
Job Type Extraction for Service Businesses
Cheng Li Yaping Qi Hayk Zakaryan

Google, Mountain View, CA, USA Google, Mountain View, CA, USA Google, Mountain View, CA, USA
chgli@google.com qiyaping@google.com haykzakaryan@google.com

Mingyang Zhang Michael Bendersky Yonghua Wu
Google, Mountain View, CA, USA Google, Mountain View, CA, USA Google, Mountain View, CA, USA

mingyang@google.com bemike@google.com yonghuawu@google.com

Marc Najork
Google, Mountain View, CA, USA

najork@google.com

ABSTRACT
Google My Business (GMB) is a platform that hosts business pro-
fles, which will be displayed when a user issues a relevant query
on Google Search or Google Maps. GMB businesses provide a wide
variety of services, from home cleaning and repair, to legal con-
sultation. However, the exact details of the service provided (a.k.a.
job types), are often missing in business profles. This places the
burden of fnding these details on the users. To alleviate this bur-
den, we built a pipeline to automatically extract the job types from
business websites. We share the various challenges we faced while
developing this pipeline, and how we efectively addressed these
challenges by (1) utilizing structured content to tackle the cold start
problem for dataset collection; (2) exploiting context information
to improve model performance without hurting scalability; and (3)
formulating the extraction problem as a retrieval task to improve
both generalizability, efciency, and coverage. The pipeline has
been deployed for over a year and is scalable enough to be periodi-
cally refreshed. The extracted job types are serving users of Google
Search and Google Maps, with signifcant improvements in both
precision and coverage.

CCS CONCEPTS
• Applied computing → Document management and text
processing.

KEYWORDS
job type extraction, service

ACM Reference Format:
Cheng Li, Yaping Qi, Hayk Zakaryan, Mingyang Zhang, Michael Bendersky,
Yonghua Wu, and Marc Najork. 2023. Job Type Extraction for Service Busi-
nesses. In Companion Proceedings of the ACM Web Conference 2023 (WWW
’23 Companion), April 30–May 04, 2023, Austin, TX, USA. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3543873.3584636

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9419-2/23/04.
https://doi.org/10.1145/3543873.3584636

(a) A business that provides (b) The SERVICES tab
plumbing services. shows a list of job types.

Figure 1: A business place (on a mobile device).

1 INTRODUCTION
Google My Business (GMB) has been hosting a large number of
business profles. The profles provide various details about the busi-
ness, including opening hours, phone numbers, and user reviews.
An example of a business profle is shown in Figure 1 (a). These
profles will be displayed on Google Search or Maps in response to
a relevant query.

GMB businesses provide a wide array of services, from home
cleaning and plumbing, to fnance and education. Users searching
for service businesses are often looking for a particular job type,
e.g., water heater installation. While some owners manually list the
provided job types, this information is missing in most business
profles. Thus, previously users would have to either directly call
the business or scan through their website, both of which are time-

consuming.
Thus, to reduce user efort, we developed and deployed a pipeline

to automatically extract the job types from business websites. For
example, if a web page owned by a plumbing business states: “we
provide toilet installation and faucet repair service”, our pipeline
outputs toilet installation and faucet repair as the job types for
this business.

We share challenges and solutions during the development of
this extraction pipeline. First, in contrast to most academic papers
that work on ready-to-use datasets, we need to collect our training
dataset from scratch, leading to cold start issues. As human annota-
tion is costly, randomly sampling pages is inefective for producing
sufcient positive examples of pages containing job types. To over-
come this problem, we utilize items appearing in structured felds,

401

https://doi.org/10.1145/3543873.3584636
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543873.3584636
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3584636&domain=pdf&date_stamp=2023-04-30

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Li and Qi, et al.

which have a higher chance of containing job types. The identifed
job types are then treated as seeds to deal with free-text pages.

