
Learning Task Sampling Policy for Multitask Learning

Dhanasekar Sundararaman1∗, Henry Tsai2, Kuang-Huei Lee2,
Iulia Turc2, Lawrence Carin1

1 Duke University
2 Google Research

dhanasekar.sundararaman@duke.edu

Abstract

It has been shown that training multi-task mod-
els with auxiliary tasks can improve the tar-
get tasks quality through cross-task transfer.
However, the importance of each auxiliary task
to the primary task is likely not known a pri-
ori. While the importance weights of auxiliary
tasks can be manually tuned, it becomes practi-
cally infeasible with the number of tasks scal-
ing up. To address this, we propose a search
method that automatically assigns importance
weights. We formulate it as a reinforcement
learning problem and learn a task sampling
schedule based on evaluation accuracy of the
multi-task model. Our empirical evaluation
on XNLI and GLUE shows that our method
outperforms uniform sampling and the corre-
sponding single-task baseline.

1 Introduction

Multi-task learning (Caruana, 1997) has been
shown to improve performance of multiple related
tasks through cross-task knowledge transfer using
just one model, which also drastically improves pa-
rameter efficiency (Hashimoto et al., 2016; Kaiser
et al., 2017). In the case where the objective is
improving specific target tasks, the use of auxil-
iaries has demonstrated substantial benefits, for
example, in sequence-to-sequence learning (Lu-
ong et al., 2015), and question answering (McCann
et al., 2018).

In this paper, we follow this line and consider the
goal of training a multi-task model to be the maxi-
mizing performance of one target task. While there
are numerous efforts that attempted to increase the
complexity of multi-task models to match the per-
formance through architectural addition, not a lot
of emphasis has been placed on harnessing the po-
tential of a model through exploration of task sam-
pling weights, as we view weighted combination
of different tasks as a sampling problem.

∗Work done during an internship at Google Research

In our work, we formulate this exploration prob-
lem as learning a policy to assign task sampling
weights deferentially over time. For example, an
optimal policy could be putting more weights on
auxiliary tasks with rich data at the beginning of
training and shifting to the target tasks near the
end for finetuning. While manual hyper-parameter
fine-tuning should help find a good policy, it be-
comes challenging as the number of combinations
increases exponentially with respect to the num-
ber of tasks. To solve this problem, we propose a
reinforcement-learning-based search method that
automatically finds the optimal policy to maximize
the target task accuracy. Different from previous
dynamic re-weighting works (Guo et al., 2019;
Wang et al., 2020), our policy is static and agnostic
to model training artifacts such as which training
examples are selected and network parameters, and
thus the policy can also be viewed as a schedule.
This property enables reuse of a fixed sampling
schedule once search is done. When we need to re-
train model due to system change or minor under-
lying model change, it allows us to directly retrain
without performing policy search again.

We conduct experiments by targeting at improv-
ing one language’s performance in the XNLI (Con-
neau et al., 2018) dataset or one task’s performance
in the GLUE dataset. We empirically demonstrate
that multi-task models trained with the proposed
method outperform multi-task models learned with
various rule-based sampling as well as correspond-
ing single-task baselines. We also conduct neces-
sary ablation study to validate our approach. Our
main contributions are as follows. First, we are the
first work to formulate multi-task exploration as a
static sampling policy/schedule learning problem
to the best of our knowledge. Then, we propose a
simple and effective policy optimization algorithm
for learning task sampling policy.



2 Related Works

Existing works (Collobert and Weston, 2008; Lu-
ong et al., 2015) show that, by doing proper archi-
tecture changes, we can utilize cross-task transfer
of multi-task learning and have multi-task models
outperform single-task baselines. However, for dif-
ferent multi-task settings, the optimal architectures
may be different and difficult to know a priori. It
leads us to prefer an automatic searching approach,
e.g. RL-based architecture search methods (Ma
et al., 2019) were proposed to learn how to share
under different settings.

