2 ‖A(s)‖ ∥∥X̃ (s)

∥∥ + ‖B(s)‖) . (D48)

The bounds previously computed in Eqs. (D43), (D34) and (D42) then give the required upper bound. �

APPENDIX E: DETAILS FOR THE PROOF OF THE DISCRETE ADIABATIC THEOREMS

1. Diagonal term

Here, we bound the “diagonal” term in Eq. (51). For this term (without loss of generality, we only consider the term
projected on P0), we have

∥∥∥∥∥
sT∑

n=1

P0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥ =
∥∥∥∥∥

sT∑
n=1

U†
A

( n
T

)
P
( n

T

) (
I − V†( n−

T

))
P
( n

T

)
UA

( n
T

)
�
( n−

T

)∥∥∥∥∥

≤
sT∑

n=1

∥∥P
( n

T

) (
I − V†( n−

T

))
P
( n

T

)∥∥ ∥∥�( n−
T

)∥∥

=
sT∑

n=1

∥∥P
( n

T

) (
I − V†( n−

T

))
P
( n

T

)∥∥ . (E1)

In the second line, we use Eq. (31). Using Lemma 13, we have

sT∑
n=1

∥∥P
( n

T

) (
I − V†( n−

T

))
P
( n

T

)∥∥

=
sT∑

n=1

∥∥P
( n

T

) (
I − F( n−

T

) + (
2P

( n−
T

) − I
)

DP
( n−

T

)F( n−
T

))
P
( n

T

)∥∥

≤
sT∑

n=1

∥∥P
( n

T

) (
I − F( n−

T

))
P
( n

T

)∥∥ +
sT∑

n=1

∥∥P
( n

T

) (
2P

( n−
T

) − I
)

DP
( n−

T

)F( n−
T

)
P
( n

T

)∥∥

≤
sT−1∑
n=0

∥∥I − F( n
T

)∥∥ +
sT∑

n=1

∥∥P
( n

T

) (
2P

( n−
T

) − I
)

DP
( n−

T

) (F( n−
T

) − I
)

P
( n

T

)∥∥

+
sT∑

n=1

∥∥P
( n

T

) (
2P

( n−
T

) − I
)

DP
( n−

T

)
P
( n

T

)∥∥ (E2)

From the second term in the last inequality, we have

sT∑
n=1

∥∥P
( n

T

) (
2P

( n−
T

) − I
)

DP
( n−

T

) (F( n−
T

) − I
)

P
( n

T

)∥∥ ≤
sT∑

n=1

∥∥DP
( n−

T

) (F( n−
T

) − I
)∥∥

=
sT−1∑
n=0

∥∥I − F( n
T

)∥∥ ∥∥DP
( n

T

)∥∥ . (E3)
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Now, if we replace P
( n−

T

) = P
( n

T

) − DP
( n−

T

)
in the last term of Eq. (E2), then we obtain

∥∥P
( n

T

) (
2P

( n−
T

) − I
)

DP
( n−

T

)
P
( n

T

)∥∥ = ∥∥P
( n

T

) [
2
(
P
( n

T

) − DP
( n−

T

)) − I
]

DP
( n−

T

)
P
( n

T

)∥∥
≤ ∥∥P

( n
T

) (
2P

( n
T

) − I
)

DP
( n−

T

)
P
( n

T

)∥∥ + 2
∥∥∥P

( n
T

)
DP

( n−
T

)2 P
( n

T

)∥∥∥
= ∥∥P

( n
T

)
DP

( n−
T

)
P
( n

T

)∥∥ + 2
∥∥∥P

( n
T

)
DP

( n−
T

)2 P
( n

T

)∥∥∥
= 3

∥∥∥P
( n

T

)
DP

( n−
T

)2 P
( n

T

)∥∥∥ . (E4)

In the last calculation above, we use the equality p(p − q)p = p(p − q)2p when we have p and q as any two projections.
Thus,

sT∑
n=1

∥∥P
( n

T

) (
I − V†( n−

T

))
P
( n

T

)∥∥ ≤
sT−1∑
n=0

∥∥I − F( n
T

)∥∥ (1 + ∥∥DP
( n

T

)∥∥) + 3
sT∑

n=1

∥∥∥P
( n

T

)
DP

( n−
T

)2 P
( n

T

)∥∥∥

=
sT−1∑
n=0

∥∥I − F( n
T

)∥∥ (1 + ∥∥DP
( n

T

)∥∥) + 3
sT∑

n=1

∥∥∥P
( n

T

)
(DP

( n−
T

)2 P
( n

T

)∥∥∥

≤
sT−1∑
n=0

∥∥I − F( n
T

)∥∥ (1 + ∥∥DP
( n

T

)∥∥) + 3
sT−1∑
n=0

∥∥DP
( n

T

)∥∥2 . (E5)

To bound ‖F(s)− I‖, we can use Lemma 12 and the definition of F(s) as follows:

‖F(s)− I‖ ≤
∞∑

k=1

�k
j =1(2j − 1)

2kk!
‖DP(s)‖2k

≤
∞∑

k=1

�k
j =1(2j − 1)

2kk!

(
2c1(s)
T	1(s)

)2k

=
(

1 − 4c1(s)2

T2	1(s)2

)−1/2

− 1

= D1

(
2c1(s)
T	1(s)

)
− 1. (E6)

2. Off-diagonal term

For the “off-diagonal” term in Eq. (53) used for Theorem 7, we have
∥∥∥∥∥

sT∑
n=1

Q0U†
A

( n
T

) (
I − V†( n−

T

))
UA

( n
T

)
P0�

( n−
T

)∥∥∥∥∥

≤ 1
T

∥∥∥∥∥
sT−1∑
n=1

Q0U†
A

( n
T

)
X
( n

T

)
UA

( n
T

)
P0Y

( n
T

)∥∥∥∥∥ + 1
T

∥∥∥Q0U†
A(s)X (s)UA(s)P0Y(s)

∥∥∥

≤ 1
T

‖B‖ + 1
T2 ‖S‖ + 1

T
‖X (s)‖ ‖Y(s)‖

≤ 1
T

∥∥X̃
( 1

T

)∥∥ ∥∥Y
( 1

T

)∥∥ + 1
T

∥∥X̃ (s)
∥∥ ‖Y(s)‖ + 1

T2

sT−1∑
n=1

∥∥Z
( n

T

)∥∥ ∥∥Y
( n

T

)∥∥ + 1
T

sT−1∑
n=1

∥∥X̃
( n+

T

)∥∥ ∥∥DY
( n

T

)∥∥ + 1
T

‖X (s)‖ ‖Y(s)‖

= 1
T

∥∥X̃
( 1

T

)∥∥ + 1
T

∥∥X̃ (s)
∥∥ + 1

T2

sT−1∑
n=1

∥∥Z
( n

T

)∥∥ + 1
T

sT−1∑
n=1

∥∥X̃
( n+

T

)∥∥ ∥∥DY
( n

T

)∥∥ + 1
T

‖X (s)‖ . (E7)
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In the third line, we use the summation-by-parts result in Theorem 6 with l = sT − 1. In the fourth line, we use the product
rule for norms of products and the fact that the spectral norms of projectors and unitary operators are 1. In the last line, we
use the fact that the choice of Y is unitary. Next, we use the previously derived lemmas to provide bounds for the individual
operators, X (s), X̃ (s), Z(s), and DY(s). Starting with X (s), we have, from Lemma 14 combined with Lemma 12, that

‖X (s)‖ = T ‖V(s−)− I‖ ≤ T ‖F(s−)− I‖ + T
2c1(s−)
T	1(s−)

‖F(s−)‖ . (E8)

Now, we use the upper bound from Eq. (E6) to provide a bound on F(s−) as

‖F(s−)‖ ≤ 1 +
∞∑

k=1

�k
j =1(2j − 1)

2kk!

(
2c1(s−)
T	1(s−)

)2k

=
(

1 − 4c1(s−)2

T2	1(s−)2

)−1/2

, (E9)

and, similarly,

‖F(s−)− I‖ ≤
(

1 − 4c1(s−)2

T2	1(s−)2

)−1/2

− 1. (E10)

That gives the following upper bound for X (s):

‖X (s)‖ ≤ T

[(
1 + 2c1(s−)

T	1(s−)

)(
1 − 4c1(s−)2

T2	1(s−)2

)−1/2

− 1

]

= T

[(
1 + 2c1(s−)

T	1(s−)

)1/2 (
1 − 2c1(s−)

T	1(s−)

)−1/2

− 1

]

= TD2

(
2c1(s−)
T	1(s−)

)
. (E11)

Now, for X̃ (s), we can use the bound from Lemma 18, which gives

∥∥X̃ (s)
∥∥ ≤ 2T

	0(s)
D2

(
2c1(s−)
T	1(s−)

)
. (E12)

For the bound on Z(s), we can use Eq. (D44) from Lemma 19, but first we need bounds for DX (s) and DV(s−), which
can be obtained using Lemma 15 in combination with Lemma 12 as follows:

‖DX (s)‖ = T ‖DV(s−)‖ (E13)

≤ T (1 + ‖DP(s)‖) ∥∥D(2)P(s−)
∥∥D3 (max(‖DP(s)‖, ‖DP(s−)‖))+ T‖F(s−)‖

(∥∥D(2)P(s−)
∥∥ + 2‖[DP(s−)]‖2)

≤
(

1 + 2c1(s)
T	1(s)

) G1(s−)
T

D3

(
max

(
2c1(s)
T	1(s)

,
2c1(s−)
T	1(s−)

))
+ D1

(
2c1(s−)
T	1(s−)

)(G1(s−)
T

+ 8c1(s−)2

T	1(s−)2

)
.

