
acmqueue | january-february 2024 73

security

H
ow to design and implement information systems
so that they are safe and secure is a complex
topic. Both high-level design principles and
implementation guidance for software safety
and security are well established and broadly

accepted. For example, Jerome Saltzer and Michael
Schroeder’s seminal overview of principles of secure
design was published almost 50 years ago,11 and various
community and governmental bodies have published
comprehensive best practices about how to avoid common
software weaknesses—for example, CWE (Common
Weakness Enumeration) and OWASP (Open Worldwide
Application Security Project) Cheat Sheet Series.

Despite these efforts, common types of software
defects prevail, and many occupy top ranks of “worst
vulnerabilities” lists such as the OWASP Top 1010 or the
CWE Top 25 Most Dangerous Software Weaknesses4 for
years if not decades.

Based on work at Google over the past decade on
managing the risk of software defects in its wide-ranging
portfolio of applications and services, the members of
Google’s security engineering team developed a theory
about the reason for the prevalence of defects: It’s simply

Continuous
assurance
at scale

CHRISTOPH KERN

1 of 27 TEXT
ONLY

Developer Ecosystems
for Software Safety

https://cwe.mitre.org/
https://cheatsheetseries.owasp.org/
https://cheatsheetseries.owasp.org/
https://owasp.org/Top10
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3648601&domain=pdf&date_stamp=2024-02-29

acmqueue | january-february 2024 74

security

too difficult for real-world development and operations
teams to comprehensively and consistently apply the
available guidance, which results in a problematic rate of
new defects. Commonly used approaches to find and fix
implementation defects after the fact can help (e.g., code
review, testing, scanning, or static and dynamic analysis
such as fuzzing), but in practice they find only a fraction
of these defects. Design-level defects are difficult or
impractical to remediate after the fact. This leaves a
problematic residual rate of defects in production systems.

We came to the conclusion that the rate at which
common types of defects are introduced during design,
development, and deployment is systemic—it arises from
the design and structure of the developer ecosystem,
which means the end-to-end collection of systems, tooling,
and processes in which developers design, implement, and
deploy software. This includes programming languages,
software libraries, application frameworks, source
repositories, build and deployment tooling, the production
platform and its configuration surfaces, and so forth.

In short, the safety and security posture of a software
application or service is substantially an emergent
property of the developer ecosystem that produced it. (A
safe system mitigates risks of relevant harms and adverse
outcomes for its users and stakeholders. A secure system
does so even in an adversarial context. Security is about
defending against active threats, beyond accidents or
mistakes.17)

It follows that to truly improve the situation, focusing
on design and implementation guidance in the context
of individual applications comes too late in the process.

2 of 27

acmqueue | january-february 2024 75

security

Instead, development and operations teams need to
shift-left even further and incorporate software safety
and security considerations in the design of developer
ecosystems. (While this article focuses on safety and
security, many of the principles and practices discussed
here transfer to reliability engineering, and it is often
helpful to consider security and reliability together.1)

This article argues, based on experience at Google,
that focusing on developer ecosystems is both practical
and effective, and can achieve a drastic reduction in the
rate of common classes of defects across hundreds of
applications being developed by thousands of developers.

There are two key aspects to this approach for
achieving assurance at scale.
3 Preventing bugs through Safe Coding. First, many
common implementation-level security defects, such as
injection or memory safety vulnerabilities, are difficult to
avoid entirely in large and complex codebases, even for
experienced developers who thoroughly understand the
nature of the vulnerability in principle. When a codebase
has many instances of coding patterns that are potentially
vulnerable—placing the onus on developers to be careful
every single time—defects will happen.

Thus, the only approach that can significantly reduce
the rate of defects is for the developer ecosystem to take
responsibility for preventing vulnerabilities by presenting
a Safe Coding environment with respect to the class of
defects in question.

In this model, the developer ecosystem is responsible
for ensuring that every version of the system satisfies
safety and security invariants—that is, properties that

3 of 27

acmqueue | january-february 2024 76

security

the system is expected to ensure at all times, even when
operating in an adversarial external environment. In
many cases, safety invariants can be expressed through
language, API and application framework design,
or through domain-specific code and configuration
conformance checks.

At Google this approach was successfully applied to
several classes of previously intractable defects, including
XSS (cross-site scripting) and SQL injection, which occupy
positions 2 and 3 in the CWE Stubborn Weaknesses
ranking.3 Today, many Google user-facing applications are
developed in a Safe Coding ecosystem and exhibit close to
zero residual rates of relevant defects.
3 Secure design for application archetypes. Second, a
substantial number of applications and services can be
grouped into a much smaller set of common archetypes.
For example, the high-level architectural shape of many
user-facing services can be characterized as “a web app
with microservices back ends and a SQL database” or “a
client-side mobile app that relies on a web services API.”