Second, scalability is critical. To keep the extracted job types
up-to-date, we run the pipeline every few days over billions of web
pages. It is impractical to treat job types as entities and directly
run of-the-shelf named entity recognition (NER) models over the
entire text of billions of web pages. In addition, these models output
a label per word, while we only need to identify the mentioned
job types, and the labels of other words can be safely ignored. We
developed a tailored model that does not need to take as input the
entire page, which is highly scalable.

Third, we aim at high precision and reasonable coverage to bring
the best user experience. To improve precision without hurting
scalability, we designed various information contexts that are light-
weight, easy to use, informative, and can be used in ways other than
model input. To enhance coverage, we formulate the extraction task
as a retrieval problem – the seed job types from structured felds
are treated as queries to retrieve free-text pages that might contain
job types. This formulation also helps us address the scalability
challenge.

Generalization. The lessons we shared in developing the large-
scale extraction pipeline from scratch can generalize to other in-
formation extraction or machine learning tasks. They have direct
applications to domain-specifc extraction tasks, exemplifed by
expertise fnding, legal and medical information extraction. Three
most important lessons are: (1) utilizing the data properties such
as structured content could alleviate the cold start problem of data
annotation; (2) formulating the task as a retrieval problem could
help researchers and practitioners deal with a large dataset; (3)
the context information could improve the model quality without
sacrifcing its scalability.

The pipeline described in this paper has been successfully de-
ployed for over a year. It is efcient enough to be run over billions
of pages every few days. The extracted job types are serving users
issuing service related queries on Google Search or Maps. They are
either displayed directly as in Figure 1 (b)1, served as explanations
of showing a business to a search query, or used as a signal to rank
business places.

2 RELATED WORK
We are not aware of any work directly focusing on job type ex-
traction for businesses. Thus we survey papers on information
extraction tasks that are most closely related to our work.

Named entity recognition (NER). NER aims to identify refer-
ences to certain types of objects [16]. Various deep learning based
encoders have been explored, including convolutional neural net-
works (CNN) [20], recurrent neural networks (RNN) [4], and trans-
formers [10]. To make predictions, a tag decoder is utilized to pro-
duce a tag per word. It can be a multi-layer perceptron and a softmax
layer [19], CRFs [4], and RNNs [17, 18].

Mention detection. Mention detection is a binary classifcation
task of identifying mentions of particular entities in the text given a

1
Note that the service tab in Figure 1 (b) has been introduced before the deployment
of our pipeline. Business owners can also manually edit it as indicated on the Help
page. See https://support.google.com/business/answer/9455399.

set of candidate mentions. They are often incorporated as one com-

ponent when training coreference systems end-to-end. Lee et al. [8]
proposed an LSTM based coreference system that jointly learns
mention detection. It is improved by adding a biafne attention [21],
ELMO embeddings [5, 9], and BERT [1].

Information extraction from web pages. Many extractors
for web pages rely on the Document Object Model (DOM) of web
pages [6]. Training data are used to learn a rule-based extractor
based on DOM features. To reduce the size of training data, distant
supervision is proposed based on knowledge bases [12], shared
XPath [2], or visual features [13]. Various deep neural encoders
have been explored to encode web pages, including CNNs [3], hier-
archical RNNs [11] and Graph Neural Networks (GNNs) [14].

Diferences to our work. Unlike the standard NER task, where
the model is trained to output one tag per word, our task only
needs to identify the text spans that correspond to a job type. On
the other hand, models for mention detection consider all noun
phrases in text as candidate mentions [7]. In addition, most methods
require joint training with the coreference task. Therefore, directly
applying NER or mention detection models to our task would be
too costly and impractical.

Most web extractors rely on DOM elements, which cannot work
on any web page. The existing web page encoders consider the
entire page, which is not efcient enough for our task.

3 JOB TYPE CLASSIFICATION AND
EXTRACTION

3.1 Pipeline Overview
We start from a collection of billions of web pages. To only retain
service related pages, we rely on homepages shown in business
profles. We only keep a page if: (1) it is a homepage; (2) it is one
click away from the homepage; or (3) it is in the same domain as the
homepage. Note that (2) and (3) introduce noise into the dataset,
which will be handled in the next few steps.