(E14)

In the first line, we use X (s) = T[I − V†(s−)]; in the second line, we use Lemma 15; and at the end, we use Lemma 12 in
combination with the fact that the functions D1 and D3 are monotonically increasing. Now, the functions G2 and G3 from
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Eqs. (46) and (47) can be used in the last expression above, to give

‖DX (s)‖ ≤
(

1 + 2c1(s)
T	1(s)

) G2(s−)
T

+ D1

(
2c1(s−)
T	1(s−)

)(G1(s−)
T

+ 8c1(s−)2

T	1(s−)2

)

= G3(s−)
T

. (E15)

Then, from Eq. (E13), we have

‖DV(s−)‖ ≤ G3(s−)
T2 . (E16)

Now that we have these bounds, we proceed to bound Z(s) using Eq. (D44). Starting with the replacement of the bound
of DV(s−), we can make use of the function G4(s) as defined in Eq. (48):

‖Z(s)‖ ≤ 4T
	0(s)

(‖F(s)− I‖ + ‖DP(s)‖ ‖F(s)‖) ‖X (s)‖ + 2T
	1(s)

∥∥DX
( n

T

)∥∥

+ 2c1(s)
π [1 − cos(	1(s)/2)]

∥∥X
( n

T

)∥∥ + 2G4(s−)
	0(s)

‖X (s)‖ . (E17)

Our next step is the replacement of the bound of X (s),

‖Z(s)‖ ≤ 4T2

	0(s)
(‖F(s)− I‖ + ‖DP(s)‖ ‖F(s)‖)D2

(
2c1(s−)
	1(s−)

)
+ 2T
	1(s)

‖DX (s)‖

+ 2Tc1(s)
π [1 − cos(	1(s)/2)]

D2

(
2c1(s−)
T	1(s−)

)
+ 2TG4(s−)

	0(s)
D2

(
2c1(s−)
T	1(s−)

)
. (E18)

Now, we use

‖F(s)− I‖ + ‖DP(s)‖ ‖F(s)‖ ≤ D2

(
2c1(s)
T	1(s)

)
(E19)

and the bound derived above for DX (s) to yield

‖Z(s)‖ ≤ 4T2

	0(s)
D2

(
2c1(s)
	1(s)

)
D2

(
2c1(s−)
	1(s−)

)
+ 2G3(s−)

	1(s)

+ 2Tc1(s)
π [1 − cos(	1(s)/2)]

D2

(
2c1(s−)
T	1(s−)

)
+ 2TG4(s−)

	0(s)
D2

(
2c1(s−)
T	1(s−)

)
. (E20)

Finally, for the upper bound of DY(s), first note that Y(s) = �(s−), so D�(s−) = DY(s). Therefore, using Lemma 17 and
our bound in Eq. (E19), we obtain

‖DY(s)‖ ≤ D2

(
2c1(s−)
T	1(s−)

)
. (E21)

3. Proof of the second adiabatic theorem

Proof. We first bound the functions Dk with simpler expressions. Recall that the definitions of Dk are

D1(z) = 1√
1 − z2

, D2(z) =
√

1 + z
1 − z

− 1, D3(z) = z
(1 − z2)3/2

. (E22)

Note that in Theorem 7, all the arguments in Dk are in the form of 2c1/(T	1); then, under the assumption on T, we are
only interested in the case 0 ≤ z ≤ 1/2. Therefore, we have

D1(z) ≤ ξ1, D2(z) ≤ ξ2z, D3(z) ≤ ξ3z, (E23)

with constants ξ1 = 2/
√

3, ξ2 = 2
√

3 − 2, and ξ3 = 8/(3
√

3).
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Now, we move on to the functions Gk. For any positive integer n, from Theorem 7 we need to bound G3(n−/T) and
G4(n−/T), which in turn depend on G1(n−/T) and G2(n−/T). Using the inequality 1 − cos(θ/2) = 2 sin2(θ/4) ≥ θ2/π2

for all 0 ≤ θ ≤ π , it is possible to show that (using s to indicate n/T)

G1(s−) = c1(s−)2 + c1(s−)c1(s)
π [1 − cos(	2(s−)/2)]

+ 2c2(s−)
	2(s−)

≤ πc1(s−)2 + πc1(s−)c1(s)
	2(s−)2

+ 2c2(s−)
	2(s−)

≤ 2π ĉ1(s)2

	̌(s)2
+ 2ĉ2(s)

	̌(s)
. (E24)

Use of that and the assumption that T ≥ max[4ĉ1(s)/	̌(s)] gives the bound

G2(s−) ≤ ξ3
2ĉ1(s)

T	̌(s)

(
2π ĉ1(s)2

	̌(s)2
+ 2ĉ2(s)

	̌(s)

)
= 4πξ3ĉ1(s)3

T	̌(s)3
+ 4ξ3ĉ1(s)ĉ2(s)

T	̌(s)2
. (E25)

Note that the assumption T ≥ max[4ĉ1(s)/	̌(s)] is required for the function D3(z) used in G2(s−) to be appropriately
bounded. This is why there is a factor of 4 in this condition for the second discrete adiabatic theorem, whereas there is a
factor of 2 in the condition in the first discrete adiabatic theorem. For the remaining functions, we obtain the bounds

G3(s−) ≤ 3
2

(
4πξ3ĉ1(s)3

T	̌(s)3
+ 4ξ3ĉ1(s)ĉ2(s)

T	̌(s)2

)
+ ξ1

(
2π ĉ1(s)2

	̌(s)2
+ 2ĉ2(s)

	̌(s)
+ 8ĉ1(s)2

	̌(s)2

)

≤ 3
2

(
πξ3ĉ1(s)2

	̌(s)2
+ ξ3ĉ2(s)

	̌(s)

)
+ ξ1

(
(2π + 8)ĉ1(s)2

	̌(s)2
+ 2ĉ2(s)

	̌(s)

)

≤ (3πξ3/2 + (2π + 8)ξ1)
ĉ1(s)2

	̌(s)2
+ (3ξ3/2 + 2ξ1)

ĉ2(s)

	̌(s)
(E26)

and

G4(s−) ≤ (3πξ3/2 + (2π + 8)ξ1)
ĉ1(s)2

T	̌(s)2
+ (3ξ3/2 + 2ξ1)

ĉ2(s)

T	̌(s)
+ ĉ1(s). (E27)

Inserting all these bounds back into Theorem 7 and using 1 − cos(θ/2) ≥ θ2/π2 again, we have

‖U(s)− UA(s)‖

≤ 8ξ2ĉ1(0)

T	̌(0)2
+ 8ξ2ĉ1(s)

T	̌(s)2
+ 4ξ2ĉ1(s)

T	̌(s)
+

sT−1∑
n=1

12

	̌(n/T)
ξ 2

2

(
2ĉ1(n/T)

T	̌(n/T)

)2

+
sT−1∑
n=1

(6πξ3 + (8π + 32)ξ1)
ĉ1(n/T)2

T2	̌(n/T)3
+

sT−1∑
n=1

(6ξ3 + 8ξ1)
ĉ2(n/T)

T2	̌(n/T)2
+

sT−1∑
n=1

4π ĉ1(n/T)

T	̌(n/T)2
ξ2

2ĉ1(n/T)

T	̌(n/T)

+
sT−1∑
n=1

(6πξ3 + (8π + 32)ξ1)
ĉ1(n/T)2

T2	̌(n/T)3

(
ξ2

2ĉ1(n/T)

T	̌(n/T)

)
+

sT−1∑
n=1

(6ξ3 + 8ξ1)
ĉ2(n/T)

T2	̌(n/T)2

(
ξ2

2ĉ1(n/T)

T	̌(n/T)

)
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+
sT−1∑
n=1

4ĉ1(n/T)

T	̌(n/T)

(
ξ2

2ĉ1(n/T)

T	̌(n/T)

)
+

sT−1∑
n=0

24ĉ1(n/T)2

T2	̌(n/T)2
+

sT−1∑
n=0

8ĉ1(n/T)2

T2	̌(n/T)2

≤ 8ξ2ĉ1(0)

T	̌(0)2
+ 8ξ2ĉ1(s)

T	̌(s)2
+ 4ξ2ĉ1(s)

T	̌(s)
+

sT−1∑
n=1

48ξ 2
2 ĉ1(n/T)2

T2	̌(n/T)3

+
sT−1∑
n=1

(6πξ3 + (8π + 32)ξ1)
ĉ1(n/T)2

T2	̌(n/T)3
+

sT−1∑
n=1

(6ξ3 + 8ξ1)
ĉ2(n/T)

T2	̌(n/T)2
+

sT−1∑
n=1

8πξ2ĉ1(n/T)2

T2	̌(n/T)3

+
sT−1∑
n=1

(12πξ2ξ3 + (16π + 64)ξ1ξ2)
ĉ1(n/T)3

T3	̌(n/T)4
+

sT−1∑
n=1

(12ξ2ξ3 + 16ξ1ξ2)
ĉ1(n/T)ĉ2(n/T)

T3	̌(n/T)3

+
sT−1∑
n=1

8ξ2ĉ1(n/T)2

T2	̌(n/T)2
+

sT−1∑
n=0

24ĉ1(n/T)2

T2	̌(n/T)2
+

sT−1∑
n=0

8ĉ1(n/T)2

T2	̌(n/T)2

≤ 8ξ2ĉ1(0)

T	̌(0)2
+ 8ξ2ĉ1(s)

T	̌(s)2
+ 4ξ2ĉ1(s)

T	̌(s)
+

sT−1∑
n=1

(
48ξ 2

2 + 6πξ3 + (8π + 32)ξ1 + 8πξ2
) ĉ1(n/T)2

T2	̌(n/T)3

+
sT−1∑
n=1

(6ξ3 + 8ξ1)
ĉ2(n/T)

T2	̌(n/T)2
+

sT−1∑
n=0

(32 + 8ξ2)ĉ1(n/T)2

T2	̌(n/T)2

+
sT−1∑
n=1

(12πξ2ξ3 + (16π + 64)ξ1ξ2)
ĉ1(n/T)3

T3	̌(n/T)4
+

sT−1∑
n=1

(12ξ2ξ3 + 16ξ1ξ2)
ĉ1(n/T)ĉ2(n/T)

T3	̌(n/T)3
. (E28)

Finally, for a clear representation in terms of the gap, we slightly modify some terms with T3 on the denominator to T2 by
using the bounds ĉ1(s)/[T	̌(s)] ≤ 1/4. Then,

‖U(s)− UA(s)‖ ≤ 8ξ2ĉ1(0)

T	̌(0)2
+ 8ξ2ĉ1(s)

T	̌(s)2
+ 4ξ2ĉ1(s)