It turns out that many aspects of an individual
application’s safety and security risk model are common
to all applications in the archetype: Every web app must
worry about XSS vulnerabilities, and every RPC (remote
procedure call) back end must authenticate and authorize
its callers.

This observation can be leveraged by designing
developer ecosystems tuned to the given archetype, and
by structuring ecosystem components (such as libraries,
application frameworks, and production platforms) to
address common aspects of the archetype’s risk model

4 of 27

acmqueue | january-february 2024 77

security

template. Developing in such an environment reduces
effort, cognitive load, and opportunities for mistakes and
omissions for individual product teams—and mitigates risks
across the entire ecosystem.

In short, the key to safety and assurance at scale is
to design developer ecosystems that ensure secure
design best practices and prevent relevant classes of
vulnerabilities across all applications of an archetype. This
also increases development velocity, because application
developers don’t have to think about vulnerabilities while
focused on functionality.

SAFE CODING
Many common classes of security vulnerabilities, such as
memory corruption, SQL injection, and XSS, arise when
a developer makes an incorrect assumption about the
possible behaviors of a large and complex software system
(especially when faced with adversarial inputs) while
adding or modifying code whose correctness and safety
depends on those assumptions. Comprehensive awareness
of all relevant assumptions is particularly difficult to
achieve when large teams maintain software over long
periods of time.

Past attempts to mitigate these types of vulnerabilities
focused on developer education along with tools
and processes to discover and fix defects later in the
development cycle. Neither approach proved effective,
and these classes of defects continue to occur in “top
vulnerability” rankings and feature prominently in the
Stubborn Weaknesses in the CWE Top 25.3

First, developer education is insufficient to reduce

5 of 27

C
ompre-
hensive
awareness
of all
relevant

assumptions is
particularly
difficult to
achieve when
large teams
maintain
software over
long periods
of time.

acmqueue | january-february 2024 78

security

defect rates in this context. Intuition tells us that to
avoid introducing a defect, developers need to practice
constant vigilance and awareness of subtle secure-
coding guidelines. In many cases, this requires reasoning
about complex assumptions and preconditions, often in
relation to other, conceptually faraway code in a large,
complex codebase. When a program contains hundreds or
thousands of coding patterns that could harbor a potential
defect, it is difficult to get this right every single time.
Even experienced developers who thoroughly understand
these classes of defects and their technical underpinnings
sometimes make a mistake and accidentally introduce a
vulnerability.

Second, approaches to after-the-fact discovery of
defects, such as static or dynamic analysis (including
fuzzing), are inherently incomplete when applied to large
systems with large, complex state spaces. In many cases,
these techniques are computationally intensive and too
slow to apply after a code change is written but before
it is committed. When defect discovery happens post-
commit, it cannot reduce the rate at which new defects are
introduced into the source repository.

When software safety is framed as an emergent property
of how it is developed, the potential of implementation
security defects should be viewed as a design flaw of
the development environment: The potential for defects
is a hazard that arises during development, and it’s the
responsibility of the development environment to mitigate
this hazard. (In the context of information systems, a hazard
is the potential for a user or other stakeholder to experience
harm, or more generally, some adverse outcome. Here, the

6 of 27

acmqueue | january-february 2024 79

security

adverse outcome is the introduction of a vulnerability, which
in turn results in a downstream risk of harm to the eventual
software user. This specifically does not mean attacks on the
developers themselves, such as via malware embedded in a
developer tool.)

At Google this approach is called Safe Coding, because
it’s centered on structuring development environments
that are safe with respect to the accidental introduction of
security defects during application design and development.

In the following sections, this article illustrates Safe
Coding principles by showing how they apply to several
classes of common software safety and security defects,
then briefly discusses the cost effectiveness of this
approach.

Memory safety
Some of the most common and impactful classes of
security vulnerabilities arise from memory safety defects,
including code that accesses memory outside the bounds
of valid, allocated objects, as well as temporal memory
safety violations such as accessing memory that was
already deallocated (“use-after-free”).

Memory safety issues rank 1, 4, 7, and 12 in the 2023 CWE
Top 25.4 Several organizations have reported that memory
safety issues cause a substantial majority of severe
vulnerabilities in large C/C++ codebases, including Chrome
(bit.ly/482j6Ms), Android (bit.ly/4a6DYnC), Project Zero (bit.
ly/416oXxS), and Microsoft (bit.ly/3RpRMCj).