The retained pages are candidates for job type extraction. With-

out sufcient seed job types to start with, we create seeds based on
the observation that many businesses advertise their job types in
a structured format (i.e., tables or lists). This strategy has greatly
mitigated the cold start problem. We extract items from the struc-
tured content and classify whether they are job types. We call this
step job type classifcation, where we develop a model that en-
codes various context information to classify job types without
feeding the entire page to the model, addressing the challenge of
maintaining high precision and scalability. The details are in
Section 3.2.

To handle any web page, in Section 3.3 we formulate job type
extraction as a retrieval problem – seed job types from job type
classifcation are used as queries to retrieve relevant pages. Job types
are then extracted from these pages. This handles challenges of
both coverage and scalability. The extracted job types are stored
in a knowledge base and consumed by downstream applications
such as web search.

3.2 Job Type Classifcation
3.2.1 The General Procedure. We aim to train a classifer to predict
whether a given candidate job type displayed on a web page is an

402

https://support.google.com/business/answer/9455399

Job Type Extraction for Service Businesses WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

actual job type; i.e., whether this candidate job type is a type of
service provided by the business. A negative example would be the
phrase bed bug control mentioned on a page providing instructions
on dealing with bed bugs, but not the service itself.

The frst step is to collect candidate job types for labeling. We
tried to randomly sample some pages for human annotation, but
the discovery rate of job types is fairly low. We also tried to use
predefned or existing job types provided by business owners on
their profles to match web pages. However, such a set is small and
results in a very low coverage empirically.

To address this problem, we rely on the observation that many
businesses present their job types in a structured form, i.e., tables
and lists. The items extracted from such content are treated as
candidate job types.

The second step is to train a classifer based on the labeled data
set. With a limited number of human labels, we employ the BERT
model [1], which has already encoded a large amount of external
knowledge via pretraining. However, language models like BERT
usually take pure text as input, whereas we incorporate additional
feature types: (1) The job type to be predicted. (2) The last segment
of the URL tokens. Based on our observation, many job types are
mentioned on a page whose link ends with patterns such as ser-
vice.html. So we extract the last segment of a URL, tokenize it by
treating all punctuation marks as separators. (3) Meta information
of the associated business of this page, i.e., its category and country.

We found that a simple strategy to deal with multiple features
works pretty well – we convert all features to text, prepend the
feature name to each feature value to give the model a hint at
the feature types, and separate diferent features by the special
token “[SEP]”. An example input x might be: [CLS] job to predict:
tree landscaping [SEP] website: service html [SEP] country: US [SEP]
category: landscaper.

This input x is fed to a pre-trained BERT model for fne-tuning
on the binary classifcation task of predicting whether the candidate
job type is an actual job type (1) or not (0): �̂ = � (W · h[CLS]), where
h[CLS] is the contextualized embedding of the CLS token. W is the
fne-tuned parameter matrix and � is the sigmoid function. The
model is trained to minimize the cross entropy loss.

3.2.2 Improvement Based on the Context. The BERT model pro-
duces reasonable results, however its performance does not meet
our high precision bar. To further improve the performance, we
utilize the context information, which is defned as other job types
extracted from the same structured feld. E.g., if a list includes legal
services together with items like education and publications, this
page is less likely to be a service page, but a person’s homepage
describing their resume. We utilize the context information in three
ways.

Encoding context jobs. We encode context job types as ad-
ditional features in the input, which are all the other items from
the same structured feld. An example input would be: [CLS] job
to predict: tree landscaping [SEP] website: service html [SEP] cate-
gory: landscaper [SEP] other job: landscape design [SEP] other job:
landscape installation.

