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Abstract
We introduce phylogenetic and areal language features to the
domain of multilingual text-to-speech synthesis. Intuitively,
enriching the existing universal phonetic features with cross-
lingual shared representations should benefit the multilingual
acoustic models and help to address issues like data scarcity for
low-resource languages. We investigate these representations
using the acoustic models based on long short-term memory
recurrent neural networks. Subjective evaluations conducted on
eight languages from diverse language families show that some-
times phylogenetic and areal representations lead to significant
multilingual synthesis quality improvements. To help better
leverage these novel features, improving the baseline phonetic
representation may be necessary.
Index Terms: speech synthesis, neural networks, features

1. Introduction
With the advent of statistical parametric speech synthesis there
has been an increase in research into multilingual acoustic mod-
eling [1–5]. One of the main reasons for this is the rising de-
mand for polyglot speech synthesis and speech-to-speech trans-
lation [6,7]. In addition, it has recently been shown that pooling
the data across multiple languages may improve overall synthe-
sis quality [5].

One of the big research challenges facing the speech com-
munity is the growing need to support low and even zero-
resource languages [8, 9]. For speech synthesis, this problem
manifests itself in the lack of suitable high-quality training data
and inadequate linguistic resources. One possible approach
to tackle this resource scarcity problem is to build multilin-
gual acoustic models, in the hopes that the presence of large
amounts of high-quality training data from resource-rich lan-
guages will positively affect the synthesis of low-resource lan-
guages. In natural language processing, this type of multilin-
gual joint learning has been shown to to be beneficial for tasks
like morphosyntactic tagging [10].

An important aspect of building a multilingual model is
the design of a shared linguistic representation for many di-
verse languages. More often than not, the multilingual lin-
guistic feature representation is confined to phonetic transcrip-
tion (in some universal format [11], to ease sharing between
languages), the corresponding language-universal phonologi-
cal features (such as place of articulation [12]) and basic lan-
guage, region, speaker and gender-specific identifying codes.
This choice of features often works well in practice, but may be
insufficient for modeling similarity between diverse languages.

This paper investigates two types of typological informa-
tion that may benefit cross-lingual modeling. Each type rep-
resents a different view of the languages. The phylogenetic
features model the traditional approach to classification of lan-
guages placing the languages in the same cluster if they are

demonstrably genetically related by descent according to histor-
ical reconstruction. The areal features, on the other hand, repre-
sent the languages by their geographic proximity to one another.
Languages which, according to the phylogenetic view, reside in
different classification trees, may end up in the same cluster if
considered from an areal perspective. These types of features,
though in a different form from our representation, are available
in language typology and universals databases [13, 14]. How-
ever, to the best of our knowledge, this work is the first treat-
ment of how areal and phylogenetic features affect multilingual
speech synthesis.

We test the usefulness of the proposed features by con-
structing statistical parametric speech synthesis systems based
on long short-term memory (LSTM) recurrent neural networks
(RNNs). Aside from the multilingual input features and the
larger number of parameters, the acoustic model is similar to
the single-language single-speaker model proposed by Zen and
Sak [15]. This paper is organized as follows: we introduce the
proposed features in Section 2, followed by a brief outline of the
architecture in Section 3. Experiments are described in detail in
Section 4. We conclude the paper in Section 5.

2. Multilingual Linguistic Features
The core of our representation consists of phonetic features.
The training set includes data from various languages and di-
alects, each following its own phonetic transcription conven-
tion. In order to train an acoustic model on such diverse mul-
tilingual data, we must transform each of the single-speaker
phonemic configurations into a unified canonical representation
using International Phonetic Alphabet (IPA) [11], similar to [3].
At present, this process is quite involved because it requires lin-
guistic expertise to construct the mappings for each of the in-
dividual languages. Additional difficulties present themselves
when these mappings disagree due to differences between tran-
scribers, divergent transcription conventions, or the lack of na-
tive speakers to guide the design. For example, /2̃ũ/ may not
be the most accurate representation of a particular diphthong
found in Nepali. Nevertheless, the canonical IPA representa-
tion yields a reasonably compact phonological description for
many languages we deal with. In addition, each phoneme in
our representation is decomposed into distinctive phonological
features, such as place and manner of articulation [12].