Guidance for developers in memory-unsafe languages
such as C and C++ is, essentially, to be careful: For example,
the section on memory management of the SEI CERT C

7 of 27

https://www.chromium.org/Home/chromium-security/memory-safety
https://android-developers.googleblog.com/2020/02/detecting-memory-corruption-bugs-with-hwasan.html
https://googleprojectzero.github.io/0days-in-the-wild/
https://googleprojectzero.github.io/0days-in-the-wild/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

acmqueue | january-february 2024 80

security

Coding Standard12 stipulates rules like, “MEM30-C: Do not
access freed memory” (bit.ly/3uSMBSk).

While this guidance is technically correct, it’s difficult to
apply comprehensively and consistently in large, complex
codebases. For example, consider a scenario where a
software developer is making a change to a large C++
codebase, maintained by a team of dozens of developers.
The change intends to fix a memory leak that occurs
because some heap-allocated objects aren’t deallocated
under certain conditions. The developer adds deallocation
statements based on the implicit assumption that the
objects will no longer be dereferenced. Unfortunately,
this assumption turns out to be incorrect, because there
is code in another part of the program that runs later and
still dereferences pointers to this object.

This example illustrates why the coding rule can be
difficult to adhere to in practice: Attempting to fix a memory
leak, the developer changes existing code by adding a
statement to free memory that they assume is no longer
used. After the change, code elsewhere in the program—
code that the developer didn’t modify, and perhaps wasn’t
even aware of—now violates the do not access freed memory
rule, resulting in a memory safety bug.

The part of the program that the developer modified,
and the separate part of the program that contains a new
bug after the change, are implicitly connected through
assumptions about the allocation state of the object in
question. These kinds of implicit assumptions about the
state of a large and complex program are easy to miss for
a developer who is familiar with only parts of the whole,
which is common for large programs worked on by teams

8 of 27

https://wiki.sei.cmu.edu/confluence/display/c/MEM30-C.+Do+not+access+freed+memory

acmqueue | january-february 2024 81

security

of many developers.
In some cases, it’s possible to design and structure a

program to make such assumptions more apparent—for
example, through the use of pointer types that explicitly
encode an ownership and lifetime discipline (such as
unique_ptr and shared_ptr in C++). These kinds of
considerations are not always applied comprehensively
and consistently, however, and memory safety
vulnerabilities are quite common in C++ as well as C.

When the risk of classes of defects is viewed as emerging
from the design of the developer ecosystem, it follows that
the prevalence of memory safety defects emerges from
the design of the programming language and surrounding
tooling. Simply put, when millions of lines of code are
written in a programming language that places the onus on
developers to ensure that every dereference of a pointer is
valid and in bounds, there are going to be defects.

In contrast, memory-safe languages remove this
responsibility from developers and ensure memory safety
invariants through the design of the language and its
runtime. For example, in garbage-collected languages
such as Java and Go, developers do not write explicit
statements to deallocate memory; instead the language
and its runtime take this responsibility and deallocate
memory only when an object is no longer referenced.
Alternatively, in Rust, object ownership and lifetime are
expressed as native concepts in the language’s type
system. This allows rigorous verification of memory-safety
invariants at compile time, avoiding the runtime overhead
of garbage collection.

9 of 27

acmqueue | january-february 2024 82

security

Code injection vulnerabilities
Injection vulnerabilities arise when strings derived from
untrusted inputs are passed to an API—referred to as an
injection sink in this context—that interprets the string
as code in some domain-specific language, such as SQL
or HTML. In this setting, it’s crucial to ensure a rigorous
separation between the trusted code and the untrusted
data: If untrusted, potentially attacker-provided data can
be unintentionally interpreted and evaluated as code, then
the attacker can exploit the trust placed on the execution
environment and execute actions with its (elevated)
privileges.

For example, XSS vulnerabilities arise when untrusted
inputs are incorporated into HTML or passed to certain
web browser APIs without context-appropriate escaping,
sanitization, or validation. This can allow attackers to
cause JavaScript code under their control to execute in
the context of a user’s web application session, which
would then allow the attacker to exfiltrate or modify
user data. Similarly, SQL injection vulnerabilities can arise
when untrusted input strings are incorporated into a SQL
database query; in this case an attacker could alter the
intended function of the query, causing it to return or
modify data that should not be accessible to the attacker.
Both types of vulnerabilities are quite common and
impactful, and occupy ranks 2 and 3, respectively, of the
2023 CWE Top 25.4

In the past, mitigation of these classes of vulnerabilities
focused on teaching developers rather complex rules (see,
for example, OWASP’s XSS Prevention Cheat Sheet at bit.
ly/47I90At) for treating potentially untrusted data before

10 of 27

I
njection
vulnerabilities
arise when
strings derived
from untrusted

inputs are passed
to an API that
interprets the
string as code
in some domain-
specific language
such as SQL
or HTML.

about:blank
about:blank

acmqueue | january-february 2024 83

security

it is incorporated into HTML markup or SQL queries. This
doesn’t work well in practice: The rules are complicated,
and it’s often difficult to keep track of which rules were
applied to a given string. For example, when a string
that originated in a system’s back-end storage layer is
incorporated into HTML markup in a web application front
end, it can be hard for the front-end developer to tell
whether that string was sanitized at the time it was stored.
Large web applications can have hundreds of code sites
that pass data to JavaScript injection sinks, and incorrect
or omitted sanitization or escaping in a single instance
can result in a vulnerability that compromises the entire
application.

