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H
ow to design and implement information systems 
so that they are safe and secure is a complex 
topic. Both high-level design principles and 
implementation guidance for software safety 
and security are well established and broadly 

accepted. For example, Jerome Saltzer and Michael 
Schroeder’s seminal overview of principles of secure 
design was published almost 50 years ago,11 and various 
community and governmental bodies have published 
comprehensive best practices about how to avoid common 
software weaknesses—for example, CWE (Common 
Weakness Enumeration) and OWASP (Open Worldwide 
Application Security Project) Cheat Sheet Series.

Despite these efforts, common types of software 
defects prevail, and many occupy top ranks of “worst 
vulnerabilities” lists such as the OWASP Top 1010 or the 
CWE Top 25 Most Dangerous Software Weaknesses4 for 
years if not decades.

Based on work at Google over the past decade on 
managing the risk of software defects in its wide-ranging 
portfolio of applications and services, the members of 
Google’s security engineering team developed a theory 
about the reason for the prevalence of defects: It’s simply 
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too difficult for real-world development and operations 
teams to comprehensively and consistently apply the 
available guidance, which results in a problematic rate of 
new defects. Commonly used approaches to find and fix 
implementation defects after the fact can help (e.g., code 
review, testing, scanning, or static and dynamic analysis 
such as fuzzing), but in practice they find only a fraction 
of these defects. Design-level defects are difficult or 
impractical to remediate after the fact. This leaves a 
problematic residual rate of defects in production systems.

We came to the conclusion that the rate at which 
common types of defects are introduced during design, 
development, and deployment is systemic—it arises from 
the design and structure of the developer ecosystem, 
which means the end-to-end collection of systems, tooling, 
and processes in which developers design, implement, and 
deploy software. This includes programming languages, 
software libraries, application frameworks, source 
repositories, build and deployment tooling, the production 
platform and its configuration surfaces, and so forth.

In short, the safety and security posture of a software 
application or service is substantially an emergent 
property of the developer ecosystem that produced it. (A 
safe system mitigates risks of relevant harms and adverse 
outcomes for its users and stakeholders. A secure system 
does so even in an adversarial context. Security is about 
defending against active threats, beyond accidents or 
mistakes.17)

It follows that to truly improve the situation, focusing 
on design and implementation guidance in the context 
of individual applications comes too late in the process. 
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Instead, development and operations teams need to 
shift-left even further and incorporate software safety 
and security considerations in the design of developer 
ecosystems. (While this article focuses on safety and 
security, many of the principles and practices discussed 
here transfer to reliability engineering, and it is often 
helpful to consider security and reliability together.1)

This article argues, based on experience at Google, 
that focusing on developer ecosystems is both practical 
and effective, and can achieve a drastic reduction in the 
rate of common classes of defects across hundreds of 
applications being developed by thousands of developers. 

There are two key aspects to this approach for 
achieving assurance at scale.
3 Preventing bugs through Safe Coding. First, many 
common implementation-level security defects, such as 
injection or memory safety vulnerabilities, are difficult to 
avoid entirely in large and complex codebases, even for 
experienced developers who thoroughly understand the 
nature of the vulnerability in principle. When a codebase 
has many instances of coding patterns that are potentially 
vulnerable—placing the onus on developers to be careful 
every single time—defects will happen.

Thus, the only approach that can significantly reduce 
the rate of defects is for the developer ecosystem to take 
responsibility for preventing vulnerabilities by presenting 
a Safe Coding environment with respect to the class of 
defects in question.

In this model, the developer ecosystem is responsible 
for ensuring that every version of the system satisfies 
safety and security invariants—that is, properties that 
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the system is expected to ensure at all times, even when 
operating in an adversarial external environment. In 
many cases, safety invariants can be expressed through 
language, API and application framework design, 
or through domain-specific code and configuration 
conformance checks.

