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ABSTRACT 
Google My Business (GMB) is a platform that hosts business pro-
fles, which will be displayed when a user issues a relevant query 
on Google Search or Google Maps. GMB businesses provide a wide 
variety of services, from home cleaning and repair, to legal con-
sultation. However, the exact details of the service provided (a.k.a. 
job types), are often missing in business profles. This places the 
burden of fnding these details on the users. To alleviate this bur-
den, we built a pipeline to automatically extract the job types from 
business websites. We share the various challenges we faced while 
developing this pipeline, and how we efectively addressed these 
challenges by (1) utilizing structured content to tackle the cold start 
problem for dataset collection; (2) exploiting context information 
to improve model performance without hurting scalability; and (3) 
formulating the extraction problem as a retrieval task to improve 
both generalizability, efciency, and coverage. The pipeline has 
been deployed for over a year and is scalable enough to be periodi-
cally refreshed. The extracted job types are serving users of Google 
Search and Google Maps, with signifcant improvements in both 
precision and coverage. 
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• Applied computing → Document management and text 
processing. 
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(a) A business that provides (b) The SERVICES tab 
plumbing services. shows a list of job types. 

Figure 1: A business place (on a mobile device). 

1 INTRODUCTION 
Google My Business (GMB) has been hosting a large number of 
business profles. The profles provide various details about the busi-
ness, including opening hours, phone numbers, and user reviews. 
An example of a business profle is shown in Figure 1 (a). These 
profles will be displayed on Google Search or Maps in response to 
a relevant query. 

GMB businesses provide a wide array of services, from home 
cleaning and plumbing, to fnance and education. Users searching 
for service businesses are often looking for a particular job type, 
e.g., water heater installation. While some owners manually list the 
provided job types, this information is missing in most business 
profles. Thus, previously users would have to either directly call 
the business or scan through their website, both of which are time-

consuming. 
Thus, to reduce user efort, we developed and deployed a pipeline 

to automatically extract the job types from business websites. For 
example, if a web page owned by a plumbing business states: “we 
provide toilet installation and faucet repair service”, our pipeline 
outputs toilet installation and faucet repair as the job types for 
this business. 

We share challenges and solutions during the development of 
this extraction pipeline. First, in contrast to most academic papers 
that work on ready-to-use datasets, we need to collect our training 
dataset from scratch, leading to cold start issues. As human annota-
tion is costly, randomly sampling pages is inefective for producing 
sufcient positive examples of pages containing job types. To over-
come this problem, we utilize items appearing in structured felds, 
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which have a higher chance of containing job types. The identifed 
job types are then treated as seeds to deal with free-text pages. 

Second, scalability is critical. To keep the extracted job types 
up-to-date, we run the pipeline every few days over billions of web 
pages. It is impractical to treat job types as entities and directly 
run of-the-shelf named entity recognition (NER) models over the 
entire text of billions of web pages. In addition, these models output 
a label per word, while we only need to identify the mentioned 
job types, and the labels of other words can be safely ignored. We 
developed a tailored model that does not need to take as input the 
entire page, which is highly scalable. 

Third, we aim at high precision and reasonable coverage to bring 
the best user experience. To improve precision without hurting 
scalability, we designed various information contexts that are light-
weight, easy to use, informative, and can be used in ways other than 
model input. To enhance coverage, we formulate the extraction task 
as a retrieval problem – the seed job types from structured felds 
are treated as queries to retrieve free-text pages that might contain 
job types. This formulation also helps us address the scalability 
challenge. 

Generalization. The lessons we shared in developing the large-
scale extraction pipeline from scratch can generalize to other in-
formation extraction or machine learning tasks. They have direct 
applications to domain-specifc extraction tasks, exemplifed by 
expertise fnding, legal and medical information extraction. Three 
most important lessons are: (1) utilizing the data properties such 
as structured content could alleviate the cold start problem of data 
annotation; (2) formulating the task as a retrieval problem could 
help researchers and practitioners deal with a large dataset; (3) 
the context information could improve the model quality without 
sacrifcing its scalability. 

The pipeline described in this paper has been successfully de-
ployed for over a year. It is efcient enough to be run over billions 
of pages every few days. The extracted job types are serving users 
issuing service related queries on Google Search or Maps. They are 
either displayed directly as in Figure 1 (b)1, served as explanations 
of showing a business to a search query, or used as a signal to rank 
business places. 

2 RELATED WORK 
We are not aware of any work directly focusing on job type ex-
traction for businesses. Thus we survey papers on information 
extraction tasks that are most closely related to our work. 