Weak supervision. The candidate job types in the same struc-
tured feld are used for weak supervision. For an unlabeled job type
from the same structured feld, we create a training example with a

weak label whose value is the same as that of the labeled one, but
with a lower weight.

Majority vote. As a post-process, we adjust the predictions by
a majority vote. If a large proportion of job types from the same
list are predicted as negative, we fip the predicted positives to
negatives.

3.2.3 Classification Evaluation. We have 77,302 human labeled
examples in total, which covers 57,130 unique job types. The ex-
amples are partitioned into train/validation/test set with the ratio
0.8/0.1/0.1. We evaluate the baseline BERT and variants of our pro-
posed models on the test set.

Bert. The standard BERT without considering any context in-
formation.

Encode. We encode context job types as input.
Encode

WeakSup
. On top of Encode, we do weak supervision.

Encode
WeakSup-Vote

. We additionally do majority vote.

Table 1: Results for job type classifcation. We report relative
improvement over Bert. *, †, ‡ indicate statistically signif-
cant improvement over Bert, Encode and EncodeWeakSup
respectively at the level of 0.05.

Precision Recall ROC-AUC

Encode +2.49%∗ +1.70%∗ +3.61%∗
Encode

WeakSup +2.58%∗ +1.83%∗ +3.88%∗
+3.32%∗†‡ +4.57%∗†‡Encode

WeakSup-Vote +2.08%∗
Note: we can only disclose the relative improvement but not the absolute
numbers. The absolute precision of all the proposed variants are above 90%

and are sufcient for real-world applications.

Based on the results shown in Table 1, Encode gives a large
boost in performance, meaning that encoding context job types
can help the model make a better decision by giving a context
of where the candidate appears. Encode

WeakSup only marginally
improves over Encode, probably because the two methods provide
similar information. Encode

WeakSup-Vote can further improve the
performance signifcantly by employing the majority vote as a post-
process. This implies that a hard flter is still benefcial even if the
model has considered the context in a soft manner.

3.3 Job Type Extraction
3.3.1 Addressing the Challenges. The task of job type extraction
aims to extract job types from any web page, regardless of whether
it is free-text only or contains structured felds.

To this end, we need to address two challenges. First, ground-
truth positive examples from free-text pages are rare. Sampling
free-text pages randomly could leave us with hardly any pages
that contain job types. Second, we want to maintain reasonable
coverage while being efcient. This means that we cannot aford
of-the-shelf NER models, which scan through the text of the entire
page and output labels for each word. Furthermore, we want to
build a generic system – it should not rely on DOM trees of pages
to create extraction rules that only work for a small set of pages.

To address the two challenges, we cast job type extraction as a
retrieval problem. Specifcally, we utilize the job types predicted

403

https://2.58%*+1.83%*+3.88
https://2.49%*+1.70%*+3.61

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Li and Qi, et al.

…

tree landscaping

landscape installation

…

Seed job types

…

tree landscaping

tree gardening

landscape installation

landscape install

…

Expanded

seed job types

Retrieve

Retrieve

Query expansion

http://xxx/about-us.html

A (possibly) free-text page

retrieved by seeds

landscape install

tree gardening

http://xxx/about-us.html

A page with a pseudo-list

• tree gardening

• landscape install

• …

Group extracted job

types into one list

Reuse the model

structure developed

for job type

classification

Figure 2: The procedure of job type extraction.

as positive in the stage of job type classifcation. We treat them as
seeds and use them as search queries to retrieve pages that contain
these seeds. Casting it as a retrieval problem has another advantage
– we can improve the coverage by query expansion. To this end, we
replace each word in a job type with one of its synonyms, producing
a new seed job type. Synonyms can be obtained from external lexical
databases like WordNet [15]. All possible combinations of original
words and synonyms are considered to produce multiple seed job
types. By sampling a seed job type and one of its retrieved pages
for human labeling, we have greatly improved the possibility of
sampling a positive example, solving our frst challenge.