2.1. Phylogenetic features

We use language and region identifying features based on the
BCP-47 standard [16] to model the similarity between regional
varieties of the same language. This works well in practice for
languages like English, where the language code enforces addi-
tional degree of similarity between American English (en-US)
and Australian English (en-AU). This, however, is not suffi-
cient for modeling the similarity between related languages.
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Figure 1: Some language family trees represented up to four
levels in the hierarchy. The root node is unused and is shown
for convenience.

The language code for Slovak (sk), for example, tells us noth-
ing about how it relates to Czech (cs).

In order to model one aspect of potential language similar-
ity we employ a feature encoding of a traditional, if imperfect,
phylogenetic language classification tree [17] that represents re-
lated clusters of languages down to a depth of four levels. Fig-
ure 1 shows some of the phylogenetic features for the languages
found in our corpus. Some languages in our representation –
e.g. Hungarian – require three categorical features to encode
their tree, while others – e.g. Marathi – require four categorical
features.

2.2. Areal features

The notion of a linguistic area was introduced by Emeneau [18],
where he defines it (p. 16, fn. 28) as “an area which includes lan-
guages belonging to more than one language family but show-
ing traits in common which are found to belong to the other
members of (at least) one of the families”, and notes that it is a
translation of the earlier German term Sprachbund, due to Tru-
betzkoy [19]. Emeneau’s particular focus was on India, home
to three major language families and a number of smaller fami-
lies. He focused on phonetic as well as morphological features
that were shared across India regardless of language family, but
for our purposes it is the phonetic features that are most rele-
vant. He notes, for example (p. 7) that “most of the languages
of India, of no matter which major language family, have a set
of retroflex, cerebral, or dorsal consonants in contrast to den-
tals,” and that “Indo-Aryan, Dravidian, Munda, and even the far
northern Burushaski, form a practically solid bloc characterized
by this phonological feature.” These distinctions are most likely
Dravidian in origin, but they spread to Indo-Aryan languages so
that they are present in even the earliest forms of Vedic Sanskrit
— striking since this is not a feature of Proto-Indo-European.

The relevance of areal features to the problem at hand is
obvious. If, for example, one had no speech data for Marathi
and wanted to build a synthesizer that sounds as much as possi-
ble like Marathi using data from other languages, it is probably
more relevant to find data from languages of India, than from
genetically related Indo-European languages of Europe, whose
sound systems are rather different. Areal features are even
potentially useful for Indian English, which inherits retroflex
consonants from substrate languages [20] — making it distinct
from dialects of English spoken elsewhere.

In our research, areal features depend upon a database of
geographical information on the language. The basic informa-
tion, which we currently have for 94 languages, includes the lat-
itude (φ) and longitude (λ) coordinate information that roughly
defines the location (l) where the language in its current form
evolved. Obviously this makes more or less sense depending
on how widespread the language is today. So for Amharic,
we place the location at Addis Ababa, and represent the infor-
mation (l, φ, λ) as (Addis Ababa, 9.0249700, 38.7468900),
where the latitude and longitude are expressed in decimal de-
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Figure 2: Representation of two languages Li and Lj as unit
vectors on a sphere (shown in red). Distance d(Li, Lj) between
them is defined along an arc (shown in blue).

grees. While one can dispute the accuracy of this, it at least
gives a roughly correct placement of the language on the globe.
For English we place it around London, the source of Stan-
dard British English: (London, 51.507351,−0.127758). This
is obviously less reasonable for English, and indeed for our In-
dian English experiments we must replace this location with
one more appropriate to an Indian language such as Hindi:
(Delhi, 28.613939, 77.209021).

Figure 2 shows schematic representation of two languages
Li and Lj using simplified (spherical) Earth model. Given
the latitude and longitude coordinates (φi, λi) for language Li,
there are several ways to represent this language in terms of
acoustic model input features: First, one can represent the lan-
guage by converting the lat-long coordinates to a correspond-
ing three-dimensional unit vector (U, also known as n-vector)
in spherical coordinates [21]. Second, each language Li can
be represented in terms of its distances (D) to the rest of the
languages Lj in the set, 1 ≤ j ≤ N , where the distance
d(Li, Lj) is defined in terms of the length of an arc between
the corresponding unit vectors. Finally, each language can be
represented by n-closest list (N), which is a set of n categorical
features (given by BCP-47 language codes [16]) representing
the n languages closest (in terms of distance d) to the given
language Li.