Named entity recognition (NER). NER aims to identify refer-
ences to certain types of objects [16]. Various deep learning based 
encoders have been explored, including convolutional neural net-
works (CNN) [20], recurrent neural networks (RNN) [4], and trans-
formers [10]. To make predictions, a tag decoder is utilized to pro-
duce a tag per word. It can be a multi-layer perceptron and a softmax 
layer [19], CRFs [4], and RNNs [17, 18]. 

Mention detection. Mention detection is a binary classifcation 
task of identifying mentions of particular entities in the text given a 

1
Note that the service tab in Figure 1 (b) has been introduced before the deployment 
of our pipeline. Business owners can also manually edit it as indicated on the Help 
page. See https://support.google.com/business/answer/9455399. 

set of candidate mentions. They are often incorporated as one com-

ponent when training coreference systems end-to-end. Lee et al. [8] 
proposed an LSTM based coreference system that jointly learns 
mention detection. It is improved by adding a biafne attention [21], 
ELMO embeddings [5, 9], and BERT [1]. 

Information extraction from web pages. Many extractors 
for web pages rely on the Document Object Model (DOM) of web 
pages [6]. Training data are used to learn a rule-based extractor 
based on DOM features. To reduce the size of training data, distant 
supervision is proposed based on knowledge bases [12], shared 
XPath [2], or visual features [13]. Various deep neural encoders 
have been explored to encode web pages, including CNNs [3], hier-
archical RNNs [11] and Graph Neural Networks (GNNs) [14]. 

Diferences to our work. Unlike the standard NER task, where 
the model is trained to output one tag per word, our task only 
needs to identify the text spans that correspond to a job type. On 
the other hand, models for mention detection consider all noun 
phrases in text as candidate mentions [7]. In addition, most methods 
require joint training with the coreference task. Therefore, directly 
applying NER or mention detection models to our task would be 
too costly and impractical. 

Most web extractors rely on DOM elements, which cannot work 
on any web page. The existing web page encoders consider the 
entire page, which is not efcient enough for our task. 

3 JOB TYPE CLASSIFICATION AND 
EXTRACTION 

3.1 Pipeline Overview 
We start from a collection of billions of web pages. To only retain 
service related pages, we rely on homepages shown in business 
profles. We only keep a page if: (1) it is a homepage; (2) it is one 
click away from the homepage; or (3) it is in the same domain as the 
homepage. Note that (2) and (3) introduce noise into the dataset, 
which will be handled in the next few steps. 

The retained pages are candidates for job type extraction. With-

out sufcient seed job types to start with, we create seeds based on 
the observation that many businesses advertise their job types in 
a structured format (i.e., tables or lists). This strategy has greatly 
mitigated the cold start problem. We extract items from the struc-
tured content and classify whether they are job types. We call this 
step job type classifcation, where we develop a model that en-
codes various context information to classify job types without 
feeding the entire page to the model, addressing the challenge of 
maintaining high precision and scalability. The details are in 
Section 3.2. 

To handle any web page, in Section 3.3 we formulate job type 
extraction as a retrieval problem – seed job types from job type 
classifcation are used as queries to retrieve relevant pages. Job types 
are then extracted from these pages. This handles challenges of 
both coverage and scalability. The extracted job types are stored 
in a knowledge base and consumed by downstream applications 
such as web search. 

3.2 Job Type Classifcation 
3.2.1 The General Procedure. We aim to train a classifer to predict 
whether a given candidate job type displayed on a web page is an 
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actual job type; i.e., whether this candidate job type is a type of 
service provided by the business. A negative example would be the 
phrase bed bug control mentioned on a page providing instructions 
on dealing with bed bugs, but not the service itself. 

The frst step is to collect candidate job types for labeling. We 
tried to randomly sample some pages for human annotation, but 
the discovery rate of job types is fairly low. We also tried to use 
predefned or existing job types provided by business owners on 
their profles to match web pages. However, such a set is small and 
results in a very low coverage empirically. 

To address this problem, we rely on the observation that many 
businesses present their job types in a structured form, i.e., tables 
and lists. The items extracted from such content are treated as 
candidate job types. 

The second step is to train a classifer based on the labeled data 
set. With a limited number of human labels, we employ the BERT 
model [1], which has already encoded a large amount of external 
knowledge via pretraining. However, language models like BERT 
usually take pure text as input, whereas we incorporate additional 
feature types: (1) The job type to be predicted. (2) The last segment 
of the URL tokens. Based on our observation, many job types are 
mentioned on a page whose link ends with patterns such as ser-
vice.html. So we extract the last segment of a URL, tokenize it by 
treating all punctuation marks as separators. (3) Meta information 
of the associated business of this page, i.e., its category and country. 