At Google this approach was successfully applied to 
several classes of previously intractable defects, including 
XSS (cross-site scripting) and SQL injection, which occupy 
positions 2 and 3 in the CWE Stubborn Weaknesses 
ranking.3 Today, many Google user-facing applications are 
developed in a Safe Coding ecosystem and exhibit close to 
zero residual rates of relevant defects.
3 Secure design for application archetypes. Second, a 
substantial number of applications and services can be 
grouped into a much smaller set of common archetypes. 
For example, the high-level architectural shape of many 
user-facing services can be characterized as “a web app 
with microservices back ends and a SQL database” or “a 
client-side mobile app that relies on a web services API.”

It turns out that many aspects of an individual 
application’s safety and security risk model are common 
to all applications in the archetype: Every web app must 
worry about XSS vulnerabilities, and every RPC (remote 
procedure call) back end must authenticate and authorize 
its callers.

This observation can be leveraged by designing 
developer ecosystems tuned to the given archetype, and 
by structuring ecosystem components (such as libraries, 
application frameworks, and production platforms) to 
address common aspects of the archetype’s risk model 

4 of 27



acmqueue | january-february 2024   77

security

template. Developing in such an environment reduces 
effort, cognitive load, and opportunities for mistakes and 
omissions for individual product teams—and mitigates risks 
across the entire ecosystem.

In short, the key to safety and assurance at scale is 
to design developer ecosystems that ensure secure 
design best practices and prevent relevant classes of 
vulnerabilities across all applications of an archetype. This 
also increases development velocity, because application 
developers don’t have to think about vulnerabilities while 
focused on functionality.

SAFE CODING
Many common classes of security vulnerabilities, such as 
memory corruption, SQL injection, and XSS, arise when 
a developer makes an incorrect assumption about the 
possible behaviors of a large and complex software system 
(especially when faced with adversarial inputs) while 
adding or modifying code whose correctness and safety 
depends on those assumptions. Comprehensive awareness 
of all relevant assumptions is particularly difficult to 
achieve when large teams maintain software over long 
periods of time.

Past attempts to mitigate these types of vulnerabilities 
focused on developer education along with tools 
and processes to discover and fix defects later in the 
development cycle. Neither approach proved effective, 
and these classes of defects continue to occur in “top 
vulnerability” rankings and feature prominently in the 
Stubborn Weaknesses in the CWE Top 25.3

First, developer education is insufficient to reduce 
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defect rates in this context. Intuition tells us that to 
avoid introducing a defect, developers need to practice 
constant vigilance and awareness of subtle secure-
coding guidelines. In many cases, this requires reasoning 
about complex assumptions and preconditions, often in 
relation to other, conceptually faraway code in a large, 
complex codebase. When a program contains hundreds or 
thousands of coding patterns that could harbor a potential 
defect, it is difficult to get this right every single time. 
Even experienced developers who thoroughly understand 
these classes of defects and their technical underpinnings 
sometimes make a mistake and accidentally introduce a 
vulnerability.

Second, approaches to after-the-fact discovery of 
defects, such as static or dynamic analysis (including 
fuzzing), are inherently incomplete when applied to large 
systems with large, complex state spaces. In many cases, 
these techniques are computationally intensive and too 
slow to apply after a code change is written but before 
it is committed. When defect discovery happens post-
commit, it cannot reduce the rate at which new defects are 
introduced into the source repository.

When software safety is framed as an emergent property 
of how it is developed, the potential of implementation 
security defects should be viewed as a design flaw of 
the development environment: The potential for defects 
is a hazard that arises during development, and it’s the 
responsibility of the development environment to mitigate 
this hazard. (In the context of information systems, a hazard 
is the potential for a user or other stakeholder to experience 
harm, or more generally, some adverse outcome. Here, the 
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adverse outcome is the introduction of a vulnerability, which 
in turn results in a downstream risk of harm to the eventual 
software user. This specifically does not mean attacks on the 
developers themselves, such as via malware embedded in a 
developer tool.)

At Google this approach is called Safe Coding, because 
it’s centered on structuring development environments 
that are safe with respect to the accidental introduction of 
security defects during application design and development.