Again, the prevalence of these classes of defects can
be viewed as an emergent property of the design of the
developer ecosystem rather than a failure of developers to
apply the correct one of a set of obscure rules, a thousand
times over. In this framing, the root cause for these classes
of defects is in the design of APIs that represent potential
injection sinks: Typically, these APIs accept statements
and expressions in domain-specific languages such as
HTML, JavaScript, CSS, or SQL, represented as values of
a general-purpose String type. In this API design it is the
developer’s responsibility to ensure that untrusted values
incorporated into these strings are sanitized or escaped
according to the domain-specific language’s rules. This is
brittle and prone to mistakes that can result in injection
vulnerabilities.

Based on this view of the problem’s root cause, these
classes of vulnerabilities can be addressed by introducing
higher-level abstractions that take responsibility for

11 of 27

acmqueue | january-february 2024 84

security

separating trusted code or markup and untrusted data.
For example, there are strict contextually auto-escaping
template systems6 for HTML to ensure that untrusted
inputs are appropriately sanitized or escaped before
being interpolated. Similarly, we provide builder APIs to
construct SQL statements from trustworthy statement
fragments.

To ensure that all statements and expressions that are
passed to an injection sink API are constructed using these
safe abstractions, the design of sink APIs has been changed
to require a domain-specific vocabulary type rather than
plain strings. The vocabulary type’s type contract captures
the safety precondition of the injection sink API. In turn,
values of these types are produced only by corresponding
safe abstractions, which ensures that they adhere to their
contract.

For example, the SQL query APIs by which internal
Google developers interact with the Spanner database2
expect values of type TrustedSqlString and do not
accept queries represented as simple Strings. This
type represents strings that are safe to use as a query
without risk of SQL injection vulnerabilities. Values of
type TrustedSqlString can be created only by using
builder APIs and factory functions that ensure this type
contract. These APIs allow queries to be constructed from
query snippets of known, trustworthy provenance such
as trusted configuration files or literal strings that are
part of the program itself. Arbitrary, potentially untrusted
strings cannot be incorporated into a SQL statement—the
TrustedSqlString builder API simply has no append
method that accepts arbitrary String-typed values. This

12 of 27

acmqueue | january-february 2024 85

security

results in a typing discipline that enforces the (otherwise
ad-hoc) secure-coding guideline to assemble SQL queries
from trusted strings and to supply dynamic parameters
via query parameter binding (see, for example, OWASP’s
guidance at bit.ly/3LUPyrk).

Similarly, XSS risk is addressed by defining a set of
vocabulary types to represent strings that are safe for
web platform injection sinks. For example, values of type
SafeHtml can be safely returned as text/html web
server responses, interpolated into an HTML document
in an “HTML tag content” context, or assigned to the
.innerHTML DOM property in browser-side JavaScript.
These types and their associated safe builder APIs have
been implemented in Google production languages. (For
example, open-source implementations for TypeScript and
Go are available at https://github.com/google/safevalues
and https://github.com/google/safehtml, respectively.)

In addition, we developed a W3C standards proposal,
Trusted Types, to integrate corresponding types natively
into the web platform.7

Similar to the type-constrained SQL query API, we
augmented server-side application frameworks, HTML
templating systems, server-side response APIs, and
browser-side application frameworks and templating
systems to constrain API parameters to the corresponding
type that, by its contract, is safe to use in the given API’s
context.15

Constraining potentially unsafe usage of injection sinks
through vocabulary types and safe abstractions achieves
a high degree of confidence that any program accepted
by compile- and runtime type checks is free of injection

13 of 27

https://github.com/google/safevalues
https://github.com/google/safehtml

acmqueue | january-february 2024 86

security

vulnerabilities—if it compiles, it’s secure! (See references 6
and 14 and reference 1, chapter 12, “Writing Code,” for more
details on preventing injection vulnerabilities through Safe
Coding.)

At Google we found that Safe Coding is the only
approach that can substantially reduce the incidence
of injection vulnerabilities, especially at the scale of
Google’s codebase. For example, 10 years ago, we tended
to encounter tens of XSS vulnerabilities per year for each
large, complex web application like Gmail. Since then,
Safe Coding practices and safe-types discipline, including
browser-side Trusted Types enforcement, have been
incorporated into internal web application frameworks
that are widely used for new and existing web applications
(bit.ly/3uLHFip).

