
ItemSuggest: A Data Management Platform for Machine
Learned Ranking Services

Sandeep Tata, Vlad Panait, Suming J. Chen, Mike Colagrosso
Google

1600 Amphitheatre Parkway
Mountain View, CA, USA

{tata, vpanait, suming, mcolagrosso}@google.com

ABSTRACT
Machine Learning (ML) is a critical component of several
novel applications and intelligent features in existing ap-
plications. Recent advances in deep learning have funda-
mentally advanced the state-of-the-art in several areas of
research and made it easier to apply ML to a wide variety of
problems. However, applied ML projects in industry, where
the objective is to build and improve a production feature
that uses ML, continues to be complicated and often bottle-
necked by data management challenges.

ItemSuggest is a platform for building contextual rele-
vance services. In this paper, we describe ItemSuggest with
a focus on how we leverage key ideas from data manage-
ment to make it dramatically easier to build machine-learned
ranking services. The platform allows engineers to focus on
application-specific modeling and simplifies key tasks of 1)
gathering training data; 2) cleaning, validating, and moni-
toring data quality; 3) training and evaluating models; 4)
managing the feature lifecycle; and 5) running A/B tests.
We outline key design choices anchored around the core idea
of optimizing for experiment velocity. We describe lessons
learned from applications built on this platform that have
been in production serving hundreds of millions of users for
over a year. Finally, we identify two key components of the
platform where data management research can have a ma-
jor impact—a transformation engine for feature engineering
and one for training set representation. We believe such
platforms have the potential to accelerate and simplify ML
applications the same way data warehouses radically simpli-
fied complex reporting applications.

1. INTRODUCTION
Recent advances in ML are opening up several new op-

portunities [10] in machine translation, smart email replies,
better search [14], and document finding [21]. Most prac-
titioners, however, continue to emphasize that 80%–90% of
the time spent in an applied ML project is in data manage-
ment [12, 13, 17]. Lack of effective data management tech-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

niques continues to be a key impediment. The infrastructure
available to data scientists today is analogous to what was
available to data analysts before modern data warehouses
and ETL solutions radically improved their productivity.

This paper motivates and presents the design of ItemSug-
gest: a data management platform for deploying machine-
learned ranking services. Ranking a set of choices in a given
context is a key abstraction that fits a large number of
practical ML problems in search (ranking given an explicit
query) and recommendations (ranking a set of candidates
without an explicit query). The platform provides a clean
abstraction for complex, error-prone, data-management tasks
such as data collection, augmentation, cleaning, transforma-
tion, online experiments, and feature lifecycle management.
ItemSuggest allows the data scientist to focus on modeling
and experimentation. As of the writing of this paper, Item-
Suggest is being used for approximately ten different ML
applications, including Quick Access and zero-prefix search
suggestions for Google Drive.

This paper focuses on two key contributions: First, we
advocate for a common server architecture where multiple
teams build and deploy application-specific code for candidate-
generation, feature computation, and label acquisition. Sec-
ond, we advocate (perhaps controversially) for gathering
training data online rather than relying on data dumps from
other sources for production models. The common server ar-
chitecture provides a natural place to implement a consistent
data acquisition pipeline.

The common server is a key component of the platform,
and is roughly analogous to how application servers provided
a clean framework to manage business logic separately from
scaling and performance administration concerns. Applica-
tion servers were successful in accelerating the pace at which
enterprise and web applications have been deployed. We be-
lieve that this architecture is likely to have the same impact
for ML ranking applications. As discussed later, the Item-
Suggest server standardizes on a common schema, the Ten-
sorFlow Example [1] protocol buffer, to represent training
data.