3. System Architecture
The proposed architecture consists of multiple language-
specific linguistic front-ends interfacing with a single acous-
tic back-end. The task of each front-end is text normalization,
which involves converting the unnormalized text into detailed
and unambiguous linguistic feature representation [22]. This
consists of such basic tasks as tokenizing the text, splitting off
punctuation, classifying the tokens and deciding how to verbal-
ize non-standard words, i.e. things like numerical expressions,
letter sequences, dates, times, measure and currency expres-
sions [23].

The standalone back-end component of the architec-
ture consists of a single acoustic model followed by the
vocoder [24]. The input to the back-end is a set of linguistic
features. The output is streamed audio (linear PCM). Unlike
the systems recently reported in the literature [4, 5], we employ
a simple network architecture similar to a single-speaker sys-
tem. This is because it is hoped that the choice of the compact
input feature space (described in Section 2) is general enough
to pool data from related languages and yet accurate enough to
discriminate between various languages and speakers. More-
over, supporting a new language in this system only involves
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implementing a corresponding (possibly very basic) front-end
but does not require re-training the acoustic model.

We use LSTM-RNNs designed to model temporal se-
quences and long-term dependencies between them [25]. These
types of models have been shown to work well in speech syn-
thesis applications [15, 26–28]. Our architecture is very similar
to one proposed by Zen et al. [15, 29]: unidirectional LSTM-
RNNs for duration and acoustic parameter prediction are used
in tandem in a streaming fashion. Given the linguistic features,
the goal of the duration LSTM-RNN is to predict the duration
(in frames) of the phoneme in question. This prediction, to-
gether with the linguistic features, is then given to the acous-
tic model which predicts smooth vocoder acoustic parameter
trajectories. The smoothing of transitions between consecutive
acoustic frames is achieved in the acoustic model by using re-
current units in the output layer.

Because we deal with significantly larger amount of train-
ing data and a more diverse set of linguistic features and record-
ings, the main difference between our model and the model
in [15] is in the number of units in the rectified linear unit
(ReLU) [30] and LSTM layers, as well as the number of recur-
rent units in the output layer of the acoustic model. The details
of the duration and acoustic models are provided in Section 4.

4. Experiments
4.1. System details

The multilingual corpus used for training the acoustic models
has over 900 hours of audio and consists of 39 distinct lan-
guages. Some languages, such as English, comprise multiple
datasets corresponding to different regional accents. For some
regional accents (like en-US) we have several speakers. The
corpus has both male and female speakers and is quite mixed:
Most are single-speaker, while others, like Bangladeshi Bengali
and Icelandic, have recordings from multiple speakers [31]. The
recording conditions vary: some speakers were recorded in ane-
choic chambers, while others in a regular recording studio setup
or on university campuses. The F0 range of the speakers varies
from low F0 males to high F0 females. No speaker normaliza-
tion was performed on the data.

The speech data was downsampled to 22.05 kHz. Then
mel-cepstral coefficients [32], logarithmic fundamental fre-
quency (logF0) values (interpolated in the unvoiced regions),
voiced/unvoiced decision (boolean value) [33], and 7-band ape-
riodicities were extracted every 5 ms, similar to [29]. These
values form the output features for the acoustic LSTM-RNN
and serve as input vocoder parameters [24]. The output features
for the duration LSTM-RNN are phoneme durations (in sec-
onds). The input features for both the duration and the acoustic
LSTM-RNN are linguistic features. The acoustic model sup-
ports multi-frame inference [29] by predicting four frames at
a time, hence the training data for the model is augmented by
frame shifting up to four frames. Both the input and output
features were normalized to zero mean and unit variance. At
synthesis time, the acoustic parameters were synthesized using
the Vocaine vocoding algorithm [24].