T	̌(s)
+

sT−1∑
n=1

[
48ξ 2

2 + 6πξ3 + (8π + 32)ξ1 + 8πξ2
] ĉ1(n/T)2

T2	̌(n/T)3

+
sT−1∑
n=1

(6ξ3 + 8ξ1)
ĉ2(n/T)

T2	̌(n/T)2
+

sT−1∑
n=0

(32 + 8ξ2)ĉ1(n/T)2

T2	̌(n/T)2

+
sT−1∑
n=1

(3πξ2ξ3 + (4π + 16)ξ1ξ2)
ĉ1(n/T)2

T2	̌(n/T)3
+

sT−1∑
n=1

(3ξ2ξ3 + 4ξ1ξ2)
ĉ2(n/T)

T2	̌(n/T)2

= 8ξ2ĉ1(0)

T	̌(0)2
+ 8ξ2ĉ1(s)

T	̌(s)2
+ 4ξ2ĉ1(s)

T	̌(s)

+ [
48ξ 2

2 + 6πξ3 + (8π + 32)ξ1 + 8πξ2 + 3πξ2ξ3 + (4π + 16)ξ1ξ2
] sT−1∑

n=1

ĉ1(n/T)2

T2	̌(n/T)3

+ (32 + 8ξ2)

sT−1∑
n=0

ĉ1(n/T)2

T2	̌(n/T)2
+ (6ξ3 + 8ξ1 + 3ξ2ξ3 + 4ξ1ξ2)

sT−1∑
n=1

ĉ2(n/T)

T2	̌(n/T)2

≤ 12ĉ1(0)

T	̌(0)2
+ 12ĉ1(s)

T	̌(s)2
+ 6ĉ1(s)

T	̌(s)

+ 305
sT−1∑
n=1

ĉ1(n/T)2

T2	̌(n/T)3
+ 44

sT−1∑
n=0

ĉ1(n/T)2

T2	̌(n/T)2
+ 32

sT−1∑
n=1

ĉ2(n/T)

T2	̌(n/T)2
, (E29)
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where the last inequality is derived by inserting the con-
crete values of ξk into the bound and rounding the resulting
constants to the closest integers greater than or equal to
them. �

APPENDIX F: BLOCK ENCODING OF H (s)

Here, we describe how to perform the block encoding
of H(s) as given in Eq. (71). We denote the unitary for
the block encoding of A as UA, which acts on an ancilla
denoted with subscript a and the system such that

a〈0| UA |0〉a = A. (F1)

We also denote the unitary oracle for preparing |b〉 as Ub
such that

Ub |0〉 = |b〉 . (F2)

As well as the ancilla system used for the block encoding
of A, we use four ancilla qubits. These ancilla qubits are
used as follows:

(1) The first selects between the blocks in A(f ).
(2) The next is used for preparing the combination of

σz ⊗ I and A.
(3) The third is used in implementing Qb.
(4) The fourth selects between the blocks in H(s).

These four qubits are denoted with subscripts a1–a4.
First consider A(f ), which can be written as

A(f ) = (1 − f )σ z
a1

⊗ IN + f (|0〉〈1|a1 ⊗ A

+ |1〉〈0|a1 ⊗ A†). (F3)

Note that the first operators in the tensor products here,
σ z and |0〉〈1| or |1〉〈0|, act upon the ancilla denoted a1. To
block encode the operation using ancilla a2, we can use the
select operation

UA(f ) = |0〉〈0|a2 ⊗ σ z
a1

⊗ IN ⊗ Ia + |1〉〈1|a2

⊗ (|0〉〈1|a1 ⊗ UA + |1〉〈0|a1 ⊗ U†
A). (F4)

Here, we include Ia to indicate that the operation is act-
ing as the identity on the ancilla system used for the block
encoding of A. Note that we require the ability to apply the
oracle UA in a selected way, where we either perform UA,
U†

A or the identity.
Next consider Qb, which is given by

Qb = Ia1 ⊗ IN − |1〉〈1|a1 ⊗ |b〉〈b|. (F5)

Here, we use the ancilla a1 to account for using b, which
is encoded as |1〉a1

⊗ |b〉. We can construct this projector

using

(Ia1 ⊗ U†
b)
[
Ia1 ⊗ IN − |1〉〈1|a1 ⊗ |0〉〈0|N

]
(Ia1 ⊗ Ub),

(F6)

where we are using subscript N on |0〉〈0| to indicate that it
is on the system. We can block encode this projector using
the ancilla a3. We simply need to create this ancilla in an
equal superposition and use the unitary operation

UQb = (Ia3 ⊗ Ia1 ⊗ U†
b)
[|0〉〈0|a3 ⊗ Ia1 ⊗ IN + |1〉〈1|a3

⊗ (Ia1 ⊗ IN − 2|1〉〈1|a1 ⊗ |0〉〈0|N )
]

(Ia3 ⊗ Ia1 ⊗ Ub). (F7)

That gives the projector as a linear combination of the iden-
tity and a reflection. Finally, we are prepared to describe
the unitary to block encode H(s), which can be written as

H(s) = |0〉〈1|a4 ⊗ A[f (s)]Qb + |1〉〈0|a4 ⊗ QbA[f (s)].
(F8)

In order to select between A[f (s)]Qb and QbA[f (s)], we
apply Qb in a controlled way before and after A[f (s)].
We denote the controlled unitary for Qb, as controlled on
0 or 1, by CU0

Qb or CU1
Qb, respectively. We may make

Qb controlled simply by making the reflection 2Ia1 ⊗ IN −
|1〉〈1|a1 ⊗ |0〉〈0|N controlled and we do not need to make
the oracle Ub controlled. We can therefore apply CU1

Qb as

CU1
Qb = |0〉〈0|a4 ⊗ Ia3 ⊗ Ia1 ⊗ IN + |1〉〈1|a4 ⊗ UQb

= (Ia3 ⊗ Ia1 ⊗ U†
b)
[
Ia4 ⊗ |0〉〈0|a3 ⊗ Ia1 ⊗ IN

+ |0〉〈0|a4 ⊗ |1〉〈1|a3 ⊗ Ia1 ⊗ IN

+ |1〉〈1|a4 ⊗ |1〉〈1|a3 ⊗ (Ia1 ⊗ IN

− 2|1〉〈1|a1 ⊗ |0〉〈0|N )] (Ia3 ⊗ Ia1 ⊗ Ub) (F9)

and similarly for CU0
Qb.

We also need to perform the rotation R(s) before or after
these operations controlled on the ancilla a4. That is, we
perform at the beginning

CR0(s) = |0〉〈0|a4 ⊗ R(s)a2 + |1〉〈1|a4 ⊗ Ha2 , (F10)

where H denotes the Hadamard operation. Then, at the
end, we perform the controlled operation

CR1(s) = |1〉〈1|a4 ⊗ R(s)a2 + |0〉〈0|a4 ⊗ Ha2 , (F11)

We are finally ready to provide the complete sequence
of operations to block encode H(s). In the following, we
use the various operations defined above on subsets of the
ancillas, with the convention that they act as the identity on
any ancillas on which their action has not been described:
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(1) Apply the Hadamard on a3 to provide the linear combination needed for Qb.
(2) Next, apply CU1

Qb for controlled implementation of Qb before A[f (s)].
(3) Apply CR0(s) to provide the rotation on ancilla a2.
(4) Apply UA(f ) for the block encoding of A[f (s)].
(5) Apply CR1(s) to provide the symmetric form of the rotation on ancilla a2.
(6) Apply CU0

Qb for controlled implementation of Qb after A[f (s)].
(7) Apply the Hadamard on a3 again.
(8) Finally, apply σ x on a4 to flip that bit.

A further simplification can be made by noting that steps 2 and 3 can be made the same as steps 6 and 5 (respectively) by
placing the bit flip on a4 in between these operations. That is, we have CU0

Qbσ
x
a4

= σ x
a4

CU1
Qb and CR1(s)σ x

a4
= σ x

a4
CR0(s).

Then, the complete circuit diagram can be given as in Fig. 9.
Now recall that we require the unitary operation in the block encoding to be self-inverse for the qubitization. This can

be seen fairly easily from Fig. 9 but it can also be shown explicitly using

[
σ x

a4
Ha3 CU0

Qb CR1(s) UA(f ) CR0(s) CU1
Qb Ha3

] [
σ x

a4
Ha3 CU0

Qb CR1(s) UA(f ) CR0(s) CU1
Qb Ha3

]

= σ x
a4
Ha3 CU0

Qb CR1(s) UA(f ) CR0(s) CU1
Qb σ

x
a4

CU0
Qb CR1(s) UA(f ) CR0(s) CU1

Qb Ha3

= σ x
a4
Ha3 CU0

Qb CR1(s) UA(f ) CR0(s) σ x
a4

CU0
Qb CU0

Qb CR1(s) UA(f ) CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb CR1(s) UA(f ) CR0(s) σ x
a4

CR1(s) UA(f ) CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb CR1(s) UA(f ) σ
x
a4

CR1(s) CR1(s) UA(f ) CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb CR1(s) UA(f ) σ
x
a4

UA(f ) CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb CR1(s) σ x
a4

UA(f ) UA(f ) CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb CR1(s) σ x
a4

CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb σ
x
a4

CR0(s) CR0(s) CU1
Qb Ha3

= σ x
a4
Ha3 CU0

Qb σ
x
a4

CU1
Qb Ha3

= σ x
a4
Ha3 σ

x
a4

CU1
Qb CU1

Qb Ha3

= σ x
a4
Ha3 σ

x
a4
Ha3

= I . (F12)

Here, we repeatedly commute σ x
a4

through operators and use the property that operators are self-inverse to cancel them.
This shows that our sequence of operations is self-inverse as required.

In our block encoding, qubits a1 and a4 are the two extra qubits used as part of the system upon which H(s) acts,
whereas a2, a3, and a are used as the registers for the block encoding. For the walk step W(s) that is used in our algorithm,
the block encoding of H(s) needs to be supplemented with a reflection on the registers used for this block encoding, which
are a2, a3, and a.