Most ML projects focus on getting data dumps from exist-
ing sources rather than implementing an end-to-end logging
and data acquisition pipeline. While this is a reasonable way
to prototype an initial model, we advocate that a produc-
tion model should have a pipeline to instrument and gather
its own training data. This is based on our experience build-
ing Quick Access [21], a service that suggests the documents
that a user is likely to open when she arrives at the home
screen of Google Drive. Quick Access was built from scratch,



and then rebuilt on ItemSuggest. A major setback during
the first deployment of Quick Access was the discovery of
train-serve skew, where the features supplied to the model at
the time of serving (inference) turned out to be significantly
different from what was available in the data dumps used
for training [21]. Analysis showed that the skew originated
from two separate causes: First, the service that supplied
features to the model at inference-time applied several trans-
formations on the data available through the dump before
responding to requests. This was desirable for other clients
of this service, but particularly bad for an ML application.
The second cause was from data propagation delays. Data
from the dump contained all events up to the instant of the
scenario for which we were trying to construct an example.
In contrast, data from the service was often missing the last
few minutes of activity. In retrospect, this wasn’t surpris-
ing given that data logged in various data-centers around
the world needs to be processed before being made available
through this service. What was surprising was the impact
of this delay. The train-serve skew wiped out nearly all of
the advantage the ML model had in offline experiments over
a simple heuristic baseline. Please see Section 4.2 in [21] for
a more detailed explanation.

The risks of this happening are greater when the team in
charge of the data infrastructure is different from the team
responsible for training and evaluating a suitable ML model.
The risks are also significantly higher when the training data
is constructed by joining data from multiple sources, each
managed by different teams, with varying levels of docu-
mentation. In the case of Quick Access the current service
queries seven different data services, each managed by a sep-
arate team, to gather the data required to apply the ML
model.

In addition to being able to avoid a complex offline join
across multiple data sources, the training data thus collected
avoids skew from undocumented transformations, as well as
pipeline delivery delays which might not be apparent in a
data dump. Applications built on the ItemSuggest service
follow a dark-launch and iterate approach where an initial
model is launched to just gather the necessary training data
without affecting any production traffic. Our experience so
far suggests that applications are built significantly faster
and with far fewer data quality issues on ItemSuggest than
otherwise.

The rest of this paper is organized as follows. Sections 2
and 3 describe the common server architecture and the ac-
companying data infrastructure respectively. Section 4 de-
scribes a few applications that have been built on the Item-
Suggest platform. Section 5 summarizes related work, and
Section 6 points to potential areas for future data manage-
ment research in this space.

2. SYSTEM ARCHITECTURE
In this section we give an overview of ItemSuggest archi-

tecture. We discuss this from the perspective of a developer
wishing to build an application on ItemSuggest, using Quick
Access as a running example. ItemSuggest provides two
APIs that a client can call. An application developer needs
to provide a concrete implementation for both of these:

• ListSuggestions—to request a list of ranked sugges-
tions for an application. The results depend on the
ApplicationSettings (described in the next section) the

developer has configured and registered with the Item-
Suggest server.

• RecordFeedback—to provide a record of user feedback
(e.g. clicks) on the list of suggestions back to ItemSug-
gest.

2.1 ListSuggestions
The ListSuggestions API is what the application devel-

oper must implement in order to generate suggestions for
the end user. The developer first configures the Applica-
tionSettings for their application. These include the the set
of candidates to consider, additional sources of data that are
necessary, and the ML models to call for ranking, etc. For
Quick Access, a developer would need to configure a List-
Suggestions call to retrieve a list of relevant documents for
a user. The ListSuggestions call contains:

• Client-side information that is not available on the
server-side. An example would be the device-type that
is issuing the request (mobile phone vs. browser on a
laptop).

• A desired output format for the returned suggestions.
This specifies the number of results and the details
required for each suggestion.

A more detailed breakdown of ItemSuggest’s architecture
can be seen in Figure 1, where the ListSuggestions call is
processed in four stages to finally produce the output—a
ranked list of candidates.

The developer configures each of these stages using plug-
ins that may be reused across applications. The plugins are
the main business-logic building blocks. The configuration
for each plugin and the execution graph (how the plugins
depend on one another) is provided via the ApplicationSet-
tings. Plugins allow for sharing and reuse of infrastructure
and sources. For example two very distinct intelligence prod-
ucts can reuse the same plugin to get information about
upcoming Calendar meetings. This can be achieved with
a trivial update of the corresponding ApplicationSettings.
Plugins also allow uniform processing, checks and best prac-
tices. The objects constituting inputs and outputs to each
of plugins are protocol buffers [22].

2.1.1 Context Creation
There are multiple data-sources that have been set-up for

use within ItemSuggest, ranging from users’ Drive Activ-
ity to their Calendar events. A developer can specify in
ApplicationSettings which set of existing sources should be
utilized (via the plugins configured for execution). In this
stage, multiple RPCs are scheduled in parallel to each of
the data-sources to retrieve and combine the results to cre-
ate the user Context. The Context can be seen as the general
information available about a particular user at the time of
request.