We found that a simple strategy to deal with multiple features 
works pretty well – we convert all features to text, prepend the 
feature name to each feature value to give the model a hint at 
the feature types, and separate diferent features by the special 
token “[SEP]”. An example input x might be: [CLS] job to predict: 
tree landscaping [SEP] website: service html [SEP] country: US [SEP] 
category: landscaper. 

This input x is fed to a pre-trained BERT model for fne-tuning 
on the binary classifcation task of predicting whether the candidate 
job type is an actual job type (1) or not (0): �̂ = � (W · h[CLS]), where 
h[CLS] is the contextualized embedding of the CLS token. W is the 
fne-tuned parameter matrix and � is the sigmoid function. The 
model is trained to minimize the cross entropy loss. 

3.2.2 Improvement Based on the Context. The BERT model pro-
duces reasonable results, however its performance does not meet 
our high precision bar. To further improve the performance, we 
utilize the context information, which is defned as other job types 
extracted from the same structured feld. E.g., if a list includes legal 
services together with items like education and publications, this 
page is less likely to be a service page, but a person’s homepage 
describing their resume. We utilize the context information in three 
ways. 

Encoding context jobs. We encode context job types as ad-
ditional features in the input, which are all the other items from 
the same structured feld. An example input would be: [CLS] job 
to predict: tree landscaping [SEP] website: service html [SEP] cate-
gory: landscaper [SEP] other job: landscape design [SEP] other job: 
landscape installation. 

Weak supervision. The candidate job types in the same struc-
tured feld are used for weak supervision. For an unlabeled job type 
from the same structured feld, we create a training example with a 

weak label whose value is the same as that of the labeled one, but 
with a lower weight. 

Majority vote. As a post-process, we adjust the predictions by 
a majority vote. If a large proportion of job types from the same 
list are predicted as negative, we fip the predicted positives to 
negatives. 

3.2.3 Classification Evaluation. We have 77,302 human labeled 
examples in total, which covers 57,130 unique job types. The ex-
amples are partitioned into train/validation/test set with the ratio 
0.8/0.1/0.1. We evaluate the baseline BERT and variants of our pro-
posed models on the test set. 

Bert. The standard BERT without considering any context in-
formation. 

Encode. We encode context job types as input. 
Encode

WeakSup
. On top of Encode, we do weak supervision. 

Encode
WeakSup-Vote

. We additionally do majority vote. 

Table 1: Results for job type classifcation. We report relative 
improvement over Bert. *, †, ‡ indicate statistically signif-
cant improvement over Bert, Encode and EncodeWeakSup 
respectively at the level of 0.05. 

Precision Recall ROC-AUC 

Encode +2.49%∗ +1.70%∗ +3.61%∗ 
Encode

WeakSup +2.58%∗ +1.83%∗ +3.88%∗ 
+3.32%∗†‡ +4.57%∗†‡Encode

WeakSup-Vote +2.08%∗ 
Note: we can only disclose the relative improvement but not the absolute 
numbers. The absolute precision of all the proposed variants are above 90% 

and are sufcient for real-world applications. 

Based on the results shown in Table 1, Encode gives a large 
boost in performance, meaning that encoding context job types 
can help the model make a better decision by giving a context 
of where the candidate appears. Encode

WeakSup only marginally 
improves over Encode, probably because the two methods provide 
similar information. Encode

WeakSup-Vote can further improve the 
performance signifcantly by employing the majority vote as a post-
process. This implies that a hard flter is still benefcial even if the 
model has considered the context in a soft manner. 

3.3 Job Type Extraction 
3.3.1 Addressing the Challenges. The task of job type extraction 
aims to extract job types from any web page, regardless of whether 
it is free-text only or contains structured felds. 

To this end, we need to address two challenges. First, ground-
truth positive examples from free-text pages are rare. Sampling 
free-text pages randomly could leave us with hardly any pages 
that contain job types. Second, we want to maintain reasonable 
coverage while being efcient. This means that we cannot aford 
of-the-shelf NER models, which scan through the text of the entire 
page and output labels for each word. Furthermore, we want to 
build a generic system – it should not rely on DOM trees of pages 
to create extraction rules that only work for a small set of pages. 

To address the two challenges, we cast job type extraction as a 
retrieval problem. Specifcally, we utilize the job types predicted 
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…

tree landscaping

landscape installation
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…
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Retrieve
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Query expansion

http://xxx/about-us.html

A (possibly) free-text page 

retrieved by seeds

landscape install
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• tree gardening

• landscape install

• …

Group extracted job 

types into one list

Reuse the model 

structure developed 

for job type 

classification

Figure 2: The procedure of job type extraction. 

as positive in the stage of job type classifcation. We treat them as 
seeds and use them as search queries to retrieve pages that contain 
these seeds. Casting it as a retrieval problem has another advantage 
– we can improve the coverage by query expansion. To this end, we 
replace each word in a job type with one of its synonyms, producing 
a new seed job type. Synonyms can be obtained from external lexical 
databases like WordNet [15]. All possible combinations of original 
words and synonyms are considered to produce multiple seed job 
types. By sampling a seed job type and one of its retrieved pages 
for human labeling, we have greatly improved the possibility of 
sampling a positive example, solving our frst challenge. 