Today, the residual incidence of XSS vulnerabilities
across all frameworks-based applications is in the low
single digits (some residual XSS risk arises from, for
example, pre-existing application components that have
not yet been refactored to conform to the safe-types
discipline and are exempted from enforcement on a
“legacy” basis). Some large services, such as the Google
Photos web front end, have not had any XSS vulnerabilities
reported over their entire lifetimes. Similarly, SQL injection
is essentially a nonissue in the Google internal codebase. In
contrast, XSS and SQL injection occupy spots 2 and 3 in the
CWE project’s 2023 Stubborn Weaknesses ranking.3

Safe Coding prevents injection vulnerabilities at modest
initial and ongoing costs:14

3 We rely primarily on judicious API design that takes
advantage of language-native type systems, augmented

14 of 27

acmqueue | january-february 2024 87

security

with inexpensive code conformance checks where
necessary—for example, the CompileTimeConstant check
implemented as part of the Error Prone framework (bit.
ly/3RsSVIf). This results in minimal additional resource
demands at application runtime and on build systems
and CI/CD (continuous integration/continuous delivery)
infrastructure.
3 Beyond initial efforts to develop safe APIs and
frameworks, ongoing maintenance and support costs are
modest. For example, at Google a small team of security
engineers maintains Safe Coding libraries, framework
components, and code conformance checks for secure
web application development, and provides user support
for a population of many thousands of web application
developers at Google.

SAFE DEPLOYMENT
Production deployments of services, and the underlying
infrastructure, can quickly get complicated, even in
organizations much smaller than Google.

Consider an SRE (site reliability engineer) who is
tasked with setting up a new production environment.
The production environment includes devices (routers,
firewalls, load balancers, database servers, applications
servers, and more) made by several vendors, each with its
own configuration UIs and config languages. The engineer
has a playbook document that outlines the changes to
be made, but setting up the environment is essentially a
manual process.

This is error-prone—the engineer might accidentally
make a change to the wrong device (perhaps caused by a

15 of 27

https://errorprone.info/bugpattern/CompileTimeConstant
https://errorprone.info/bugpattern/CompileTimeConstant

acmqueue | january-february 2024 88

security

simple typo in a command-line argument) or make a change
that has unintended consequences, because of subtle
discrepancies in configuration semantics across different
vendor devices.

This could result in a misconfiguration with security
impact, such as exposing an internal network service to the
public Internet, a missing or overbroad access-control list,
or an outage in an unrelated service hosted in the same
production environment.

When this happens, it’s tempting to say “They should
have been more careful” but it’s ultimately an unreasonable
expectation that any human has a perfectly accurate
mental model of a production environment consisting of
hundreds of devices with thousands of config settings
expressed in several different configuration models.

Instead, just as for common coding mishaps, the
potential for deployment mishaps should be treated as
a hazard, and it should be the deployment environment’s
responsibility to protect engineers from encountering
these hazards.8

Safety from deployment hazards can be incorporated
into deployment environments in several ways. Examples
of practices found useful at Google include cloud
platforms, config-as-code, and Zero Touch Prod and Safe
Proxies.

Cloud platforms
When deployment environments are based on “bare-metal”
servers and network devices, engineers are exposed to the
full complexity and nonuniformity of their configuration
surfaces. In contrast, cloud platforms provide a higher-level

16 of 27

acmqueue | january-february 2024 89

security

abstraction and a consistent vocabulary of configuration
points, and they expose common functionality (such as
databases) as managed services. This reduces cognitive load
caused by differences between configuration surfaces of
different types of network devices and the need to manage
lower-level aspects of servers that host higher-level
services such as databases.

Cloud platforms can integrate enforcement of security
invariants into their control planes. For example, Google’s
production environment13 enforces binary authorization
policies (https://cloud.google.com/docs/security/binary-
authorization-for-borg) to govern whether a deployment
package can run with the privileges of a given role. For
sensitive roles, these policies typically require that
the binary package is accompanied by a provenance
attestation (https://slsa.dev/provenance/v1) that it was
built by an authorized, trusted build system from code in
a trusted source repository where changes are reviewed
under the two-person principle. This mechanism ensures,
on an ongoing basis, the invariant that only explicitly
authorized code can exercise the privileges of a given
production role.

Config-as-code
Making changes to production systems directly—through
configuration UIs (user interfaces) or CLIs (command-line
interfaces)—is risky: Changes are actuated immediately,
including any mistakes.