ContextCreation(ListSuggestions)→ Context

2.1.2 Candidate Creation
In this stage, Candidates are generated from the previous

stage’s Context. Note that “candidates” is very loosely de-
fined, and in ItemSuggest candidates can be anything from
documents, emails, meetings, people, to queries. For Quick
Access, application code is written to specify how candidates
should be built from the Context. For instance, we combine



Figure 1: ItemSuggest architecture for generating a list of suggestions.

candidates from two sources—a service that reports docu-
ments with recent activity, and another that returns all the
documents in a user’s root folder to construct candidates
for Quick Access. It is the application developer’s respon-
sibility to configure what sources of data should be in the
Context and how Candidates should be generated from var-
ious sources.

CandidateCreation(Context)→ Candidates

2.1.3 Feature Construction
The input to this stage are Candidates that have been

generated along with the Context. Additional features can
be extracted for the candidates using the Context (e.g. what
time the candidate was most recently accessed, how many
times the candidate was opened). Further, some candi-
dates can be excluded based on product constraints. For
instance, an application like Quick Access may choose to
exclude image-types from being considered for suggestion.

FeatureConstruction(Candidates)→
CandidatesWithFeatures

2.1.4 Candidate Ranking
The input to this stage is an unsorted list of Candidates.

The output is a list of Candidates that have been ranked
by either a machine-learned model or a heuristic. For new
products application developers generally start with sim-
ple heuristic rankers that are easy to interpret and provide
reasonable results. After the application is dark-launched,
training data can be gathered to build machine-learned mod-
els. The default ML ranking strategy in ItemSuggest makes
a blocking RPC call to a service (like TensorFlow Serv-
ing [18]) that scores the candidates. The scored candidates
can then be sorted to return the top n suggestions.

CandidateRanking(CandidatesWithFeatures)→
ScoredCandidates

2.2 RecordFeedback
The RecordFeedback API call allows the the application

developer to record any feedback from the presented list of
suggestions. The recorded feedback is sent back to ItemSug-
gest. A typical example is user interaction information such
as which of the suggestions (if any) were clicked. A logging
service is responsible for collecting the data from Record-
Feedback calls and joining them with the data logged by the
corresponding ListSuggestions call. This data is then used
to produce training data and compute metrics as described
in the next section.

3. DATA INFRASTRUCTURE

3.1 Data Acquisition
Figure 2 shows how ItemSuggest processes RecordFeed-

back calls to gather training data. ItemSuggest logs the re-
sults of every ListSuggestions call and RecordFeedback call
to a logging service. This service is responsible for mak-
ing available a periodic joined result that pairs the can-
didates and their features generated by a ListSuggestions
call with the results returned by an eventual RecordFeed-
back call. The join is facilitated by generating a unique ID
and including it in the response to each ListSuggestions call.
Clients then pass back the ID when calling RecordFeedback.
Note that a RecordFeedback call may arrive at an arbitrary
point in time after the ListSuggestions call and matching the
RecordFeedback call with the corresponding ListSuggestions
call in the ItemSuggest server before logging to storage was



Figure 2: Architecture of ItemSuggest’s integration with machine-learning workflow.

not a practical design. The joined data serves as the input
to various parts of the ML workflow. In order to generate
training data for an ML model, we only need to implement a
transformation from the results of ListSuggestions calls and
RecordFeedback calls to a set of (tf.Example) with labels.
For readers not familiar with the tf.Example protocol buffer,
for the purposes of this discussion, one may think of it as a
map of named Features, where each Feature is a list of ei-
ther integers, floats, or byte-arrays. Training infrastructure
is detailed further in Section 3.4.

A typical non-ItemSuggest project might use existing client
application logs and join them with reference data avail-
able on the server-side to compute features and examples.
Instead, with this approach, we have a common data ac-
quisition platform that manages this often complicated join
across all the ItemSuggest applications. Furthermore, this
approach dramatically simplifies the need for data cleaning
and monitoring for train-serve skew. The one downside is
that in order to start training a model, developers need to
first deploy an application in ItemSuggest with a heuristic
(or dummy) ranker to gather training data. You may need to
gather several days worth of traffic before training an initial
model. In practice, we have found that the data cleanliness
provided by this approach far outweighs the additional ve-
locity one may get from using data dumps to train models.