In the following sections, this article illustrates Safe 
Coding principles by showing how they apply to several 
classes of common software safety and security defects, 
then briefly discusses the cost effectiveness of this 
approach.

Memory safety
Some of the most common and impactful classes of 
security vulnerabilities arise from memory safety defects, 
including code that accesses memory outside the bounds 
of valid, allocated objects, as well as temporal memory 
safety violations such as accessing memory that was 
already deallocated (“use-after-free”). 

Memory safety issues rank 1, 4, 7, and 12 in the 2023 CWE 
Top 25.4 Several organizations have reported that memory 
safety issues cause a substantial majority of severe 
vulnerabilities in large C/C++ codebases, including Chrome 
(bit.ly/482j6Ms), Android (bit.ly/4a6DYnC), Project Zero (bit.
ly/416oXxS), and Microsoft (bit.ly/3RpRMCj).

Guidance for developers in memory-unsafe languages 
such as C and C++ is, essentially, to be careful: For example, 
the section on memory management of the SEI CERT C 
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Coding Standard12 stipulates rules like, “MEM30-C: Do not 
access freed memory” (bit.ly/3uSMBSk).

While this guidance is technically correct, it’s difficult to 
apply comprehensively and consistently in large, complex 
codebases. For example, consider a scenario where a 
software developer is making a change to a large C++ 
codebase, maintained by a team of dozens of developers. 
The change intends to fix a memory leak that occurs 
because some heap-allocated objects aren’t deallocated 
under certain conditions. The developer adds deallocation 
statements based on the implicit assumption that the 
objects will no longer be dereferenced. Unfortunately, 
this assumption turns out to be incorrect, because there 
is code in another part of the program that runs later and 
still dereferences pointers to this object.

This example illustrates why the coding rule can be 
difficult to adhere to in practice: Attempting to fix a memory 
leak, the developer changes existing code by adding a 
statement to free memory that they assume is no longer 
used. After the change, code elsewhere in the program—
code that the developer didn’t modify, and perhaps wasn’t 
even aware of—now violates the do not access freed memory 
rule, resulting in a memory safety bug.

The part of the program that the developer modified, 
and the separate part of the program that contains a new 
bug after the change, are implicitly connected through 
assumptions about the allocation state of the object in 
question. These kinds of implicit assumptions about the 
state of a large and complex program are easy to miss for 
a developer who is familiar with only parts of the whole, 
which is common for large programs worked on by teams 
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of many developers.
In some cases, it’s possible to design and structure a 

program to make such assumptions more apparent—for 
example, through the use of pointer types that explicitly 
encode an ownership and lifetime discipline (such as 
unique_ptr and shared_ptr in C++). These kinds of 
considerations are not always applied comprehensively 
and consistently, however, and memory safety 
vulnerabilities are quite common in C++ as well as C.

When the risk of classes of defects is viewed as emerging 
from the design of the developer ecosystem, it follows that 
the prevalence of memory safety defects emerges from 
the design of the programming language and surrounding 
tooling. Simply put, when millions of lines of code are 
written in a programming language that places the onus on 
developers to ensure that every dereference of a pointer is 
valid and in bounds, there are going to be defects.

In contrast, memory-safe languages remove this 
responsibility from developers and ensure memory safety 
invariants through the design of the language and its 
runtime. For example, in garbage-collected languages 
such as Java and Go, developers do not write explicit 
statements to deallocate memory; instead the language 
and its runtime take this responsibility and deallocate 
memory only when an object is no longer referenced. 
Alternatively, in Rust, object ownership and lifetime are 
expressed as native concepts in the language’s type 
system. This allows rigorous verification of memory-safety 
invariants at compile time, avoiding the runtime overhead 
of garbage collection.
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Code injection vulnerabilities
Injection vulnerabilities arise when strings derived from 
untrusted inputs are passed to an API—referred to as an 
injection sink in this context—that interprets the string 
as code in some domain-specific language, such as SQL 
or HTML. In this setting, it’s crucial to ensure a rigorous 
separation between the trusted code and the untrusted 
data: If untrusted, potentially attacker-provided data can 
be unintentionally interpreted and evaluated as code, then 
the attacker can exploit the trust placed on the execution 
environment and execute actions with its (elevated) 
privileges.