A safer approach is to capture the entire configuration
in machine-readable config files stored in a versioned
repository, and to automatically actuate changes to the

17 of 27

M
aking
changes
to pro-
duction
systems

directly—through
configuration UIs
or CLIs—is risky.

https://cloud.google.com/docs/security/binary-authorization-for-borg
https://cloud.google.com/docs/security/binary-authorization-for-borg
https://slsa.dev/provenance/v1

acmqueue | january-february 2024 90

security

production environment based on this configuration. This
pattern is often called config-as-code (or sometimes
GitOps), because authoritative configuration is maintained
in a source repository, just like an application’s source code.

Maintaining configuration in this fashion allows the
introduction of safeguards against configuration mistakes:
3 The configuration repository can be set up to require

two-person review. This gives a second engineer the
opportunity to catch mistakes.

3 Changes to the configuration can be guarded by
conformance checks that execute pre-submit and/
or before a configuration change is actuated. Similar
to conformance checks on source code discussed
earlier, such conformance checks can ensure safety
and correctness invariants on the configuration on
an ongoing basis. For example, a conformance check
can ensure that the authorization policies of back-end
RPC services adhere to common guidelines and best
practices.

3 Common types of changes can be automated through
tools that generate sections of configuration. The
configuration for a new service instance can be
generated automatically based on a template, reducing
the opportunity for mistakes caused by typos.

Zero Touch Prod and safe proxies
Zero Touch Prod is a set of principles and tools to ensure
that every change to a production environment must be
made by trusted automation (not directly by a human),
prevalidated by trusted software, or made through an
audited break-glass mechanism.5

18 of 27

acmqueue | january-february 2024 91

security

Conformance checks imposed on config-as-code are
one way of adhering to this principle. It can be challenging,
however, to accommodate all actions in a production
environment through config-as-code, especially those
needed when responding to an incident.

Safe Proxies are trusted systems that are interposed
between human engineers and a production environment
(see chapter 3 of reference 1). The safe proxy mediates all
interactions with the production environment and can, for
example:
3 Validate the safety of requested actions.
3 Impose security policy such as mandatory auditing and

mandatory multiparty authorization.
3 Rate-limit potentially destructive actions.

In addition to enhancing safety with respect to human
error (such as honest mistakes), these techniques also
provide an effective control against insider risk and
external compromise of privileged operators. When
in place, these measures remove engineers’ ambient
privileges to unilaterally execute powerful and sensitive
actions in the production environment. Instead, changes
and actions in production are guarded by two-person
review, automated validation, and mandatory auditing.

SCALING SECURE DESIGN ACROSS
APPLICATION ARCHETYPES
The previous sections discussed how to achieve
substantial leverage over implementation bugs and
deployment defects, by treating them not as individual
defects but rather as an entire class of defects to
be addressed through development and deployment

19 of 27

acmqueue | january-february 2024 92

security

ecosystem design (programming languages, application
frameworks, build systems, cloud platforms, and so on).

Similar thinking can even be applied to defects that, in
isolation, are true design flaws rather than implementation
bugs—that is, defects that arise from a fundamental choice
about the shape or architecture of a product or service.

A key observation is that many types of potential
architectural and design flaws, and the safety and security
considerations and practices to avoid them, apply to
all applications of a software-architectural archetype.
Examples of such archetypes might include:
3 A system consisting of an end-user-facing web

application front end communicating with back-end
microservices through RPCs, which in turn rely on a SQL
database for persistence.

3 A mobile application backed by a service API; the
service API front end in turn makes RPCs to back-end
microservices.
While many threats and secure-design considerations

are indeed specific to a given application (e.g., a banking
app is inherently different from a photo editor) typically,
a substantial degree of commonality exists in the threat
models across the entire class of applications of a given
archetype.

For example, the safety and security design of (almost)
any application that falls into either of these archetypes
must consider areas such as:
3 Protecting the confidentiality and integrity of network

and RPC traffic over the public Internet and internal
networks.

3 Ensuring that all external client-server requests and

20 of 27

acmqueue | january-february 2024 93

security

internal RPC requests are appropriately authenticated
and authorized, governed by an explicit, intentional policy
(although the details of the policy itself are usually
specific to the application and its features).

3 Ensuring that the confidentiality and integrity of
user/customer data is appropriately protected in
conformance with the service provider’s policies (for
example, through appropriate cryptographic schemes).

3 Ensuring that user data is deleted according to the
service provider’s policies (such as when requested by a
user or when a user leaves the service).

3 And many more.
Google has hundreds of web and mobile applications

and external-facing API endpoints, and thousands of
microservice back ends and internal RPC endpoints, but
even organizations much smaller than Google usually have
at least several. It’s undesirable for each team responsible
for one of these services to develop a comprehensive
threat model from scratch and to design appropriate
mitigations for each one. Taking such a decentralized
approach results in not only duplication of work, but also
inferior outcomes: Threat modeling and secure design
require expertise that is often not available in product
development teams; while an organization’s security
experts can help through consulting, their bandwidth is
typically limited.