APPENDIX G: UPPER BOUNDS OF THEOREM 3 WITH p = 3/2

We split the proof of Theorem 9 into three parts: the upper bounds for the three terms without sums, the sums with ĉ1,
and the summation term with ĉ2. Before we proceed with each calculation, first we note that in Theorem 3 the three gaps
are replaced by the minimum one, Eq. (14), which is

	̌(s) = min
s′∈{s−1/T,s,s+}∩[0,1]

	(s′). (G1)
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a1 • • • • •
a2 R(s) H • • • H R(s)

a3 H • • H
a4 • • σx • •
a

UA U†
A|ψ〉 Ub U†

b
Ub U†

b

CU1
Qb CR0(s) UA(f) CR0(s) CU1

Qb

FIG. 9. The block encoding of the Hamiltonian H(s), where the target system is labeled as |ψ〉 and the ancillas are labeled a1–a4
and a (where a is the ancilla needed in the block encoding of A). The dashed boxes show CU1

Qb and UA(f ), whereas the dotted boxes
show CR0(s). The σ x on ancilla a4 has been moved to the middle, so the operations CU0

Qb and CR1(s) are implemented via CU1
Qb and

CR0(s).

We have Eq. (70) using the fact that the gap is monotonically decreasing, so then the fact that f is monotonically increasing
gives us

	̌(s) =
{
(1 − f (s + 3/T)+ f (s + 3/T)/κ), 0 ≤ s ≤ 1 − 3/T,
1/κ , s = 1 − 2/T, 1 − 1/T, 1.

(G2)

For simplicity of the analysis, we first analyze the 	̌ corresponding to the gap with a Hermitian and positive-definite A.
Later, we introduce a factor of 2 to account for the gap with general A and a block encoding.

Next, in Theorem 3, we have the functions ĉ1(s) and ĉ2(s) as defined in Eq. (10). Choices for the functions c1(s) and
c2(s) are given in Lemma 8. Using the monotonicity properties of the function f , we find that

ĉ1(s) =
{

2Tf (1/T), s = 0,
2T[f (s)− f (s − 1/T)], 1/T ≤ s ≤ 1,

(G3)

and

ĉ2(s) = 2
(
2|f ′(s)|2 + |f ′′(s)|) . (G4)

For ĉ1(s), we use the fact that f ′(s) is monotonically decreasing, so a larger difference will be obtained for a smaller value
of s. For ĉ2(s), we also use the fact that |f ′′(s)| is monotonically decreasing, so again larger values will be obtained for
smaller values of s. The monotonicity properties of f are easily checked by checking expressions for the derivatives; f ′(s)
is positive, f ′′(s) is negative, and f ′′′(s) is positive.

In the block encoding, we need to account for how the gap in H(s) is translated to the gap in the walk operators. The
solution state has eigenvalue 0, which is translated to the eigenvalues ±1 for the walk operator. The eigenvalues λ of H
are generally translated to ±e±i arcsin λ, which means that the gap for the walk operator is increased to the arcsine of the
gap of the Hamiltonian. Since the arcsine can only increase the gap, the lower bounds on the gap for H(s) also apply to
the walk operator.
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1. Single components

Beginning with the first term from the bound in Theorem 3, using the expression for 	̌(0) from Eq. (G2), for ĉ1(0)
from Eq. (G3), and using f (s) from Eq. (69), we obtain

ĉ1(0)

T	̌(0)2
= 2

f (1/T)
(1 − f (3/T)+ f (3/T)/κ)2

= 2
T4

κ√
κ + 1

(
3
√
κ − 3 + T

)4 (√
κ − 1 + 2T

)
(
√
κ − 1 + T)2

= 4
T

κ√
κ + 1

(1 + 2α1)
4(1 − α1/2)

(1 − α1)3

= 4
T

κ√
κ + 1

[1 + O(α1)]

= 4
√
κ

T
+ O

( κ
T2

)
, (G5)

where

αn :=
√
κ − 1

T + n(
√
κ − 1)

, (G6)

so αn = O(√κ/T) and we use T > κ . This result is given in Eq. (96) of the body.
We next show Eqs. (97) and (98). This time, we use ĉ1(s) and 	̌(s) for s = 1; by Eq. (G3), we obtain ĉ1(1) = 2[1 −

f (1 − 1/T)] and from Eq. (G2) we have 	̌(1) = 1/κ . Therefore,

ĉ1(1)

T	̌(1)2
= 2κ2[1 − f (1 − 1/T)]

= 2κ2
[

1 + κ

1 − κ

(
1 − 1

(1 + [
√
κ − 1)(1 − 1/T)]2

)]
. (G7)

Now, we simplify the terms inside the square brackets to give

1 + κ

1 − κ

[
1 − T2

[T + (
√
κ − 1)(T − 1)]2

]
= (1 − κ)

(
1 + √

κ(T − 1)
)2 + κ

(
1 + √

κ(T − 1)
)2 − T2κ

(1 − κ)
(
1 + √

κ(T − 1)
)2

=
(
1 + √

κ(T − 1)
)2 − T2κ

(1 − κ)
(
1 + √

κ(T − 1)
)2

=
√
κ(2T − 1)+ 1

(
√
κ + 1)[1 + √

κ(T − 1)]2

= 2
T(κ + √

κ)

1 − β/2
(1 − β)2

= 2
T(κ + √

κ)
[1 + O(β)]

= 2
κT

+ O
(

1
κT2

)
, (G8)

with

β = 1 − 1/
√
κ

T
, (G9)
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so β = O(1/T). Therefore, we can conclude that

ĉ1(1)

T	̌(1)2
= 4κ

T
+ O

( κ
T2

)
. (G10)

This is the result given in Eq. (97). For the other upper bound, we have 	̌(1) instead of 	̌(1)2, so for the upper bound
shown in Eq. (98), we obtain

ĉ1(1)

T	̌(1)
= 4

T
+ O

(
1
T2

)
. (G11)

2. c1(s) summations

We start by considering the sum of ĉ1(s)2/(T2	̌(s)3) for 1/T ≤ s ≤ 1 − 3/T. In this range, we obtain

ĉ1(n/T)2

T2	̌(n/T)3
= 4

[f (n/T)− f ((n − 1)/T)]2

(1 − f ((n + 3)/T)+ f ((n + 3)/T)/κ)3

= 16κ2

(
√
κ + 1)2T2

[
(3 + n)(

√
κ − 1)+ T

]6 [
(n − 1/2)(

√
κ − 1)+ T

]2

[
n(

√
κ − 1)+ T

]4 [
(n − 1)(

√
κ − 1)+ T

]4

= 16κ2

(
√
κ + 1)2T2

(1 + 3αn)
6(1 − αn/2)2

(1 − αn)4

= 16κ2

(
√
κ + 1)2T2

[1 + O(αn)]

= 16κ
T2 + O

(
κ3/2

T3

)
. (G12)

Now, for the last two elements of the sum, we have

ĉ1(1 − 2/T)2

T2	̌(1 − 2/T)3
= 4κ3(f (1 − 2/T)− f (1 − 3/T))2

= 16κ2

T2(1 + √
κ)2

[1 − 5/(2T)+ 5/(2T
√
κ)]2

[1 + 6/T2 − 5/T + 6/(T2κ)− 12/(T2
√
κ)+ 5/(T

√
κ)]4

= 16κ2

T2(1 + √
κ)2

[
1 + O

(
1
T

)]

= 16κ
T2 + O

( κ
T3

)
(G13)

and

ĉ1(1 − 1/T)2

T2	̌(1 − 1/T)3
= 4κ3(f (1 − 1/T)− f (1 − 2/T))2

= 16κ2

T2(1 + √
κ)2

[1 − 3/(2T)+ 3/(2T
√
κ)]2

[1 + 2/T2 − 3/T + 2/(T2κ)− 4/(T2
√
κ)+ 3/(T

√
κ)]4

= 16κ2

T2(1 + √
κ)2

[
1 + O

(
1
T

)]

= 16κ
T2 + O

( κ
T3

)
. (G14)
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Therefore, for all n in the sum, we have an upper bound of 16κ/T2 up to leading order. The total upper bound for the sum
of ĉ1(n/T)2/(T2	̌(n/T)3) from n = 1 to T − 1 is therefore

T−1∑
n=1

ĉ1(n/T)2/(T2	̌(n/T)3) = 16κ
T

+ O
(
κ3/2

T2

)
, (G15)

which is given in Eq. (99).
Next, we show the upper bound for the sum of the elements ĉ1(s)2/(T2	̌(s)2), which is given in Eq. (100) above. When

1/T ≤ s ≤ 1 − 3/T, we have

ĉ1(n/T)2

T2	̌(n/T)2
= 4

[f (n/T)− f ((n − 1)/T)]2

(1 − f ((n + 3)/T)+ f ((n + 3)/T)/κ)2

= 4κ2

(
√
κ + 1)2

[
(3 + n)(

√
κ − 1)+ T

]4 [
(2n − 1)

(√
κ − 1

) + 2T
]2

[
n(

√
κ − 1)+ T

]4 [
(n − 1)(

√
κ − 1)+ T

]4

= 16κ2

[T + n(
√
κ − 1)]2(

√
κ + 1)2

(1 − αn/2)2(1 + 3αn)
4

(1 − αn)4

= 16κ2

[T + n(
√
κ − 1)]2(

√
κ + 1)2

[1 + O (αn)]

≤ 16κ
T2 + O

(
κ3/2

T3

)
. (G16)

Because the sum starts from n = 0, we need the following upper bound:

ĉ1(0)2

T2	̌(0)2
= 4

f (1/T)2

(1 − f (3/T)+ f (3/T)/κ)2

= 4κ2

(
√
κ + 1)2

(
3(

√
κ − 1)+ T

)4 (√
κ − 1 + 2T

)2

T4
(√
κ − 1 + T

)4

= 16κ2

(
√
κ + 1)2T2

(1 + α0/2)2(1 + 3α0)
4

(1 + α0)4

= 16κ2

(
√
κ + 1)2T2

[1 + O(α0)]

= 16κ
T2 + O

(
κ3/2

T3

)
. (G17)

We also have to upper bound the cases where s = 1 − 1/T and s = 1 − 2/T. This upper bound is the same as we have in
Eqs. (G13) and (G14) but now with 1/κ2 in the denominator rather than 1/κ3, so we obtain