While there are many successes in searching ar-
chitecture for multi-task learning, how to select
tasks to train together is underexplored. The cur-
rent approaches are somehow arbitrary. With a goal
of optimizing the performance for one target task,
some works (Bingel and Søgaard, 2017; Platanios
et al., 2019; Vu et al., 2020) exhaustively explored
the relatedness of tasks in a multi-task training set-
ting by manually picking pair of tasks and found
that the multi-task performance gains significantly.
This becomes practically infeasible as the number
of tasks grow making the possible combinations
of tasks exponential. Up-sampling strategy (John-
son et al., 2017; Conneau et al., 2018), such as
uniform sampling that balances high-resource and
low-resource tasks, is another dimension that has
been explored. Finally, the sampling strategy can
also change over time. Curriculum learning (Platan-
ios et al., 2019) can be used to choose to learn hard
tasks first and easy tasks later. Domain adaption
by continuous pre-training on the target domain
(Gururangan et al., 2020) can be seen as a schedule
that first pre-train on a general domain and then on
a specific domain.

Instead of manually trying all the task combina-
tion options, reward-based learning methods have
been proposed by Guo et al. (2019); Wang et al.
(2020) to solve the problem to maximize task trans-
fer. However, such methods, which implicitly or
explicitly depend on artifacts during training such
as evaluation accuracy of the current time stamp
or example-level weight, suffer from instability of
rewards and randomness of states changes. As a
result, it can be difficult to re-train to ensure to get
good model quality.

Unlike previous works, we focus on learning a
static sampling schedule, which means our sched-
ule, once learned, should be fixed before any fu-
ture model training. Future model training should

not involve policy optimization. That makes it
easy to re-train the models when underlying sys-
tem changes or share the sampling schedule with
other teams who do not have policy-optimization
expertise in an industrial setting.

3 Methods

In Sec. 3.1, we introduce our algorithms for learn-
ing task sampling policy. In Sec. 3.2, we discuss
our exploration strategies.

3.1 Learning Task Sampling Policy

We consider the task sampling policy to be discrete
and stochastic. At time step t, the policy outputs a
distribution π(·|st) over the actions (st is the state
that the policy depends on). Here we define an
action to be a choice of task to sample data from,
and we sample a batch at each time step.

Our objective is to maximize the expected re-
ward R which we define as model’s evaluation
accuracy on the target task:

Eπ

[
1

K

K∑
k=0

T∑
t=0

R(s
(k)
t , a

(k)
t )

]
, (1)

where K is the batch size, and k marks the k-th
sample.

We parameterize the policy π with θ, and learn
it with REINFORCE policy gradient (Sutton et al.,
1999) (we ignore batch in notation):

Eπθ

[
T∑
t=0

R(st, at)∇θ log πθ(st, at)

]
. (2)

Our goal is to learn a static sampling sched-
ule that does not depend on complex dynamics
of model parameter changes during training but
only relies on timestamp, which makes st only con-
tains a timestamp. In practice, running evaluation
on validation set to obtain reward signal at each
training step could be costly. Therefore, we de-
fine a meta-step to group N continuous training
steps by creating a mapping M(t) that maps a step
t to a meta-step, and only run evaluation at each
meta-step.

In this work, our policy πθM(t)
is simply parame-

terized as a vector of logits that defines a Boltz-
mann distribution Softmax(θM(t)) at each time
step. The logits θM(t) are trainable weights and
uniformly initialized

We consider two different types of policy:



(a) Target language: Swahili (b) Target language: Urdu

Figure 1: The sampling schedule learned for different target languages across meta-steps. The black line is the
target language’s translate-train data and the blue line is English. We can see the learned sampling policy change
as the target languages change.

1. Time-variant policy: The policy at time step
t is defined as πθM(t)

. For all time steps in a
meta-step, we use the same sampling policy.

2. Time-invariant policy: We only use one task
sampling policy across all time steps within
one run of model training, and thus πθM(t)

reduces to πθ.

During training, the model is updated at each
step using sampled examples by gradient descent.
At each meta-step, we run evaluation on the full
validation set to obtain accuracy, and use it as a
reward to update θ or θM(t) through gradient ascent
as in Eq. (2). This process ends until we reach the
maximum number of training steps. While we
can optionally repeat the training process with a
randomly initialized model to further optimize the
policy, practically we are able to find reasonably
good sampling policy in one training run in all of
our experiments.

After the searching is done, we re-train with
the updated policy to generate the final optimized
model.