At Google we take advantage of common threat model
aspects and secure design considerations by building
frameworks and platforms that inform, govern, and
constrain important aspects of the architecture and
design (both in terms of code and mapping to production

21 of 27

T
hreat
modeling
and secure
design
require

expertise that
is often not
available
within product
development
teams.

acmqueue | january-february 2024 94

security

resources) of applications and services built on the
framework.9 These applications inherit security (also
privacy and reliability) best practices designed and
built into the framework, usually through collaboration
between domain experts (security engineers, SREs) and
framework engineers.

Many design choices (Which secure transport protocol
should I use? How should I authenticate and authorize
requests? How do I encrypt data at rest?) are incorporated
in the design of the framework, and application developers
are relieved from making these decisions—and from
potentially making a suboptimal choice.

This approach reduces the risk of design-level security
defects and gives leverage to scarce expert bandwidth—
experts can focus their attention on the design and
implementation of frameworks and platforms, while having
an impact on a large number of development projects that
rely on that framework.

Furthermore, after frameworks are widely adopted as
a platform for application development, future security
improvements and mitigations for novel attacks and
defect classes can often be deployed swiftly, scalably,
and efficiently, taking advantage of the well-defined
structure of frameworks-based applications. For example,
security and web frameworks teams at Google routinely
roll out new security features and mitigations at scale to
existing frameworks-based applications, often without
any need for involvement or time investment by the teams
that maintain individual applications. (See the blog post
A Recipe for Scaling Security, at bit.ly/3u6C71R, for more
details.)

22 of 27

https://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security

acmqueue | january-february 2024 95

security

CONTINUOUS ASSURANCE AT SCALE
At Google we sometimes say, “Software engineering is
programming integrated over time,” to recognize the vast
difference between one or a few people writing a few-
thousand-line program in days or weeks, versus hundreds
of teams of hundreds of developers jointly working, over
years or even decades, on a codebase of several hundred
million lines of code.16

This distinction matters when it comes to ensuring
security invariants for software products and the degree
of confidence in the product adhering to these invariants.
For a small, self-contained program written by a small
group over a short period of time, developers are less likely
to make mistaken assumptions that lead to defects, and it
is indeed feasible for an expert to read and understand the
entire codebase and perform a high-confidence security
assessment.

Once a service’s design, codebase, and production
footprint get larger and more complex, this no longer
works: The risk of defects caused by mistaken assumptions
(or plain mistakes and forgetfulness) increases. It becomes
infeasible for an expert, or even a group of experts, to
fully and deeply understand the entire artifact, resulting in
limits on high-confidence security assessments.

If the experts need to read and understand most of a
codebase of many hundreds of thousands of lines of code,
it’s likely they will miss something, or make a mistake in
their assessment. (Tool support such as static analyzers
can sometimes help; however, these typically need to
accept some degree of imprecision to scale to large
codebases, and hence can also “miss things.”)

23 of 27

acmqueue | january-february 2024 96

security

Furthermore, security assessments by human experts
apply to the specific version under review and are difficult
to scale to every release of software that is under active
ongoing feature development.

As explained in this article, Google addresses this
challenge by designing a developer ecosystem to
ensure that all services developed and deployed in this
environment have the desired properties. We achieve high
levels of assurance by applying the principle of “Design
for Understandability” (chapter 6 in reference 1): Key
developer ecosystem components are designed to ensure
the property for any arbitrary application, assuming only
that application code is well-typed, passes conformance
checks, and satisfies basic assumptions. (Code written
and reviewed under the two-person principle is generally
assumed not to deliberately subvert security invariants—
for example, through use of reflection or unsafe casts.)

This allows us to have confidence that the property
holds for all applications, based solely on understanding
key developer ecosystem components, and without having
to consider or understand application-specific code.
There is still a residual risk of defects, but it is confined
within those key components. These tend to be stable,
and domain experts can thoroughly scrutinize them for
potential defects.

In light of the framing as programming over time,
designing developer ecosystems as Safe Coding and Safe
Deployment environments allows us to achieve continuous
assurance at scale: It provides confidence that every
production release of every application of supported
archetypes satisfies desired safety and security invariants.

24 of 27

acmqueue | january-february 2024 97

security

References
1. Adkins, H., Beyer, B., Blankinship, P., Lewandowski,

P., Oprea, A., Stubblefield, A. 2020. Building Secure
and Reliable Systems: Best Practices for Designing,
Implementing, and Maintaining Systems. O’Reilly Media;
https://sre.google/books/building-secure-reliable-
systems/.

2. Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost,
C., Furman, J. J., Ghemawat, S., Gubarev, A., Heiser,
C., Hochschild, P., et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions
on Computer Systems 31(3), 1–22; https://dl.acm.org/
doi/10.1145/2491245.