ĉ1(1 − 2/T)2

T2	̌(1 − 2/T)2
= 4κ2(f (1 − 2/T)− f (1 − 3/T))2 = 16

T2 + O
(

1
T3

)
(G18)

and

ĉ1(1 − 1/T)2

T2	̌(1 − 1/T)2
= 4κ2(f (1 − 1/T)− f (1 − 2/T))2 = 16

T2 + O
(

1
T3

)
. (G19)

There are T terms in the sum and each is upper bounded by 16/T2 to leading order except that at n = 0.
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We therefore obtain

T−1∑
n=0

ĉ1(n/T)2

T2	̌(n/T)2
≤ 16κ

T
+ 16κ

T2 + O
(√

κ

T

)

= 16κ
T

+ O
(√

κ

T

)
. (G20)

This is the result given as Eq. (100) above.
So far, we have used 	̌, which is the gap for the spe-

cial case of Hermitian and positive-definite A, and we use
a factor of 2 to account for general A and the block encod-
ing, so the actual gap is 	̌′ ≥ 	̌/2. This means that we
need T ≥ 8ĉ1(n/T)/	̌(n/T) to use the second discrete adi-
abatic theorem. We show that choosing T ≥ 39

√
κ ensures

that inequality holds. The general principle is that ĉ1(n/T)
involves a maximum over neighboring steps separated by
1/T and so will decrease with T. The quantity 	̌(n/T)
involves a minimum over neighboring steps and increases
with T. As a result, the ratio ĉ1(n/T)/	̌(n/T) decreases
with T and so to upper bound the ratio one can simply use
the lower bound on T to compute it. We then find that the
ratio approaches its upper bound for large κ .

For the case 1 ≤ n ≤ T − 3, note that

(1 − αn/2)(1 + 3αn)
2

(1 − αn)2
(G21)

is monotonically increasing for αn ∈ [0, 1]. Next, if we
require T ≥ 39

√
κ and n ≥ 1, then the maximum value of

αn is for T = 39
√
κ and n = 1, which gives αn = (

√
κ −

1)/(40
√
κ − 1). If we take this value of αn then we obtain

(1 − αn/2)(1 + 3αn)
2

(1 − αn)2
= (43

√
κ − 4)2(79

√
κ − 1)

3042κ(40
√
κ − 1)

.

(G22)

This is monotonically increasing with κ for κ ≥ 1 and has
a limiting value of 146071/121680 < 39/32. Therefore,

we have

ĉ1(n/T)

	̌(n/T)
= 4κ

[1 + n(
√
κ − 1)/T](

√
κ + 1)

× (1 − αn/2)(1 + 3αn)
2

(1 − αn)2

<
39κ

8[1 + n(
√
κ − 1)/T](

√
κ + 1)

<
39
8

√
κ . (G23)

Therefore, we can ensure that T > 8ĉ1(n/T)/	̌(n/T) for
1 ≤ n ≤ T − 3.

Next, for the case n = 0, we note that

(1 + α0/2)(1 + 3α0)
2

(1 + α0)2
(G24)

is monotonically increasing for α0 ∈ [0, 1]. Then, taking
T ≥ 39

√
κ , we have a maximum value for α0 of (

√
κ −

1)/(39
√
κ), which gives

(1 + α0/2)(1 + 3α0)
2

(1 + α0)2
= 3(14

√
κ − 1)2(79

√
κ − 1)

26
√
κ(40

√
κ − 1)2

.

(G25)

This is monotonically increasing with κ for κ ≥ 1 and has
a limiting value of 11613/10400, which is less than 5/4.
That then gives

ĉ1(0/T)

	̌(0/T)
= 4κ√

κ + 1
(1 + α0/2)(1 + 3α0)

2

(1 + α0)2

<
5κ√
κ + 1

< 5
√
κ . (G26)

Next, for n = T − 2, we obtain

ĉ1(1 − 2/T)

	̌(1 − 2/T)
= 2κT(f (1 − 2/T)− f (1 − 3/T))

= 2κ
(1 + √

κ)

T3κ[
√
κ(2T − 5)+ 3]

[κ(T − 2)(T − 3)+ √
κ(5T − 12)+ 6]2

. (G27)

This is monotonically decreasing with T, so we can maximize it by taking the minimum value T = 39
√
κ , which

gives

ĉ1(1 − 2/T)

	̌(1 − 2/T)
≤ 2κ
(1 + √

κ)

6591κ5/2(78κ − 5
√
κ + 5)

(13κ − √
κ + 1)2(39κ − 2

√
κ + 2)2

< 4. (G28)
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The function of κ is monotonically increasing and
approaches its supremum of 4 in the limit κ → ∞. Hence
T ≥ 39

√
κ guarantees T > 8ĉ1(1 − 2/T)/	̌(1 − 2/T).

Next, for n = T − 1 and n = T, we obtain

ĉ1(1 − 1/T)

	̌(1 − 1/T)
= 2κT(f (1 − 1/T)− f (1 − 2/T)),

ĉ1(1)

	̌(1)
= 2κT(f (1)− f (1 − 1/T)). (G29)

However, it is easily shown that f is a convex and mono-
tonically increasing function, so the derivative is decreas-
ing and the differences in f must be decreasing. That
is,

ĉ1(1)

	̌(1)
≤ ĉ1(1 − 1/T)

	̌(1 − 1/T)
≤ ĉ1(1 − 2/T)

	̌(1 − 2/T)
< 4. (G30)

Hence T ≥ 39
√
κ guarantees T > 8ĉ1(1 − n/T)/	̌(1 − n/T)

for these two cases as well.

3. c2(s) summation

Next, we show the upper bound given in Eq. (101).
Using Eqs. (G4) and (G2) for 1 ≤ s ≤ 1 − 3/T, we have

ĉ2(n/T)

T2	̌(n/T)2
= 1

T2

4|f ′(n/T)|2 + |f ′′(n/T)|
(1 − f ((n + 3)/T)+ f ((n + 3)/T)/κ)2

= 2κ
T2(

√
κ + 1)2

(1 + 3an)
4((3 + 8γ 2)κ − 3)

≤ 22κ
T2(

√
κ + 1)2

(1 + 3an)
4

= 22κ
T2 + O

(
κ3/2

T3

)
, (G31)

where

γ = T
T + n(

√
κ − 1)

< 1. (G32)

We need to separately consider the case s = 1 − 1/T,
which gives

ĉ2(1 − 1/T)

T2	̌(1 − 1/T)2
= κ2

T2

(
4|f ′(1 − 1/T)|2 + |f ′′(1 − 1/T)|)

= 2T2κ3

(
√
κ + 1)2(

√
κ(T − 1)+ 1)4

× (3κ + 5 + 16δ + 8δ2)

= 6κ
T2 + O

(
1
T2

)
, (G33)

where

δ =
√
κ − 1√

κ(T − 1)+ 1
= O(1/T). (G34)

Similarly, we obtain

ĉ2(1 − 2/T)

T2	̌(1 − 2/T)2
= κ2

T2

(
4|f ′(1 − 2/T)|2 + |f ′′(1 − 2/T)|)

= 2T2κ3

(
√
κ + 1)2(

√
κ(T − 2)+ 2)4

× (3κ + 5 + 32δ + 32δ2)

= 6κ
T2 + O

(
1
T2

)
, (G35)

where this time

δ =
√
κ − 1√

κ(T − 2)+ 2
= O(1/T). (G36)

Finally, since there are T − 1 terms in the sum and each is
upper bounded by 22κ/T2 to leading order, we obtain

T−1∑
n=1

ĉ2(n/T)

T2	̌(n/T)2
≤ 22κ

T
+ O

(
κ3/2

T2

)
. (G37)

This is the bound given in Eq. (101).

APPENDIX H: PHASE FACTORS IN THE
ADIABATIC EVOLUTION

One would normally consider the eigenspace of interest
in a single group for the adiabatic theorem. In contrast, here
the eigenspace of interest is separated in two parts, corre-
sponding to ±1, and the remaining eigenspace is separated
by a gap in two parts in the upper and lower halves of the
complex plane. In order to address this, one can instead
consider just the eigenvalue 1 as the eigenspace of interest,
which is then in a single group. Then, the discrete adiabatic
theorem can be applied unchanged to show that the state is
correctly mapped to the final eigenstate. Similarly, one can
just consider the adiabatic theorem with −1. Since using
the adiabatic theorem separately on each eigenstate shows
that it properly evolves to the final state, the superposition
of the two eigenstates must also do so.

To be more specific, as discussed in Eqs. (10)–(13) of
Ref. [24], the eigenvectors of the walk operator are of the
form (correcting a missing i in the reference)

1√
2

(|0〉a |k〉s ± i |0k⊥〉as
)

, (H1)

where |0〉a is the zero state on the ancilla, |k〉s is the
eigenstate of H of energy Ek on the system, and |0k⊥〉as
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is a state orthogonal to |0〉a on the ancilla. In our case,
the target eigenvalue of the Hamiltonian is Ek = 0, which
yields eigenvalues of ±1 of the walk operator with these
two eigenstates. When we have a positive superposition
of the two eigenstates, then the resulting state is the solu-
tion given by |0〉a |k〉s. In contrast, if we have a negative
superposition of the two eigenstates, then the result is the
nonsolution state |0k⊥〉as. In the adiabatic evolution, we
start with the positive superposition and we must maintain
that positive superposition at the end in order to obtain the
solution. Therefore, we should show that there is no phase
factor introduced by the adiabatic evolution.