3.2 Feature Construction
The feature construction module is a data transformation

engine that accepts context data along with candidates, and
outputs a set of tf.Examples that can be sent to the ranker
for scoring. This is the first of two data transformation com-
ponents we describe. We start with the example of Quick
Access to illustrate the computation in this module and ar-
gue why organizing it efficiently is important. A key data
source for Quick Access is the Activity Service in Drive. It
gathers all requests made to the Drive backend by any of the
clients (web, desktop, Android and iOS clients, and third-
party apps). It logs high-level user actions on documents
such as create, open, edit, delete, rename, comment, and
upload events.

To describe how features are constructed for each candi-
date, we introduce two abstractions: the FeatureGenerator

and the ExampleGenerator. The FeatureGenerator accepts
an instance of Context and optionally, a Candidate and
produces a tf.Feature. FeatureGenerators are also explic-
itly associated with one or more external data sources so
the computation can be scheduled as soon as the RPC to
its data source has returned. An ExampleGenerator is con-
figured as a map of feature names to FeatureGenerators.
For each ListSuggestions call, the ExampleGenerator is in-
voked with the Context and batch of Candidates to produce
a batch of tf.Examples that are sent for scoring. The API
for implementing a FeatureGenerator allows developers to
build up common data structures that are reused for each
candidate. For example, “TimesGenerator(WEB, OPEN)”
constructs a FeatureGenerator that produces a vector of re-
cent open events for a given candidate document on the
web. It represents the timestamps for these open events
relative to the request time (available through the implicit
context) and represents the values in seconds as a float vec-
tor of a given length, say l, using the l most recent events.
If fewer events than l are found, the remaining values are
padded with zero. FeatureGenerators vary in complexity—
“current time” would be a trivial candidate agnostic feature,
and “recency rank” is more complicated requiring computa-
tion spanning multiple candidates. The current Quick Ac-
cess model uses several FeatureGenerators that in aggregate
produce well over 10K floats for each example. A sample
configuration for an ExampleGenerator is shown below:

FeatureGenerator f1 = new TimesGenerator(WEB, OPEN);

FeatureGenerator f2 = new TimesGenerator(MOBILE, EDIT);

...

FeatureGenerator mime = new MimeGenerator();

...

ExampleGenerator e = ExampleGeneratorFactory().

.addFeature("web-opens", f1)

.addFeature("mobile-edits", f2)

...

.addFeature("mimetype", mime)

...

.build();

Examples batch = e.compute(context, candidates);

This is a critical component with two competing goals—
low latency and ease of experimentation. The logic for con-



verting the context and candidates to tf.Examples needs to
be run in response to every single suggestion request. This
puts the component in the critical path for the overall la-
tency of the the suggestion service. The latency budget
available to the machine-learned ranking component is of-
ten under 50 ms. This needs to be shared between feature
computation and model evaluation. As a result efficient fea-
ture computation is vitally important. On the other hand,
engineers tasked with improving the quality of a model con-
stantly add experimental features and train new models that
try to take advantage of these features. As a result, the fea-
ture construction module needs to be able to allow engineers
to quickly develop new features in parallel and deploy them
so they are available for training and experimentation.

The design of the feature construction module tries to ac-
commodate these two goals. The module provides an API
where engineers may add features independent of one an-
other (with potentially redundant computation). At run-
time, an optimized version of this code is run with par-
allelization to minimize latency. The API also allows de-
velopers to separate production vs. experimental features.
Production features must be computed to serve a user re-
quest, while experimental features can be computed asyn-
chronously and logged without adding to the overall latency.
This is particularly valuable for evaluating computationally
expensive features.

Feature construction is essentially a data transformation
computation where a Context protocol buffer and a set of
Candidate protocol buffers are transformed to a set of
tf.Examples. Each FeatureGenerator can be viewed as a
piece of the overall transformation, and the ExampleGener-
ator organizes this computation for a batch of Candidates,
currently using a fixed plan. The best approach for design-
ing such a component is an open research question. Is this
data transformation best expressed in code or declaratively
in a transformation language? Could a Domain Specific Lan-
guage (DSL) open up opportunities for optimization while
keeping this easy to read and maintain?