3. CWE. 2023. Stubborn weaknesses in the CWE top
25; https://cwe.mitre.org/top25/archive/2023/2023_
stubborn_weaknesses.html.

4. CWE. 2023. Top 25 most dangerous software
weaknesses; https://cwe.mitre.org/top25/
archive/2023/2023_top25_list.html.

5. Czapiński, M., Wolafka, R. 2019. Zero Touch Prod:
Towards safer and more secure production
environments. Usenix; https://www.usenix.org/
conference/srecon19emea/presentation/czapinski.

6. Kern, C. 2014. Securing the tangled web.
Communications of the ACM 57(9), 38–47;
https://dl.acm.org/doi/10.1145/2643134.

7. Kotowicz, K. 2024. Trusted Types;
https://w3c.github.io/trusted-types/dist/spec/.

8. Leveson, N. 2019. A systems approach to safety
and cybersecurity. Usenix; https://www.usenix.org/
conference/srecon19emea/presentation/leveson.

25 of 27

https://sre.google/books/building-secure-reliable-systems/
https://sre.google/books/building-secure-reliable-systems/
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/2491245
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://www.usenix.org/conference/srecon19emea/presentation/czapinski
https://www.usenix.org/conference/srecon19emea/presentation/czapinski
https://dl.acm.org/doi/10.1145/2643134
https://w3c.github.io/trusted-types/dist/spec/
https://www.usenix.org/conference/srecon19emea/presentation/leveson
https://www.usenix.org/conference/srecon19emea/presentation/leveson

acmqueue | january-february 2024 98

security

9. Nokleberg, C., Hawkes, B. 2021. Application
frameworks. Communications of the ACM 64(7), 42–49;
https://dl.acm.org/doi/10.1145/3446796.

10. OWASP. OWASP Top Ten; https://owasp.org/www-
project-top-ten/.

11. Saltzer, J. H., Schroeder, M. D. 1975. The protection
of information in computer systems. Proceedings of
the IEEE 63(9), 1278–1308; https://ieeexplore.ieee.org/
document/1451869.

12. Seacord, R. C. 2014. The CERT C Coding Standard: 98
Rules for Developing Safe, Reliable, and Secure Systems,
second edition. Addison-Wesley Professional.

13. Verma, A., Pedrosa, L., Korupolu, M. R. Oppenheimer,
D., Tune, E., Wilkes, J. 2015. Large-scale cluster
management at Google with Borg. In Proceedings of
the 10th European Conference on Computer Systems
(EuroSys); https://dl.acm.org/doi/10.1145/2741948.2741964.

14. Wang, P., Bangert, J., Kern, C. 2021. If it’s not secure,
it should not compile: preventing DOM-based XSS in
large-scale web development with API hardening. In
Proceedings of IEEE/ACM 43rd International Conference
on Software Engineering, 1360–1372. https://dl.acm.org/
doi/abs/10.1109/ICSE43902.2021.00123.

15. Wang, P., Gumundsson, B. A., Kotowicz, K. 2021. Adopting
Trusted Types in production web frameworks to
prevent DOM-based cross-site scripting: a case study.
In IEEE European Symposium on Security and Privacy
Workshops, 60–73; https://research.google/pubs/
pub50513/.

16. Winters, T., Manshreck, T., Wright., H. 2020. Software
Engineering at Google: Lessons Learned from

26 of 27

https://dl.acm.org/doi/10.1145/3446796
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://ieeexplore.ieee.org/document/1451869
https://ieeexplore.ieee.org/document/1451869
https://dl.acm.org/doi/10.1145/2741948.2741964
https://dl.acm.org/doi/abs/10.1109/ICSE43902.2021.00123
https://dl.acm.org/doi/abs/10.1109/ICSE43902.2021.00123
https://research.google/pubs/pub50513/
https://research.google/pubs/pub50513/

acmqueue | january-february 2024 99

security

Programming over Time. O’Reilly Media;
https://www.oreilly.com/library/view/software-
engineering-at/9781492082781/.

17. Young, W., Leveson, N. G. 2014. An integrated approach
to safety and security based on systems theory.
Communications of the ACM 57(2), 31–35;
https://dl.acm.org/doi/10.1145/2556938.

Christoph Kern is a principal software engineer in Google’s
Information Security Engineering organization. His primary
focus is on developing scalable, principled approaches to
software security.
Copyright © 2024 held by owner/author. Publication rights licensed to ACM.

27 of 27

CONTENTS2

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE. STAY CONNECTED.
KEEP INVENTING.

https://www.oreilly.com/library/view/software-engineering-at/9781492082781/
https://www.oreilly.com/library/view/software-engineering-at/9781492082781/
https://dl.acm.org/doi/10.1145/2556938