To show this, it is again sufficient to consider the evolu-
tion of each eigenvalue on its own. To obtain the phase fac-
tor, it is sufficient to consider the exact adiabatic evolution
given by the adiabatic walk operators

WA(s) = V(s)W(s)

= V(s′, s)−1S(s′, s)W(s)

= [S(s′, s)S†(s′, s)]−1/2S(s′, s)W(s)

= [P(s′)P(s)P(s′)+ Q(s′)Q(s)Q(s′)]−1/2

× [P(s′)P(s)+ Q(s′)Q(s)]W(s), (H2)

where s′ = s+. (We are swapping the s′ and s from the way
S and V were given originally.) For the case in which we
are interested, there may be multiple states within the spec-
trum of interest but they are orthogonal. More specifically,

there is the solution state (ground state of the Hamiltonian)
(

A[f (s)]−1b
0

)
, (H3)

as well as a nonsolution state of the form
(

0
b

)
. (H4)

In that case, the product of projectors is of the form

P(s′)P(s) =
∑
j ,j ′

|λj (s′)〉 〈λj (s′)|λj ′(s)〉 〈λj ′(s)|

=
∑

j

〈λj (s′)|λj (s)〉 |λj (s′)〉 〈λj (s)| , (H5)

and, similarly,

P(s′)P(s)P(s′) =
∑

j

| 〈λj (s′)|λj (s)〉 |2 |λj (s′)〉 〈λj (s′)| .

(H6)

We use |λj (s)〉 to indicate eigenstates, including for degen-
erate eigenvalues. What this means is that we cannot flip
between orthogonal eigenstates in the spectrum of interest
during the (exact) adiabatic evolution and we do not have
the solution state leaking into the nonsolution state.

For the eigenstate |λj (s)〉 in the spectrum of interest for
W(s), we have

[P(s′)P(s)P(s′)+ Q(s′)Q(s)Q(s′)]−1/2[P(s′)P(s)+ Q(s′)Q(s)]W(s) |λj (s)〉
= λj (s)[P(s′)P(s)P(s′)+ Q(s′)Q(s)Q(s′)]−1/2[P(s′)P(s)+ Q(s′)Q(s)] |λj (s)〉
= λj (s) 〈λj (s′)|λj (s)〉 [P(s′)P(s)P(s′)+ Q(s′)Q(s)Q(s′)]−1/2 |λj (s′)〉
= λj (s) 〈λj (s′)|λj (s)〉 [| 〈λj (s′)|λj (s)〉 |2 |λj (s′)〉 〈λj (s′)|]−1/2 |λj (s′)〉

= λj (s)
〈λj (s′)|λj (s)〉

| 〈λj (s′)|λj (s)〉 | |λj (s′)〉 . (H7)

In the second line, applying W(s) gives the eigen-
value. If this eigenstate is |λj (s)〉, then applying
P(s′)P(s)+ Q(s′)Q(s) gives the updated state |λj (s′)〉
times 〈λj (s′)|λj (s)〉. Then, applying V(s′, s)−1 cancels the
magnitude of 〈λj (s′)|λj (s)〉 and we only have its phase.

For our application, the eigenvalues of W(s) are ±1 but
provided that the total number of steps of the walk is even,
then this sign flip cancels out. Ideally, we would show
that 〈λj (s′)|λj (s)〉 is real in order to show that there are
no spurious phase factors. However, it is sufficient to just
show that any phase factor from 〈λj (s′)|λj (s)〉 is the same

between the ±1 eigenvectors of W(s). The eigenstates of
W(s) are given as in Eq. (H1). In order to describe the inner
products between the eigenstates at successive time steps,
let us use k1 and k2. Then, the inner product of eigenstates
at successive steps is

1
2
(

a〈0| s〈k1| ∓ ias〈0k⊥
1 |) (|0〉a |k2〉s ± i |0k⊥

2 〉as

)

= 1
2
(

s〈k1|k2〉s + as〈0k⊥
1 |0k⊥

2 〉as

)
. (H8)

040303-44



OPTIMAL SCALING QUANTUM LINEAR-SYSTEMS... PRX QUANTUM 3, 040303 (2022)

Here, we use ± to indicate that we are using +1 for both
steps or −1 for both steps. The crucial result here is that the
inner product does not depend on whether we are consid-
ering the +1 or −1 eigenstates. This means that there may
be a phase factor but it will be the same between the ±1
eigenstates. The one caveat is that we need to use an even
number of steps to avoid a −1 factor but it is always pos-
sible to slightly adjust the schedule so that there is an even
number of steps and that does not change the asymptotic
scaling of the number of steps needed.

The net result of this is that the adiabatic walk with
the qubitized walk operator still works, despite there being
separated eigenvalues at ±1. Here, we do not need to use
any special properties of the Hamiltonian other than that
the eigenvalue of interest (for the Hamiltonian) is 0, so this
result may be used for applications other than solving lin-
ear equations. If there was a nonzero eigenvalue that was
known, then it would be possible to add a multiple of the
identity to rezero that eigenvalue and the above method
would again work.

APPENDIX I: UPPER BOUNDS OF THEOREM 10
WITH 1 < p < 2

In this appendix, we prove Theorem 10 for general pos-
sibly non-Hermitian matrix A. We use consistent notation,
as follows. The time-dependent Hamiltonian H(s) is given
in Eq. (71), where the schedule function f (s) follows from
the definition in Eq. (68). The spectral gaps of H(s) are
lower bounded by	′

k(s) as defined in Eq. (82). We remark
that in the proof we also use the notation 	0(s) defined in
Eq. (67) but this is only for the quantities related to the
schedule function f (s) and the spectral gap of H(s) in the
general non-Hermitian case should be 	′

0(s).
In order to show the linear dependence in T on κ , we use

Theorem 3 and calculate the scaling of each term. There
are two main difficulties: estimates of finite differences of
the walk operator and different discrete time points used in
Theorem 3. To overcome the first difficulty, we establish
a connection between the discrete finite-difference coeffi-
cients ck(s) and the corresponding continuous derivatives
of the schedule function. Then, according to the definition
of the schedule function in Eq. (68), this can be directly
related to the spectrum gap and canceled with the denom-
inators in the error bound. For the second difficulty, we
use the continuity and monotonicity of the spectrum gap in
the linear-systems problem to unify the time points, at the
sacrifice of larger preconstants.

We first reformulate the coefficients c1 and c2, which
were previously given in Lemma 8. Here, we use a slightly
different version with continuous time values, that

c1(s) = 2 max
τ∈[s,s+1/T]∩[0,1]

|f ′(τ )| (I1)

and

c2(s) = 2 max
τ∈[s,s+2/T]∩[0,1]

(2|f ′(τ )|2 + |f ′′(τ )|). (I2)

Note that the choices of c1 and c2 here are even larger
than those in Lemma 8. Then, we can use the definition of
the schedule function to establish the connection between
ck(s) and the spectrum gap.

Lemma 20: Consider solving linear-systems problems
using discrete adiabatic evolution with the schedule func-
tion defined in Eq. (68). Then, the walk operators satisfy
the following:

(1) For any 0 ≤ s ≤ 1 − 1/T, we have

c1(s) = 2dp	0(s)p . (I3)

(2) For any 0 ≤ s ≤ 1 − 2/T, we have

c2(s) = 4d2
p	0(s)2p + 2d2

pp(1 − 1/κ)	0(s)2p−1.
(I4)

Proof. According to Lemma 8, we only need to com-
pute the derivatives of the schedule function. The first-
order derivative directly comes from the definition of the
schedule function, according to which

f ′(τ ) = dp	0(τ )
p . (I5)

For the second-order derivative, we have

f ′′(τ ) = d
dτ

(
dp (1 − f (τ )+ f (τ )/κ)p

)
= dpp (1 − f (τ )+ f (τ )/κ)p−1 (−1 + 1/κ)f ′(τ )

= d2
pp(−1 + 1/κ)	0(τ )

2p−1. (I6)

The proof is completed using the monotonicity of 	0. �
In the error estimate in Theorem 3, we encounter tak-

ing the maximum or minimum of several consequent time
steps, which poses a technical difficulty in calculating the
scaling of the error. In the following lemma, we show how
to resolve the different-time-point issue.

Lemma 21: Let 	(s) denote the quantity defined in
Eq. (67) and let 	′

0(s) denote the spectral gap of the

Hamiltonian H(s). Assume that T ≥ 16(
√

2)p
(
κp−1−1

p−1

)
=

O(κp−1). Then, for any s ≤ s′ ≤ s + 4/T, we have

	0(s) ≤ 4
3
	0(s′), 	′

0(s) ≤ 4
3
	′

0(s
′). (I7)
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Proof. Since	′
0(s) = 	0(s)/2, it suffices only to prove that	0(s) ≤ 4

3	0(s′). We define	linear(y) = 1 − y + y/κ . Then,
	0(s) = 	linear(f (s)). Since 	(s) is a monotonically decreasing function, it suffices to prove that 	0(s)/	0(s + 4/T) ≤
4/3. We first compute the derivative of the gap,

d
ds
	0(s) = d

ds
(	linear(f (s))) = d	linear(f (s))

df
f ′(s) = (−1 + 1/κ)dp	0(s)p . (I8)

Then, for any 0 ≤ s ≤ 1 − 4/T,

|	0(s)−	0(s + 4/T)| ≤ 4
T

max
s′∈[s,s+4/T]

|d	0(s′)/ds′| = 4
T
(1 − 1/κ)dp	0(s)p (I9)

and thus

	0(s)
	0(s + 4/T)

= 1 + 	0(s)−	0(s + 4/T)
	0(s + 4/T)

≤ 1 + 4(1 − 1/κ)dp	0(s)p−1

T
	0(s)

	0(s + 4/T)

≤ 1 + 4(1 − 1/κ)dp

T
	0(s)

	0(s + 4/T)
. (I10)

It has been computed in Ref. [15] that dp = 2p/2

p−1
κ
κ−1 (κ

p−1 − 1). Together with the assumption that T ≥ 16(
√

2)p
(
κp−1−1

p−1

)
,

we have

4(1 − 1/κ)dp

T
= 2p/2+2

T(p − 1)
(κp−1 − 1) ≤ 1

4
(I11)

and thus

	0(s)
	0(s + 4/T)

≤ 1 + 1
4

	0(s)
	0(s + 4/T)

, (I12)

which implies 	0(s)/	0(s + 4/T) ≤ 4/3. �
Now we are ready to prove Theorem 10, the complexity estimate of using discrete adiabatic evolution to solve linear-

systems problems.