The architecture of the acoustic LSTM-RNN consists of
2×512 ReLU layers [30] followed by 3×512-cell LSTMP lay-
ers [34] with 256 recurrent projection units and a linear recur-
rent output layer [15]. The architecture of the duration LSTM-
RNN consists of 1× 512 ReLU layer followed by a single 512-
cell LSTMP layer with a feed-forward output layer with linear
activation. For both types of models the input and forget gates
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Figure 3: Two possible views on representing language similar-
ity: Areal (shown in green) and phylogenetic (shown in blue).

in each memory cell are coupled since distributions of gate ac-
tivations for input and forget gates were previously reported as
being correlated [35]. The duration LSTM-RNN was trained
using an ε-contaminated Gaussian loss function [29], whereas
for acoustic LSTM-RNN the L2 loss function was used because
we observed it to lead to better convergence rates.

4.2. Languages and model configurations

Eight languages were chosen for the experiments. Bengali,
Finnish, Hungarian, Marathi, Romanian, Russian, Serbian and
English. For English we selected both Indian and American di-
alects. We are interested in testing the hypothesis that the pres-
ence of areal and phylogenetic features influences the synthe-
sis quality. Figure 3 shows how these languages are clustered
under areal (shown in green) or phylogenetic (shown in blue)
representation. Note that American and Indian English end up
in different trees in the areal representation.

Marathi (Indo-Aryan language) and Serbian (Slavic) are
“held-out“ experiments, since we have no training data in 22.05
kHz for these language. It is interesting to see how well the
system does when language has not been observed in training.
For Bengali (Indo-Aryan language), we have small amounts of
multi-speaker training data from [31]. We check whether the
presence of Hindi (Indo-Aryan) and Indian English (West Ger-
manic) in the training data affects these languages through areal
and phylogenetic features.

Similar to the languages from an Indic area, we check the
Romanian (Romance language geographically close to Hungar-
ian and Serbian), Hungarian (Finno-Ugric language genetically
related to Finnish and geographically close to Romanian) and
Russian and Finnish (Slavic and Finno-Ugric languages geo-
graphically close to each other). Finally, American English
should share information with Indian English. During synthe-
sis, the speaker ID and gender input features are left unspecified
for all languages apart from English.

We built eight acoustic model configurations each corre-
sponding to a particular combination of input features. Each
configuration, along with the types of the input features that
comprise the input space, the dimensions of the input space and
corresponding number of acoustic model parameters, is shown
in Table 1. The baseline model (B) is trained on the input fea-
tures that consist of IPA phonetic transcriptions along with dis-
tinctive phonological features, basic BCP-47 language/region
tags and gender/speaker identifying features. The rest of con-
figurations are obtained by augmenting the baseline input fea-
tures with phylogenetic (Section 2.1) features (G) and/or areal
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Table 1: Input feature space makeup of various acoustic model configurations along with dimensions and number of parameters.

Configuration Baseline Genetic Unit vector Distances n-closest Duration AM Speech AM
B G U D N # Inputs # Params # Inputs # Params

B X × × × × 1,598 2,394,626 1,602 4,325,589
B+G X X × × × 1,665 2,428,930 1,669 4,359,893
B+U X × X × × 1,601 2,396,162 1,605 4,327,125
B+D X × × X × 1,688 2,440,706 1,692 4,371,669
B+N X × × × X 1,749 2,471,938 1,753 4,402,901

B+U+D X × X X × 1,691 2,442,242 1,695 4,373,205
B+G+U+D X X X X × 1,762 2,478,594 1,766 4,409,557

B+G+U+D+N X X X X X 1,913 2,555,906 1,917 4,486,869

Table 2: Subjective Mean Opinion Scores (MOS) (along with 95% confidence intervals) for languages synthesized with various acoustic
model configurations. Best scores are underlined. Statistically significant improvements shown in bold.