The second challenge of model efciency can be addressed by
converting job type extraction to classifcation. Specifcally, one
page could be retrieved by multiple seed job types. By treating all
the seed job types from one page as context job types in a list, we
could reuse the model structure designed for job type classifcation.
In this way, we have considered the information from the entire
page by feeding other extracted candidate job types as input without
relying on the model to process the entire page text. The process is
illustrated in Figure 2.

However, the results are not as promising as we expected. We
found a major problem through error analysis.

3.3.2 A New Type of Context. We found that many pages mention
job type names for other purposes like giving life tips. For example,
a web page that teaches readers to deal with bed bugs might contain
a sentence like a solution is to call home cleaning services if you
fnd bed bugs in your home. They usually provide services like bed
bug control. Though this page mentions multiple job type names,
the page is not provided by a home cleaning business.

To alleviate this problem, we exploit an additional type of context
information – the surrounding words. Using the example mentioned
above, the words to the left of home cleaning services is a solution is
to call, which is not a common pattern when a business introduces
its service content. To encode such context, we include up to � = 5
words both to the left and to the right of the candidate job type.
The resultant input might look like: [CLS] job to predict: a solution
is to call home cleaning services if you fnd bed bugs [SEP] website:
bed bugs html [SEP] category: cleaning [SEP] other job: they usually
provide services like bed bug control.

Using only the surrounding words still maintains scalability
without feeding the entire page to the model.

Table 2: Results for job type extraction based on relative im-
provement over JobModel. * indicate statistically signifcant
improvement over JobModel at the level of 0.05.

Precision Recall ROC-AUC

JobModel
Surround +0.31% +5.79%∗† +8.59%∗†

Note: for competitive reasons, we can only disclose the relative
improvement but not the absolute numbers. The absolute precision of all
the proposed variants is above 90%, sufcient for real-world applications.

Table 3: Relative coverage improvement over Structure.

Job types # Businesses

ExactRetrieval +2087.0% +1561.0%
QeryExpand +4392.9% +1824.6%

3.4 Extraction Evaluation
We have 69,190 human labeled examples in total, which are parti-
tioned into train/validation/test set with the ratio 0.8/0.1/0.1. We
compare two variants of our models on the test set.

The JobModel model shares the same structure as the one for
job classifcation, but is trained on the labeled data for job type
extraction. The JobModel

Surround model takes the surrounding
words of candidate job types as an additional input.

As shown in Table 2, JobModel
Surround performs signifcantly

better than JobModel, which suggests that the surrounding words
could indeed explain the intent of the seed job type mentions. This
successfully improves the semantic understanding without process-
ing the entire text of each page, keeping our models efcient.

3.4.1 Coverage improvement. We are also interested in how cast-
ing the problem as a retrieval task could contribute to coverage
improvement. We compare extracted results from three sources:

Structure. The job types are extracted from structured felds
by job type classifcation.

ExactRetrieval. On top of Structure, we add job types ex-
tracted by retrieving web pages using job types from Structure
as queries. No query expansion is applied.

QeryExpand. Similar to ExactRetrieval, but we do synonym
expansion on queries, as described in Section 3.3.1.

As shown in Table 3, formulating the problem as a retrieval task
can bring in 20 times more job types and 15 times more businesses
with job types. Through query expansion, we can improve the
coverage further. Therefore, the retrieval formulation has greatly
improved coverage without relying on NER models to scan through
an intractable amount of text.

4 CONCLUSION
We describe our pipeline for extraction of service job types from
web pages. We share practical experiences of handling challenges

404

Job Type Extraction for Service Businesses

of building this pipeline, including the cold start problem of dataset
collection with limited human annotation resources, and achieving
high precision and reasonable coverage without hurting scalability.
These challenges prevent us from direct application of existing
models developed for information extraction. We have developed
various strategies to combat the challenges, including (1) bootstrap-
ping structured content to deal with the data collection cold start
problem; (2) designing various information contexts for better deci-
sion making; (3) casting the extraction task as a retrieval problem to
improve coverage while maintaining high scalability. Our pipeline
is executed periodically to keep the extracted content up-to-date. It
is currently deployed in production, and the output job types are
surfaced to millions of Google Search and Maps users.