Proof of Theorem 10. Let 	′(s) be the multistep gap of H(s), i.e.,

	′(s) =

⎧⎪⎨
⎪⎩
	′

2(s), 0 ≤ s ≤ 1 − 2/T,
	′

1(s), s = 1 − 1/T,
	′

0(s), s = 1,
(I13)

and let 	̌′(s) be an adjustment for 	′(s) at neighboring points:

	̌′(s) = min
s′∈{s−1/T,s,s+1/T}∩[0,1]

	′(s′). (I14)

The proof is organized as follows. First, to simplify further computation, we unify the time in the hat and check notations
by applying Lemma 21. Then, we verify that the assumptions in Theorem 3 are satisfied. This is followed by the majority
of the proof, in which we estimate each term in the error bound in Theorem 3.
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To simplify the computation, we first unify the time in the hat and check notations by applying Lemma 21. More
precisely,

ĉ1(s) = max
s′∈{s−1/T,s,s+1/T}∩[0,1−1/T]

c1(s′) =
{

2dp	0(0)p , s = 0,
2dp	0(s − 1/T)p , 1/T ≤ s ≤ 1.

(I15)

Applying Lemma 21 to change all the discrete times to s, we have, for all 0 ≤ s ≤ 1,

ĉ1(s) ≤ 22p+1

3p dp	0(s)p . (I16)

Similarly,

ĉ2(s) =
{

4d2
p	0(0)2p + 2pd2

p(1 − 1/κ)	0(0)2p−1, s = 0
4d2

p	0(s − 1/T)2p + 2pd2
p(1 − 1/κ)	0(s − 1/T)2p−1, 1/T ≤ s ≤ 1 − 1/T,

(I17)

and for all 0 ≤ s ≤ 1 − 1/T,

ĉ2(s) ≤ 24p+2

32p d2
p	0(s)2p + 24p−1

32p−1 pd2
p(1 − 1/κ)	0(s)2p−1. (I18)

For the spectrum gap, by Eq. (G2) and Lemma 21, we have

	̌′(s) ≥ 3
4
	′

0(s) = 3
23	0(s). (I19)

Note that, by Eqs. (I16) and (I19),

4
ĉ1(s)

	̌′(s)
≤ 4

22p+1

3p dp	0(s)p
23

3	0(s)
= 22p+6dp	0(s)p−1

3p+1 ≤ 38dp . (I20)

Therefore, the assumption that T ≥ 38dp ensures that the assumption in Theorem 3 is satisfied.
Combining Eqs. (I16), (I18) and (I19) and the fact that

dp = 2p/2

p − 1
κ

κ − 1
(κp−1 − 1) ≤ 21+p/2

p − 1
κp−1, (I21)

we are now ready to bound each term in the error bound in Theorem 3. The first three terms (i.e., the boundary terms) in
Theorem 3 can be bounded as follows:

ĉ1(0)

T	̌′(0)2
≤ 22p+1

3p dp	0(0)p
26

32T	0(0)2
= 22p+7dp

3p+2T
≤ 28+5p/2

3p+2(p − 1)
κp−1

T
, (I22)

ĉ1(1)

T	̌′(1)2
≤ 22p+1

3p dp	0(1)p
26

32T	0(1)2
= 22p+7dp

3p+2T	0(1)2−p ≤ 28+5p/2

3p+2(p − 1)
κ

T
, (I23)

and

ĉ1(1)

T	̌′(1)
≤ 22p+1

3p dp	0(1)p
23

3T	0(1)
= 22p+4dp

3p+1T
	0(1)p−1 ≤ 25+5p/2

3p+1(p − 1)
1
T

. (I24)

Again by Eqs. (I16), (I18) and (I19), the last three terms in Theorem 3 can be bounded as

T−1∑
n=1

ĉ1(n/T)2

T2	̌′(n/T)3
≤

T−1∑
n=1

24p+2

32p d2
p	0(n/T)2p 1

T2

29

33	0(n/T)3
= 24p+11d2

p

32p+3T2

T−1∑
n=1

	0(n/T)2p−3, (I25)
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T−1∑
n=0

ĉ1(n/T)2

T2	̌′(n/T)2
≤

T−1∑
n=0

24p+2

32p d2
p	0(n/T)2p 1

T2

26

32	0(n/T)2
= 24p+8d2

p

32p+2T2

T−1∑
n=0

	0(n/T)2p−2, (I26)

and

T−1∑
n=1

ĉ2(n/T)

T2	̌′(n/T)2
≤

T−1∑
n=1

24p+2

32p d2
p	0(n/T)2p 1

T2

26

32	0(n/T)2

+
T−1∑
n=1

24p−1

32p−1 pd2
p(1 − 1/κ)	0(n/T)2p−1 1

T2

26

32	0(n/T)2

= 24p+8d2
p

32p+2T2

T−1∑
n=1

	0(n/T)2p−2 + 24p+5pd2
p

32p+1T2 (1 − 1/κ)
T−1∑
n=1

	0(n/T)2p−3. (I27)

To proceed, we need to bound the summations 1
T

∑T−1
n=0 	0(n/T)2p−2 and 1

T

∑T−1
n=0 	0(n/T)2p−3. Note that the summations

are in the Riemann-sum form. The idea is then to approximate the summations by corresponding integrals and to bound
both the integrals and the difference terms. More precisely, according to Ref. [28], for any continuously differentiable g(t)
on the interval [a, b], we have

∣∣∣∣
∫ b

a
g(t)dt − (b − a)g(a)

∣∣∣∣ ≤ (b − a)2

2
max
t∈[a,b]

∣∣g′(t)
∣∣ . (I28)

This implies that

∣∣∣∣∣
∫ 1

0
g(t)dt − 1

T

T−1∑
n=0

g(n/T)

∣∣∣∣∣ ≤ 1
2T2

T−1∑
n=0

max
t∈[n/T,(n+1)/T]

∣∣g′(t)
∣∣ . (I29)

If we further assume g(t) > 0 for all t, then

1
T

T−1∑
n=0

g(n/T) ≤
∫ 1

0
g(t)dt + 1

2T2

T−1∑
n=0

max
t∈[n/T,(n+1)/T]

∣∣g′(t)
∣∣ . (I30)

By taking the function g(t) to be 	0(t)2p−2 and 	0(t)2p−3, respectively, we can bound the desired summations.
We start with the summation of 	2p−2

0 . By change of variable x = f (t), the integral can be computed as

∫ 1

0
	0(t)2p−2dt =

∫ 1

0
(1 − f (t)+ f (t)/κ)2p−2dt

=
∫ 1

0
(1 − f + f /κ)2p−2 1

dp(1 − f + f /κ)p
df

= 1
dp

∫ 1

0
(1 − f + f /κ)p−2df

= 1
dp

κ2−p

p − 1
κp−1 − 1
κ − 1

. (I31)

The derivative can be computed as

d
dt
	0(t)2p−2 = (2p − 2)(−1 + 1/κ)dp(1 − f (t)+ f (t)/κ)3p−3 = (2p − 2)(−1 + 1/κ)dp	0(t)3p−3. (I32)
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Therefore, according to Eq. (I30) and the fact that 	0(t) is bounded by 1, we have

1
T

T−1∑
n=0

	0(n/T)2p−2 ≤ 1
dp

κ2−p

p − 1
κp−1 − 1
κ − 1

+ (p − 1)dp

T2

κ − 1
κ

T−1∑
n=0

	0(n/T)3p−3

≤ 1
dp

κ2−p

p − 1
κp−1 − 1
κ − 1

+ (p − 1)dp

T2

κ − 1
κ

T−1∑
n=0

	0(n/T)2p−2

≤ 1
dp

κ2−p

p − 1
κp−1 − 1
κ − 1

+ dp

T
1
T

T−1∑
n=0

	0(n/T)2p−2. (I33)

By the assumption that T > 38dp , we have dp/T ≤ 1/38 and thus

1
T

T−1∑
n=0

	0(n/T)2p−2 ≤ 1
dp

κ2−p

p − 1
κp−1 − 1
κ − 1

+ 1
38

1
T

T−1∑
n=0

	0(n/T)2p−2. (I34)

Solving the summation from the above inequality leads to

1
T

T−1∑
n=0

	0(n/T)2p−2 ≤ 38
37

1
dp

κ2−p

p − 1
κp−1 − 1
κ − 1

≤ 38
37
(p − 1)

1
dp

, (I35)

where the second inequality follows from κ2−p κp−1−1
κ−1 ≤ 1.

The summation of	2p−3
0 can be bounded similarly but requires some more delicate computations. We first assume that

p �= 1.5 such that 2p − 3 �= 0. Again, the integral and the derivative can be computed as
∫ 1

0
	0(t)2p−3dt =

∫ 1

0
(1 − f (t)+ f (t)/κ)2p−3dt

=
∫ 1

0
(1 − x + x/κ)2p−3 1

dp(1 − x + x/κ)p
dx

= 1
dp

∫ 1

0
(1 − x + x/κ)p−3dx

= 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1) (I36)

and

d
dt
	0(t)2p−3 = (2p − 3)(−1 + 1/κ)dp(1 − f (t)+ f (t)/κ)3p−4 = (2p − 3)(−1 + 1/κ)dp	0(t)3p−4. (I37)

According to Eq. (I30), we have

1
T

T−1∑
n=0

	0(n/T)2p−3 ≤ 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ |2p − 3|dp

2T2

κ − 1
κ

T−1∑
n=0

max
t∈[n/t,(n+1)/T]

	0(t)3p−4

≤ 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ |2p − 3|dp

2T2

κ − 1
κ

T−1∑
n=0

max
t∈[n/t,(n+1)/T]

	0(t)2p−3. (I38)

Since	0(t)2p−3 is always monotonic, maxt∈[n/T,(n+1)/T]	0(t)2p−3 becomes either	0(n/T)2p−3 or	0((n + 1)/T)2p−3. The
corresponding summation is then bounded by either

∑T−1
n=0 	0(n/T)2p−3 or

∑T−1
n=0 	0((n + 1)/T)2p−3, both of which can
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be bounded by
∑T

n=0	0(n/T)2p−3. Then,

1
T

T−1∑
n=0

	0(n/T)2p−3 ≤ 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ |2p − 3|dp

2T2

κ − 1
κ

T∑
n=0

	0(n/T)2p−3

≤ 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ dp

2T2

T∑
n=0

	0(n/T)2p−3. (I39)

Again using the fact that dp/T ≤ 1/38 and separating the term with n = T in the summation on the right-hand side, we
obtain

1
T

T−1∑
n=0

	0(n/T)2p−3 ≤ 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ 1

38
1
T

T∑
n=0

	0(n/T)2p−3

≤ 1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ 1

38
1
T

T−1∑
n=0

	0(n/T)2p−3 + 1
38
κ3−2p

T
. (I40)

Solving the summation gives

1
T

T−1∑
n=0

	0(n/T)2p−3 ≤ 38
37

1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ 1

37
κ3−2p

T

≤ 38
37dp(2 − p)

κ2−p + 1
37
κ3−2p

T
, (I41)

where the second inequality follows from κp−1 κ2−p −1
κ−1 ≤ 1. Note that the above estimate also holds for p = 1.5 since when

p = 1.5, the left-hand side is a constant 1 and the right-hand side is always larger than 1.
We are now ready to bound the last three terms in Theorem 3. By inserting Eqs. (I35) and (I41) back into Eqs.