3.2 Exploration Strategy

To facilitate exploration, the first strategy we con-
sider is ε-exploration (Tokic and Palm, 2011),
which refers to sampling actions from a uniform
distribution with probability ε and sampling from
policy with probability 1− ε during training. The
second strategy we consider is a heuristic guided
exploration that simply samples data from the tar-
get task.

We use a combination of these two. Let n
be the number of tasks, Tp be the primary task,

{T1, ..., Tn} be the task set we consider, and
Unif{T1, ..., Tn} be a discrete uniform distribu-
tion over actions/tasks. To draw the k-th sample
in a batch at time step t, we sample a p ∈ R from
a continuous uniform distribution Unif(0, 1), and
then sample an action (choice of task) as follows.

a
(k)
t ∼


Unif{T1, ..., Tn}, if p < ε

{Tp}, if ε <= p < γ

π(·|s(k)t ), otherwise

Then we sample from the data associated with the
task.

4 Experiments

We use the public BERT-base1 (Devlin et al., 2018)
checkpoints as our base model to run multi-task
fine-tuning experiments. We consider two scenar-
ios for knowledge transfer: cross-lingual transfer
between languages of the same task and cross-task
transfer between tasks of the same language.

For the cross-lingual transfer study, we use the
Cross-lingual Natural Language Inference (XNLI)
corpus (Conneau et al., 2018). The data set asks
whether a premise sentence entails, contradicts, or
is neutral toward a hypothesis sentence. Crowd-
sourced English data are translated to ten other
languages by professional translators and used for
evaluation, while the English MultiNLI (Williams
et al., 2018) training data and its translation to other
languages, translate-train (Hu et al., 2020), are
used for training. For the cross-task transfer study,
we cover multiple tasks from the GLUE benchmark
(Wang et al., 2019).

1https://github.com/google-research/bert



Language English Target Language Multi-task uniform Multi-task time-variant Multi-task time-invariant
Urdu 0.5693 0.6616 0.6618 0.6651 0.7032

Swahili 0.5094 0.6785 0.657 0.6877 0.7045
Thai 0.5386 0.6853 0.6847 0.7096 0.6853
Hindi 0.5903 0.6897 0.6811 0.6823 0.7127

Table 1: Performance improvements on the XNLI test dataset by our proposed methods. Our proposed meth-
ods, both the time-varying version and the time-invariant version, outperforms various commonly used data re-
weighting baselines.

Auxiliary Tasks Single Task Multi-task uniform Multi-task proportional Multi-task time variant Multi-task time invariant
QNLI RTE 0.675 0.7369 0.6679 0.7112 0.7473
QNLI MRPC 0.8284 0.8652 0.7279 0.8653 0.8627
MNLI RTE 0.675 0.6787 0.7401 0.7148 0.8014
MNLI MRPC 0.8284 0.8358 0.7696 0.8603 0.8603

Table 2: Performance improvements on low-resources GLUE tasks, RTE and MPRC, when using high-resource
GLUE tasks. Our proposed methods, both the time-varying version and the time-invariant version, outperforms
various commonly used data re-weighting baselines.

For all of our experiments, we compare two of
our proposed methods to three baselines: uniform-
sampling that uses a uniform weight to sample
across all tasks or languages, proportional sam-
pling, and the target task baseline that only uses the
labeled data from the target task for training.

4.1 Training Settings

For all of our experiments, the classification model
is simply a linear projection on top of BERT’s clas-
sification ([CLS]) token. One meta-step contains
1000 steps. During fine-tuning, we use batch size
64 and ADAM optimizer (Kingma and Ba, 2017)
with learning rate 2e−5. For each REINFORCE up-
date, we use learning rate 0.001 and run stochastic
gradient descent for 100 steps. We train all models
on TPU v3 with 8 cores. All code is implemented
in Tensorflow.

4.2 Experimental Results

Multilingual BERT Based on the performance
of multilingual BERT on XNLI, four languages
consisting of Urdu, Swahili, Thai, and Hindi which
are either low-resource or had low performance
were picked. Single-task baseline denotes the clas-
sification performance of multilingual BERT on
these languages with their respective translate-train
data.