The second challenge of model efciency can be addressed by 
converting job type extraction to classifcation. Specifcally, one 
page could be retrieved by multiple seed job types. By treating all 
the seed job types from one page as context job types in a list, we 
could reuse the model structure designed for job type classifcation. 
In this way, we have considered the information from the entire 
page by feeding other extracted candidate job types as input without 
relying on the model to process the entire page text. The process is 
illustrated in Figure 2. 

However, the results are not as promising as we expected. We 
found a major problem through error analysis. 

3.3.2 A New Type of Context. We found that many pages mention 
job type names for other purposes like giving life tips. For example, 
a web page that teaches readers to deal with bed bugs might contain 
a sentence like a solution is to call home cleaning services if you 
fnd bed bugs in your home. They usually provide services like bed 
bug control. Though this page mentions multiple job type names, 
the page is not provided by a home cleaning business. 

To alleviate this problem, we exploit an additional type of context 
information – the surrounding words. Using the example mentioned 
above, the words to the left of home cleaning services is a solution is 
to call, which is not a common pattern when a business introduces 
its service content. To encode such context, we include up to � = 5 
words both to the left and to the right of the candidate job type. 
The resultant input might look like: [CLS] job to predict: a solution 
is to call home cleaning services if you fnd bed bugs [SEP] website: 
bed bugs html [SEP] category: cleaning [SEP] other job: they usually 
provide services like bed bug control. 

Using only the surrounding words still maintains scalability 
without feeding the entire page to the model. 

Table 2: Results for job type extraction based on relative im-
provement over JobModel. * indicate statistically signifcant 
improvement over JobModel at the level of 0.05. 

Precision Recall ROC-AUC 

JobModel
Surround +0.31% +5.79%∗† +8.59%∗† 

Note: for competitive reasons, we can only disclose the relative 
improvement but not the absolute numbers. The absolute precision of all 
the proposed variants is above 90%, sufcient for real-world applications. 

Table 3: Relative coverage improvement over Structure. 

# Job types # Businesses 

ExactRetrieval +2087.0% +1561.0% 
QeryExpand +4392.9% +1824.6% 

3.4 Extraction Evaluation 
We have 69,190 human labeled examples in total, which are parti-
tioned into train/validation/test set with the ratio 0.8/0.1/0.1. We 
compare two variants of our models on the test set. 

The JobModel model shares the same structure as the one for 
job classifcation, but is trained on the labeled data for job type 
extraction. The JobModel

Surround model takes the surrounding 
words of candidate job types as an additional input. 

As shown in Table 2, JobModel
Surround performs signifcantly 

better than JobModel, which suggests that the surrounding words 
could indeed explain the intent of the seed job type mentions. This 
successfully improves the semantic understanding without process-
ing the entire text of each page, keeping our models efcient. 

3.4.1 Coverage improvement. We are also interested in how cast-
ing the problem as a retrieval task could contribute to coverage 
improvement. We compare extracted results from three sources: 

Structure. The job types are extracted from structured felds 
by job type classifcation. 

ExactRetrieval. On top of Structure, we add job types ex-
tracted by retrieving web pages using job types from Structure 
as queries. No query expansion is applied. 

QeryExpand. Similar to ExactRetrieval, but we do synonym 
expansion on queries, as described in Section 3.3.1. 

As shown in Table 3, formulating the problem as a retrieval task 
can bring in 20 times more job types and 15 times more businesses 
with job types. Through query expansion, we can improve the 
coverage further. Therefore, the retrieval formulation has greatly 
improved coverage without relying on NER models to scan through 
an intractable amount of text. 

4 CONCLUSION 
We describe our pipeline for extraction of service job types from 
web pages. We share practical experiences of handling challenges 
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of building this pipeline, including the cold start problem of dataset 
collection with limited human annotation resources, and achieving 
high precision and reasonable coverage without hurting scalability. 
These challenges prevent us from direct application of existing 
models developed for information extraction. We have developed 
various strategies to combat the challenges, including (1) bootstrap-
ping structured content to deal with the data collection cold start 
problem; (2) designing various information contexts for better deci-
sion making; (3) casting the extraction task as a retrieval problem to 
improve coverage while maintaining high scalability. Our pipeline 
is executed periodically to keep the extracted content up-to-date. It 
is currently deployed in production, and the output job types are 
surfaced to millions of Google Search and Maps users. 
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