(I25)–(I27) and using the representation of dp in Eq. (I21), we have

T−1∑
n=1

ĉ1(n/T)2

T2	̌′(n/T)3
≤ 24p+11dp

32p+3T
38
37

1
2 − p

κ2−p + 24p+11d2
p

32p+3T
1

37
κ3−2p

T

= 24p+1219dp

32p+337(2 − p)T
κ2−p + 24p+11d2

p

32p+337T
κ3−2p

T

≤ 213+9p/219
32p+337(2 − p)(p − 1)

κ

T
+ 25p+13

32p+337(p − 1)2
κ

T2 , (I42)

T−1∑
n=0

ĉ1(n/T)2

T2	̌′(n/T)2
≤ 24p+8d2

p

32p+2T
38

37(p − 1)
1
dp

≤ 210+9p/219
32p+237(p − 1)2

κp−1

T
(I43)

and

T−1∑
n=1

ĉ2(n/T)

T2	̌′(n/T)2
≤ 24p+8d2

p

32p+2T
38

37(p − 1)
1
dp

+ 24p+5pd2
p

32p+1T
κ − 1
κ

(
38
37

1
dp

1
2 − p

κ

κ − 1
(κ2−p − 1)+ 1

37
κ3−2p

T

)

= 24p+919dp

32p+237(p − 1)T
+ 24p+619pdp(κ

2−p − 1)
32p+137(2 − p)T

+ 24p+5pd2
p

32p+137T
κ − 1
κ

κ3−2p

T

≤ 210+9p/219
32p+237(p − 1)2

κp−1

T
+ 27+9p/219p

32p+137(2 − p)(p − 1)
κ

T
+ 25p+7p

32p+137(p − 1)2
. (I44)
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Finally, inserting Eqs. (I22)–(I24) and Eqs.(I42)–(I44) into the estimate in Theorem 3, the adiabatic error can be
bounded by

12
28+5p/2

3p+2(p − 1)
κp−1

T
+ 12

28+5p/2

3p+2(p − 1)
κ

T
+ 6

25+5p/2

3p+1(p − 1)
1
T

+ 305
213+9p/219

32p+337(2 − p)(p − 1)
κ

T
+ 305

25p+13

32p+337(p − 1)2
κ

T2 + 44
210+9p/219

32p+237(p − 1)2
κp−1

T

+ 32
210+9p/219

32p+237(p − 1)2
κp−1

T
+ 32

27+9p/219p
32p+137(2 − p)(p − 1)

κ

T
+ 32

25p+7p
32p+137(p − 1)2

κ

T2

≤ C(1)p
κ

T
+ C(2)p

κp−1

T
+ C(3)p

κ

T2 + C(4)p
1
T

, (I45)

where

C(1)p := 12
28+5p/2

3p+2(p − 1)
+ 305

213+9p/219
32p+337(2 − p)(p − 1)

+ 32
27+9p/219p

32p+137(2 − p)(p − 1)
, (I46)

C(2)p := 12
28+5p/2

3p+2(p − 1)
+ 44

210+9p/219
32p+237(p − 1)2

+ 32
210+9p/219

32p+237(p − 1)2
, (I47)

C(3)p := 305
25p+13

32p+337(p − 1)2
+ 32

25p+7p
32p+137(p − 1)2

, (I48)

C(4)p := 6
25+5p/2

3p+1(p − 1)
. (I49)

This completes the proof of the first part by defining Cp to be the largest constant factor in Eq. (I45):

Cp := max
j

C(j )p . (I50)

The second part of Theorem 10, which is T = O (κ/ε), follows directly from this bound by noting that each term of the
adiabatic error in the first part can be bounded by O(κ/T). �

APPENDIX J: ADDITIONAL DETAILS FOR FILTERING

Here, we give a proof of the upper bound on the norm of the difference of states for filtering. We are assuming that
w̃(φ) = 0 for the desired part of the spectrum and that the initial probability for the desired part of the spectrum is at least
1/2. Then, the squared norm for the undesired part of the state is

P(⊥) =
∥∥∥∥∥
∑
k∈⊥

w̃(φk)ψk |k〉
∥∥∥∥∥

2

≤
(

max
k∈{⊥}

w̃(φk)

)2
(∑

k∈⊥
|ψk|2

)
, (J1)

where we are using ⊥ to denote the set of undesired states. Recall that this is part of a state that is not normalized. The
squared norm for the desired part of the spectrum is

P(�⊥) =
∑
k∈�⊥

|ψk|2, (J2)

where �⊥ indicates the desired part of the spectrum. As a result, the normalized probability for the desired part is lower
bounded by

P(�⊥)
P(�⊥)+ P(⊥) ≥

∑
k∈�⊥ |ψk|2∑

k∈�⊥ |ψk|2 + (maxk∈⊥ w̃(φk))
2 (∑

k∈⊥ |ψk|2
) ≥ 1

1 + (maxk∈⊥ w̃(φk))
2 , (J3)
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where the second inequality comes from assuming that the initial probability for the desired part of the spectrum is at least
1/2. Given this probability, the norm of the difference from the desired state is

√
2 − 2

1 + (maxk∈⊥ w̃(φk))
2 ≤ max

k∈⊥
w̃(φk). (J4)

Next, we give a more explicit description of the sequence of rotations needed for the filtering. The first rotation prepares
the state

1√∑
j wj

⎛
⎝√

w0 |0〉 +
√∑

j>0

wj |1〉
⎞
⎠ . (J5)

The first controlled rotation gives

√∑
j>0

wj |10〉 �→ √
w1 |10〉 +

√∑
j>1

wj |11〉 . (J6)

In general, the controlled rotation with qubit k as control and k + 1 as target maps

√∑
j ≥k

wj |10〉 �→ √
wk |10〉 +

√∑
j>k

wj |11〉 . (J7)

If one were to perform the rotations for the preparation in the reverse order, one would use a rotation on the last qubit to
take zero to

1√∑
j wj

⎛
⎝
√√√√�−1∑

j =0

wj |0〉 + √
w� |1〉

⎞
⎠ . (J8)

Then, the controlled rotation would take

√√√√�−1∑
j =0

wj |10〉 �→
√√√√�−2∑

j =0

wj |00〉 + √
w�−1 |10〉 . (J9)

Inverting this rotation gives

√√√√�−1∑
j =0

wj |00〉 �→
√√√√�−2∑

j =0

wj |10〉 − √
w�−1 |00〉 , (J10)

√√√√�−1∑
j =0

wj |10〉 �→ √
w�−1 |10〉 +

√√√√�−2∑
j =0

wj |00〉 . (J11)

More generally, the rotation with qubit k + 1 as control and k as target gives

√√√√ k∑
j =0

wj |00〉 �→
√√√√ k−1∑

j =0

wj |10〉 − √
wk |00〉 , (J12)
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√√√√ k∑
j =0

wj |10〉 �→ √
wk |10〉 +

√√√√ k−1∑
j =0

wj |00〉 . (J13)

This means that the sequence of two controlled rotations gives√∑
j ≥k

wj |1〉 �→ √
wk |10〉 +

√∑
j>k

wj |11〉

�→
√

wk√∑k
j =0 wj

⎛
⎝√

wk |10〉 +
√√√√ k−1∑

j =0

wj |00〉
⎞
⎠ +

√∑
j>k

wj |11〉 (J14)

and

|0〉 �→ 1√∑k
j =0 wj

⎛
⎝
√√√√k−1∑

j =0

wj |10〉 − √
wk |00〉

⎞
⎠ . (J15)

Projecting onto |1〉 on the first qubit then gives the mapping

|1〉 �→ 1√∑
j ≥k wj

⎛
⎝ wk√∑k

j =0 wj

|0〉 +
√∑

j>k

wj |1〉
⎞
⎠ (J16)

|0〉 �→
√∑k−1

j =0 wj√∑k
j =0 wj

|0〉 . (J17)

To see the effect of this, let us consider k = 1, so that we are considering the operation immediately after the qubit rotation
and controlled W on the target system. Assuming that the target system is in an eigenstate with eigenvalue eiφ , the state at
this point will be

1√∑
j wj

⎛
⎝√

w0 |0〉 +
√∑

j>0

wj eiφ |1〉
⎞
⎠ . (J18)

The above mapping then gives

1√∑
j wj

⎛
⎝ w0√∑1

j =0 wj

|0〉 + eiφ

⎛
⎝ w1√∑1

j =0 wj

|0〉 +
√∑

j>1

wj |1〉
⎞
⎠
⎞
⎠ . (J19)

This can be written as

1√∑
j wj

⎛
⎝w0 + eiφw1√∑1

j =0 wj

|0〉 + eiφ
√∑

j>1

wj |1〉
⎞
⎠ . (J20)

Thus we can see that we have the desired weights w0 and w1 on the |0〉 state and that the |1〉 state is flagging the remainder
of the linear combination still to be obtained. More generally, after performing the controlled rotations between qubits k
and k + 1 and the projection onto |1〉 on the ancilla qubit, the state will be of the form

1√∑
j wj

⎛
⎝
∑k

j =0 eijφwj√∑k
j =0 wj

|0〉 + eikφ
√∑

j>k

wj |1〉
⎞
⎠ . (J21)
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