Table 1 shows the accuracy comparisons of the
proposed methods on the languages picked from
the XNLI dataset. Note that uniform sampling is
the same as proportional sampling, because the
data set size is the same for all languages. From
this table, we see that multi-tasking with naive uni-

form sampling performs worse than even target
language baselines. Our methods, on the other
hand, can utilize the auxiliary tasks to achieve qual-
ity improvements over single-task baselines. In-
terestingly, time-invariant policies in general have
similar quality to time-varying policies. This may
indicate time-varying schedule used by previous
work (Guo et al., 2019) may not be necessary.

The sampling schedule is shown in Figure 1 with
meta-steps on the X-axis and weights of languages
on the Y-axis. We see the model outperforms the
baselines by properly combining English super-
vised data or the target language’s translate-train
data. We also observe that a good sampling sched-
ule can vary from task to task. It validates our
motivation to learn the sampling schedule instead
of using a rule-based one.

English BERT For GLUE, we select two high-
resource tasks MNLI and QNLI with more than
100k labeled data each as auxiliary tasks. We target
cross-task transfer to low-resource tasks: MPRC
and RTE.

The results are shown in Table 2. Unlike the
results on XNLI, uniform sampling, which naively
up-samples the low-resource tasks, generally gives
better accuracy than single-task baseline as shown
in previous work (Liu et al., 2019). We show that
the sampling policy learned by our algorithm con-
sistently outperforms all rule-based alternatives.

5 Conclusions

We propose a simple and effective RL-based algo-
rithm to learn a static sampling schedule for multi-



task learning, with the goal to improve the perfor-
mance of one target task. We apply the algorithms
to model fine-tuning and show that the proposed
approach outperform popular rule-based baselines.

6 Ethical Considerations

Compute: For the entire work in this paper includ-
ing running all the experiments, we have only used
TPUs. TPUs have been shown to be significantly
faster than GPUs for tensor based operations. The
dataset used in the experiments were all precom-
puted thus saving further computation in the form
of pre-processing.

References
Joachim Bingel and Anders Søgaard. 2017. Identi-

fying beneficial task relations for multi-task learn-
ing in deep neural networks. arXiv preprint
arXiv:1702.08303.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on Ma-
chine learning, pages 160–167.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. arXiv preprint
arXiv:1809.05053.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2019. Autosem: Automatic task selection and
mixing in multi-task learning. arXiv preprint
arXiv:1904.04153.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham
Neubig, Orhan Firat, and Melvin Johnson. 2020.
Xtreme: A massively multilingual multi-task bench-
mark for evaluating cross-lingual generalization.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation.

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer,
Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. 2017. One model to learn them
all. arXiv preprint arXiv:1706.05137.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Jiaqi Ma, Zhe Zhao, Jilin Chen, Ang Li, Lichan Hong,
and Ed H. Chi. 2019. Snr: Sub-network routing for
flexible parameter sharing in multi-task learning. In
AAAI, pages 216–223.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabas Poczos, and Tom Mitchell. 2019.
Competence-based curriculum learning for neural
machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1162–1172, Minneapolis, Minnesota.
Association for Computational Linguistics.

Richard S Sutton, David A McAllester, Satinder P
Singh, Yishay Mansour, et al. 1999. Policy gradient
methods for reinforcement learning with function ap-
proximation. In NIPs, volume 99, pages 1057–1063.
Citeseer.

Michel Tokic and Günther Palm. 2011. Value-
difference based exploration: adaptive control be-
tween epsilon-greedy and softmax. In Annual Con-
ference on Artificial Intelligence, pages 335–346.
Springer.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020.
Exploring and predicting transferability across nlp
tasks.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1901.11504
https://doi.org/10.1609/aaai.v33i01.3301216
https://doi.org/10.1609/aaai.v33i01.3301216
https://doi.org/10.18653/v1/N19-1119
https://doi.org/10.18653/v1/N19-1119
http://arxiv.org/abs/2005.00770
http://arxiv.org/abs/2005.00770


Xinyi Wang, Yulia Tsvetkov, and Graham Neubig.
2020. Balancing training for multilingual neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8526–8537, Online. Association for
Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2020.acl-main.754
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