3.3 Feature Lifecycle Management
A major portion of an ML project’s lifecycle involves adding

new features, training new models, and experimenting with
them to see if they improve a metric of interest. In ItemSug-
gest, an engineer follows a standard prescription for adding
and removing features. She implements a new FeatureGen-
erator, registers it with a unique name, and updates the
feature schema for the application. The feature schema is
used to maintain a consistent view of what features are com-
puted in response to each ListSuggestions call and the subset
of features required for each model. The schema ensures that
ItemSuggest doesn’t accidentally invoke a model with only
a subset of the features it expects, resulting in the model
failing to provide any ranking scores.

Once a feature is implemented, ItemSuggest takes care
of logging this new feature for future requests. Data that
was logged before this feature was added is not modified to
include this feature. When generating training data for a
model that requires this feature, ItemSuggest automatically
excludes older data that does not conform to the schema
expected by this model.

There may be multiple engineers working concurrently on
adding different sets of features or even removing features.
Schemas provide a way to enforce that some new features

Figure 3: Generating labeled examples from Candi-
dates and RecordFeedback

that are newly logged and in “experiment” mode won’t in-
terfere with another engineer’s work on removing features.

Consider the following example that illustrates the use of
schemas in managing the addition and removal of features.
Assume that a given application uses a set of existing fea-
tures denoted by E. Engineer A adds a new feature (A1)
that she wants to include in a new model. Engineer B adds
new features B1, B2 that she wants to experiment with.
Engineers A and B may only have approval to log the ex-
perimental features for 10% of traffic until the features are
deemed valuable enough to justify the additional CPU or
storage cost imposed by the new features. Engineer A can
create a new schema file containing E ∪ A1. Engineer B
may create one or more schemas E ∪ B1, E ∪ B1, B2 for
each of the experiments she wants to run. When generating
training data or computing the example representation to
be scored by a model in a live experiment, ItemSuggest uses
the schema files to ensure all required features are computed.
ItemSuggest engineers also have the ability to deprecate a
feature by adding it to an exclusion list that prevents any
new schemas from utilizing that feature.

After training a new model (say with a new feature A1),
starting an experiment is as easy as specifying in a config file
a certain percent traffic that the model should serve. Since
feature A1 had to have been logged by ItemSuggest in order
to train this model, it already is available to be consumed
for serving.

3.4 Training Infrastructure
The infrastructure is designed with the primary goal of

making the core idea–implement–train–evaluate loop of a
data scientist seamless and fast. As mentioned in Section 3.1,
the logging service makes available the joined data consist-
ing of the Candidates considered for each ListSuggestions
call (along with the Features computed for them) and the
results from the RecordFeedback call. In order to generate
labeled examples, one only needs to implement a transfor-
mation from (Candidates, RecordFeedback) to tf.Examples.
A simple version is pictorially depicted in Figure 3 in the
flow producing “Labeled Data.”

Note that while the transformation from source protocol
buffers to tf.Examples appears similar to that described in
Section 3.2 on feature construction, this does not execute in
response to a user request. Instead, this transformation code
should be designed to support experiment velocity rather



than transformation latency. Data scientists empirically try
different ways of representing the training data. One ex-
ample is to sample the negatives if we have far more nega-
tive examples than positives for some users (depicted using
“Sampled Negatives” in Figure 3). We may consider and
score hundreds of Candidates in response to the ListSugges-
tions call, display a few, and see that the user chose only
one Candidate. Instead of producing training data with one
positive and hundreds of negative examples for this case,
we may want to downsample the negatives (the Candidates
that were not clicked). Another modeling approach is to use
pairwise examples (depicted as “Pairwise Examples” in Fig-
ure 3) to represent the fact that one candidate was preferred
over another. While more complex, these have been shown
to outperform point-wise models [7]. Another modeling idea
would be to weigh clicks from a certain UI sections or plat-
forms more than others (mobile clients tend to have more
accidental clicks than web clients because of small screens).