Language B B+G B+U B+D B+N B+U+D B+G+U+D B+G+U+D+N Raters

Bengali 3.66±0.07 3.70±0.07 3.60±0.07 3.72±0.07 3.67±0.07 3.70±0.06 3.66±0.07 3.70±0.07 22
Finnish 3.83±0.05 3.78±0.05 3.80±0.05 3.80±0.05 3.80±0.05 3.75±0.05 3.75±0.06 3.80±0.05 20
Hungarian 3.51±0.05 3.61±0.05 3.57±0.06 3.49±0.06 3.53±0.06 3.52±0.06 3.56±0.05 3.55±0.06 20
English (IN) 3.86±0.09 3.71±0.10 3.70±0.11 3.60±0.09 3.68±0.11 3.62±0.12 3.56±0.11 3.70±0.10 > 25
English (US) 3.43±0.10 3.42±0.10 3.47±0.10 3.47±0.10 3.49±0.10 3.48±0.11 3.42±0.11 3.48±0.12 > 25
Marathi 3.34±0.13 3.21±0.13 3.24±0.13 3.09±0.12 3.23±0.12 3.25±0.12 3.10±0.13 2.92±0.11 12
Romanian 3.13±0.06 3.26±0.05 3.08±0.06 3.06±0.06 3.26±0.06 3.05±0.06 3.39±0.06 3.35±0.06 23
Russian 3.12±0.10 3.05±0.09 3.15±0.10 3.07±0.10 3.08±0.10 3.11±0.09 3.06±0.09 3.11±0.10 > 25
Serbian 2.75±0.06 2.82±0.06 2.83±0.06 2.74±0.06 2.80±0.07 2.74±0.06 2.77±0.06 2.77±0.06 9

(Section 2.2) features (U, D, N). For n-closest feature we used
n = 5. As can be seen from the table, extending the input
feature space with additional features does not dramatically in-
crease the footprint of the resulting acoustic model. The dif-
ference between the simplest (B) and the most complex con-
figuration (B+G+U+D+N) is approximately 16% increase in the
number of features and the corresponding 0.04% increase in the
number of model parameters.

Each configuration was evaluated using subjective Mean
Opinion Score (MOS) listening test. For each test we used 100
sentences not included in the training data for evaluation. Each
rater was a native speaker of the language and was asked to eval-
uate a maximum of 100 stimuli. Each item was required to have
at least 8 ratings. The raters used headphones. After listening
to a stimulus, the raters were asked to rate the naturalness of the
stimulus on a 5-point scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5:
Excellent). Each participant had one minute to rate each stimu-
lus. The rater pool for each language included at least 8 raters.
For each language, all configurations were evaluated in a single
experiment.

4.3. Subjective evaluation results and discussion

Table 2 shows the results of subjective listening tests for 9 lan-
guages, where for each language 8 acoustic model configura-
tions described in the previous section were tested. Each mean
opinion score is shown along with the corresponding 95% confi-
dence interval [36]. The highest scores are underlined. The best
configurations which exhibit no overlap in confidence intervals
are deemed statistically significant and shown in bold.

Six out of nine languages exhibit slightly higher scores
(shown underlined) for non-baseline configurations. For In-
dian English, Marathi and Finnish, the baseline configuration
exhibits the highest score. However, due to the high overlap in
95% confidence intervals, for eight languages none of these dif-
ferences are statistically significant. The only language which
demonstrates significant improvements is Romanian. The best
configurations (B+G+U+D and B+G+U+D+N) have the respec-
tive 0.26 and 0.22 improvement in mean opinin scores over the

baseline. It is also interesting to note that there is no clear “win-
ning” combination of phylogenetic and/or areal features across
languages in our experiments. In addition, there does not seem
to be on obvious correlation between the best configuration and
the amount of data or the number of speakers for a particular
language.

The lack of clear improvement for languages other than Ro-
manian can possibly be explained by the following factor: Our
phonetic transcription is rather sparse. Out of approximately
474 phonemes from 39 languages, there is a long tail of 250
phonemes that are only used in one language. Hence, there is
not enough sharing of phonemes between the languages which
will otherwise benefit from it (such as Bengali and Indian En-
glish). As a result, the phonetic features become strongly decor-
related. Consequently, phylogenetic and areal features are “too
weak” to force a bond upon the overall representation of similar
languages.

5. Conclusions
We introduced two novel types of linguistic features for training
the multilingual parametric acoustic models for text-to-speech
synthesis: areal and phylogenetic features. Although intuitively,
such features should have a positive contribution to the overall
synthesis quality, we showed that such claim is at present in-
conclusive. Out of diverse set of nine languages we were able
to positively confirm this hypothesis for one language only (Ro-
manian).

The above results, despite being promising, indicate that
in our experiments the areal and phylogenetic features were
“weaker” compared to the typical features used by the baseline
system (phonetic transcriptions, language, region and speaker-
identifying features). This warrants a thorough study into mak-
ing the baseline phonetic feature space less sparse and trying al-
ternative neural network representations for the acoustic model
(such as [37]).
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