REFERENCES
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[2] Anna Lisa Gentile, Ziqi Zhang, and Fabio Ciravegna. 2015. Early steps towards
web scale information extraction with lodie. AI Magazine 36, 1 (2015), 55–64.

[3] Tomas Gogar, Ondrej Hubacek, and Jan Sedivy. 2016. Deep neural networks for
web page information extraction. In IFIP International Conference on Artifcial
Intelligence Applications and Innovations. Springer, 154–163.

[4] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for
sequence tagging. arXiv preprint arXiv:1508.01991 (2015).

[5] Ben Kantor and Amir Globerson. 2019. Coreference resolution with entity
equalization. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. 673–677.

[6] Nicholas Kushmerick. 1997. Wrapper induction for information extraction. Uni-
versity of Washington.

[7] Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Sur-
deanu, and Dan Jurafsky. 2013. Deterministic coreference resolution based on
entity-centric, precision-ranked rules. Computational linguistics 39, 4 (2013),
885–916.

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

[8] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end
neural coreference resolution. arXiv preprint arXiv:1707.07045 (2017).

[9] Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference
resolution with coarse-to-fne inference. arXiv preprint arXiv:1804.05392 (2018).

[10] Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li.
2019. A unifed MRC framework for named entity recognition. arXiv preprint
arXiv:1910.11476 (2019).

[11] Shengpeng Liu, Ying Li, and Binbin Fan. 2018. Hierarchical RNN for few-shot in-
formation extraction learning. In International Conference of Pioneering Computer
Scientists, Engineers and Educators. Springer, 227–239.

[12] Colin Lockard, Xin Luna Dong, Arash Einolghozati, and Prashant Shiralkar. 2018.
Ceres: Distantly supervised relation extraction from the semi-structured web.
arXiv preprint arXiv:1804.04635 (2018).

[13] Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. 2019. Openceres: When
open information extraction meets the semi-structured web. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
3047–3056.

[14] Colin Lockard, Prashant Shiralkar, Xin Luna Dong, and Hannaneh Hajishirzi. 2020.
ZeroShotCeres: Zero-shot relation extraction from semi-structured webpages.
arXiv preprint arXiv:2005.07105 (2020).

[15] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[16] David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition
and classifcation. Lingvisticae Investigationes 30, 1 (2007), 3–26.

[17] Thien Huu Nguyen, Avirup Sil, Georgiana Dinu, and Radu Florian. 2016. Toward
mention detection robustness with recurrent neural networks. arXiv preprint
arXiv:1602.07749 (2016).

[18] Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and Animashree
Anandkumar. 2017. Deep active learning for named entity recognition. arXiv
preprint arXiv:1707.05928 (2017).

[19] Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. 2017. Fast
and accurate entity recognition with iterated dilated convolutions. arXiv preprint
arXiv:1702.02098 (2017).

[20] Lin Yao, Hong Liu, Yi Liu, Xinxin Li, and Muhammad Waqas Anwar. 2015. Biomed-

ical named entity recognition based on deep neutral network. Int. J. Hybrid Inf.
Technol 8, 8 (2015), 279–288.

[21] Rui Zhang, Cicero Nogueira dos Santos, Michihiro Yasunaga, Bing Xiang, and
Dragomir Radev. 2018. Neural coreference resolution with deep biafne at-
tention by joint mention detection and mention clustering. arXiv preprint
arXiv:1805.04893 (2018).

405

	Abstract
	1 Introduction
	2 Related Work
	3 Job Type Classification and Extraction
	3.1 Pipeline Overview
	3.2 Job Type Classification
	3.3 Job Type Extraction
	3.4 Extraction Evaluation

	4 Conclusion
	References