A straightforward solution to this transformation problem
would be to implement this in a Flume [8] job and materi-
alize the results to be picked up by a training job in Ten-
sorFlow. This was indeed our initial solution. Our current
approach allows us to represent this transformation concisely
in C++ code and run this either in a Flume job or directly
in the TensorFlow graph. This allows us to represent the
training data set as a view over the underlying pair of (Can-
didates, RecordFeedback) so an engineer may try out many
ideas quickly without having to first materialize large data
sets.

Most ItemSuggest applications use a canned neural net-
work of feed-forward layers that is known to be robust. Ten-
sorFlow supports more than just neural networks, and appli-
cations are free to choose other models like Random Forests
or generalized linear regression.

3.5 Framework for Metrics and Experiments
The common server architecture and log format allows

ItemSuggest to provide several turnkey metrics like Click-
through Rate (CTR), Mean Reciprocal Rank (MRR), and
Average Click Position (ACP) to all applications. These are
common metrics for ranking problems and generally useful
across applications. ItemSuggest supports A/B experimen-
tation for both percent of traffic as well as by certain groups
of users. This experimentation can be done on a common
server and requires no additional infrastructure.

4. APPLICATIONS
We measure the success of our platform by the velocity of

production applications that we have built, launched, and
optimized on it. Because of the common architecture and
shared data infrastructure, our pace has accelerated, rather
than slowed down, as we have added more applications.

After rebuilding Quick Access on ItemSuggest, we have
increased the number of engineers that can concurrently try
new features and train models. Our experience shows that
we have not only been able to rapidly improve models for
Quick Access, but new applications have taken significantly
fewer resources—both in terms of number of engineers and
the time taken to build.

Quick Access originally launched in a user’s root folder,
called My Drive. Quick Access now also makes suggestions
for enterprise users who put their files in a shared Team
Drive. Figure 4 shows Quick Access suggestions in a Team

Figure 4: Left: Screenshot of Quick Access sugges-
tions in a Team Drive. Because of the ItemSuggest
architecture, suggestions in a Team Drive can share
stages and plugins with Quick Access at a user’s
root, or My Drive, folder. Right: Screenshot of sug-
gestions in the Shared with me view. These sugges-
tions are grouped by collaborator, and ItemSuggest
computes the collaborators as a separate applica-
tion.

Drive on the left. In terms of ItemSuggest infrastructure,
Quick Access for Team Drives uses the same Feature Se-
lection and Candidate Ranking stages. The Context Cre-
ation and Candidate Creation phases are different because
the context contains the Team Drive the user is viewing and
the contents of the shared Team Drive comprise the candi-
dates created. Because of the shared stages, Quick Access
for Team Drives also improves when the base model im-
proves.

Figure 4 shows suggestions on Google Drive’s Shared with
me view on the right. While those suggestions are also
branded “Quick Access,” the widget has a different UI treat-
ment, and ItemSuggest evaluates them as a different applica-
tion triggered via different ListSuggestions call parameters
and different structure to the RecordFeedback call. Most
importantly, the suggestions are grouped by the people that
the user collaborates with. ItemSuggest treats finding the
right set of collaborators as a subproblem, and solving that
subproblem requires a different set of plugins for candidate
creation, feature selection, and ranking. The generic de-
sign of ItemSuggest allows the same concepts to apply to
suggesting collaborators and suggesting documents. While
this may seem obvious in retrospect, this does not reflect
the current state of the art in how a majority of prediction
infrastructure is built.

Because plugins in ItemSuggest are reusable, the system
can also suggest collaborators in other contexts. Figure 5
shows collaborators suggested in a new search box with zero-
prefix suggestions. This is useful for enterprise Drive users,
who frequently search by person. Being able to reuse entire
sets of suggestions allows engineers in ItemSuggest to build
features end-to-end faster, which leads to quicker feedback
and iterative improvement.



Figure 5: Screenshot of an intelligent search box in
Google Drive. In addition to recent searches, we
display an intelligent ranking of filetypes and col-
laborators.

5. RELATED WORK
There is a growing body of work focusing on practical

data management challenges in large scale machine learn-
ing pipelines. TFX [6] describes many components for an-
alyzing training data, detecting anomalies, and managing
the lifecycle of a model drawing on several areas of prior
research. While TFX describes a fairly broad set of interop-
erable tools, in ItemSuggest, we advocate for a much more
specific architecture for contextual ranking that simplifies
the end-to-end design of the application. ItemSuggest lever-
ages some of the components of TFX such as the model
serving stack.

ItemSuggest is closer in spirit to the LASER [4] and Clip-
per [9] systems. The LASER system deliberately restricts it-
self to generalized linear models with logistic regression, and
prescribes an end-to-end approach to building a platform for
such models. ItemSuggest also prescribes a platform along
with a common server architecture, but instead of restrict-
ing the model class to generalized linear models, we simply
rely on the standard interfaces in TensorFlow along with
any model that can be efficiently served using TensorFlow
serving [19] which incorporates many similar optimizations.
ItemSuggest also advocates for a dark-launch and iterate ap-
proach where the applications gather their own training data
and focuses on providing APIs for efficient feature construc-
tion along with model inference. The Clipper system in-
troduces several ideas for managing the latency of inference
and allowing applications to react gracefully to degrading
models.

Recent literature provides a broad overview of some of
the data management challenges in machine learning. They
include a systems-focused overview [16] of building ML ap-
plications in a database as well as challenges in managing
the data in a production system [20]. In contrast to systems
like the Data Civilizer [11] ItemSuggest does not focus on
the data discovery and integration. Discovering and sug-
gesting new sources (and features) that might be relevant to
applications on ItemSuggest would be extremely valuable.

Systems like DataXFormer [2] and Wrangler [15] tackle
the problem of transformation discovery and specification
respectively. They are, however, in the context of data in-
tegration. The transformation engines in ItemSuggest are
in the context of a feature engineering system for ML and
present a very different set of design constraints.

There is also Decision Service [3], a platform that utilizes

contextual bandits and abstractions of policy exploration,
logging, learning, and deployment in order to allow for on-
line learning of a recommendation system. ItemSuggest is
constructed to only allow for supervised learning, though
there are future plans to explore the usage of contextual
bandits for ranking.

Modeling in ItemSuggest draws on a rich vein of work on
learning retrieval functions based on clickthrough data [14]
including the use of neural networks [5], and techniques to
overcome challenges with traditional approaches including
sparsity of clicks and position bias [23]. In addition, growing
interest in learning-to-rank from user feedback (e.g. clicks)
has resulted in a multitude of literature. [14] presents a
canonical approach of using Support Vector Machines to
learn retrieval functions based on clickthrough data. [5] in-
corporates a neural-network based approach to learn from
millions of user interactions.

6. SUMMARY AND FUTURE RESEARCH
This paper presented the design for ItemSuggest—a sys-

tem that allows a data scientist to focus on the core idea–
implement–train–evaluate loop and simplifies some of the
data wrangling (data acquisition, augmentation, cleaning,
transformation to training formats, feature lifecycle man-
agement, and experiment infrastructure) that consistutes
80%–90% of an applied ML project. ItemSuggest has many
limitations—our design only considers ranking-style prob-
lems. While this is an important subset of applied ML
projects, many projects don’t fit into this abstraction. Also,
we don’t eliminate the need for all the data engineering,
merely reduce it substantially. For instance, adding a new
data source still requires a signficant amount of engineer-
ing like instrumenting an RPC call to the new source and
transforming the response to suitable part of the Candidate
protocol buffer. We do hope that the case study of Item-
Suggest inspires future work in platforms for building and
managing ML applications.

One of the key contributions of this work is in identifying
two components of the system which essentially implement a
data transformation engine. The feature computation mod-
ule needs to execute transformations from a set of Candidate
protocol buffers and a Context protocol buffer to a set of
tf.Example protocol buffers within a given latency budget.
The training infrastructure requires a similar transformation
component, but the objective here is to support experiment
velocity by allowing the data scientist to represent differ-
ent experiments as different transformations. We believe a
well-designed transformation engine could be used for both
components and is likely to be useful even beyond platforms
like ItemSuggest.

7. ACKNOWLEDGMENTS
Special thanks to Jesse Sterr for his contributions to Item-

Suggest. We would also like to acknowledge several en-
gineers for their design and implementation work: Arthur
Johnston, Brandon Rodriguez, Brandon Vargo, Brian Calaci,
Brian Reinhart, Chih-hao Shen, Chris Walsh, Cleopatra Von-
Ludwig, David Gardner, Devaki Hanumante, Divanshu Garg,
Hannah Keiler, Jai Gupta, Michael Rose, Ryan Evans, Sean
Abraham, Siamak Sobhany, Timothy Vis, Weize Kong, Zac
Wilson. The paper also benefited from fruitful discussions
with Don Metzler and Marc Najork.



8. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning.
In OSDI, pages 265–283, Berkeley, CA, USA, 2016.

[2] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani,
P. Papotti, and M. Stonebraker. Dataxformer: A
robust transformation discovery system. In ICDE,
pages 1134–1145, 2016.

[3] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang,
J. Langford, S. Lee, J. Li, D. Melamed, G. Oshri,
O. Ribas, S. Sen, and A. Slivkins. A multiworld
testing decision service. CoRR, abs/1606.03966, 2016.

[4] D. Agarwal, B. Long, J. Traupman, D. Xin, and
L. Zhang. Laser: A scalable response prediction
platform for online advertising. In WSDM, pages
173–182, 2014.

[5] E. Agichtein, E. Brill, S. Dumais, E. Brill, and
S. Dumais. Improving web search ranking by
incorporating user behavior. In SIGIR, August 2006.

[6] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y.
Foo, Z. Haque, S. Haykal, M. Ispir, V. Jain, L. Koc,
C. Y. Koo, L. Lew, C. Mewald, A. N. Modi,
N. Polyzotis, S. Ramesh, S. Roy, S. E. Whang,
M. Wicke, J. Wilkiewicz, X. Zhang, and M. Zinkevich.
Tfx: A tensorflow-based production-scale machine
learning platform. In KDD, 2017.

[7] C. J. Burges. From ranknet to lambdarank to
lambdamart: An overview. Learning, 11(23-581):81,
2010.

[8] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. Flumejava:
easy, efficient data-parallel pipelines. In ACM Sigplan
Notices, volume 45, pages 363–375. ACM, 2010.

[9] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,
J. E. Gonzalez, and I. Stoica. Clipper: A low-latency
online prediction serving system. In NSDI, pages
613–627, 2017.

[10] J. Dean. Building machine learning systems that
understand. In SIGMOD, 2016.

[11] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas,
S. Madden, M. Ouzzani, and N. Tang. The data
civilizer system. In CIDR, 2017.

[12] U. M. Fayyad, A. Candel, E. Ariño de la Rubia,
S. Pafka, A. Chong, and J.-Y. Lee. Benchmarks and
process management in data science: Will we ever get
over the mess? In KDD, pages 31–32, 2017.

[13] J. M. Hellerstein. People, computers, and the hot mess
of real data. In KDD, pages 7–7. ACM, 2016.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In KDD, pages 133–142, New York,
NY, USA, 2002. ACM.

[15] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In SIGCHI, pages 3363–3372,
2011.

[16] A. Kumar, M. Boehm, and J. Yang. Data management
in machine learning: Challenges, techniques, and
systems. In SIGMOD, pages 1717–1722. ACM, 2017.

[17] S. Lohr. For big-data scientists,’janitor work’ is key
hurdle to insights. New York Times, 17, 2014.

[18] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.
Tensorflow-serving: Flexible, high-performance ML
serving. CoRR, abs/1712.06139, 2017.

[19] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

[20] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich.
Data management challenges in production machine
learning. In SIGMOD, pages 1723–1726. ACM, 2017.

[21] S. Tata, A. Popescul, M. Najork, M. Colagrosso,
J. Gibbons, A. Green, A. Mah, M. Smith, D. Garg,
C. Meyer, and R. Kan. Quick Access: Building a
smart experience for Google Drive. In KDD.

[22] K. Varda. Protocol buffers: Google’s data interchange
format. Google Open Source Blog, 72, 2008.

[23] X. Wang, M. Bendersky, D. Metzler, and M. Najork.
Learning to rank with selection bias in personal
search. In SIGIR, pages 115–124, 2016.


	Introduction
	System Architecture
	ListSuggestions
	Context Creation
	Candidate Creation
	Feature Construction
	Candidate Ranking

	RecordFeedback

	Data Infrastructure
	Data Acquisition
	Feature Construction
	Feature Lifecycle Management
	Training Infrastructure
	Framework for Metrics and Experiments

	Applications
	Related Work
	Summary and Future Research
	Acknowledgments
	References