For example, XSS vulnerabilities arise when untrusted 
inputs are incorporated into HTML or passed to certain 
web browser APIs without context-appropriate escaping, 
sanitization, or validation. This can allow attackers to 
cause JavaScript code under their control to execute in 
the context of a user’s web application session, which 
would then allow the attacker to exfiltrate or modify 
user data. Similarly, SQL injection vulnerabilities can arise 
when untrusted input strings are incorporated into a SQL 
database query; in this case an attacker could alter the 
intended function of the query, causing it to return or 
modify data that should not be accessible to the attacker. 
Both types of vulnerabilities are quite common and 
impactful, and occupy ranks 2 and 3, respectively, of the 
2023 CWE Top 25.4

In the past, mitigation of these classes of vulnerabilities 
focused on teaching developers rather complex rules (see, 
for example, OWASP’s XSS Prevention Cheat Sheet at bit.
ly/47I90At) for treating potentially untrusted data before 

10 of 27

I
njection  
vulnerabilities 
arise when 
strings derived 
from untrusted 

inputs are passed 
to an API that 
interprets the 
string as code  
in some domain-
specific language 
such as SQL  
or HTML.

about:blank
about:blank


acmqueue | january-february 2024   83

security

it is incorporated into HTML markup or SQL queries. This 
doesn’t work well in practice: The rules are complicated, 
and it’s often difficult to keep track of which rules were 
applied to a given string. For example, when a string 
that originated in a system’s back-end storage layer is 
incorporated into HTML markup in a web application front 
end, it can be hard for the front-end developer to tell 
whether that string was sanitized at the time it was stored. 
Large web applications can have hundreds of code sites 
that pass data to JavaScript injection sinks, and incorrect 
or omitted sanitization or escaping in a single instance 
can result in a vulnerability that compromises the entire 
application.

Again, the prevalence of these classes of defects can 
be viewed as an emergent property of the design of the 
developer ecosystem rather than a failure of developers to 
apply the correct one of a set of obscure rules, a thousand 
times over. In this framing, the root cause for these classes 
of defects is in the design of APIs that represent potential 
injection sinks: Typically, these APIs accept statements 
and expressions in domain-specific languages such as 
HTML, JavaScript, CSS, or SQL, represented as values of 
a general-purpose String type. In this API design it is the 
developer’s responsibility to ensure that untrusted values 
incorporated into these strings are sanitized or escaped 
according to the domain-specific language’s rules. This is 
brittle and prone to mistakes that can result in injection 
vulnerabilities.

Based on this view of the problem’s root cause, these 
classes of vulnerabilities can be addressed by introducing 
higher-level abstractions that take responsibility for 
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separating trusted code or markup and untrusted data. 
For example, there are strict contextually auto-escaping 
template systems6 for HTML to ensure that untrusted 
inputs are appropriately sanitized or escaped before 
being interpolated. Similarly, we provide builder APIs to 
construct SQL statements from trustworthy statement 
fragments.

To ensure that all statements and expressions that are 
passed to an injection sink API are constructed using these 
safe abstractions, the design of sink APIs has been changed 
to require a domain-specific vocabulary type rather than 
plain strings. The vocabulary type’s type contract captures 
the safety precondition of the injection sink API. In turn, 
values of these types are produced only by corresponding 
safe abstractions, which ensures that they adhere to their 
contract.

For example, the SQL query APIs by which internal 
Google developers interact with the Spanner database2 
expect values of type TrustedSqlString and do not 
accept queries represented as simple Strings. This 
type represents strings that are safe to use as a query 
without risk of SQL injection vulnerabilities. Values of 
type TrustedSqlString can be created only by using 
builder APIs and factory functions that ensure this type 
contract. These APIs allow queries to be constructed from 
query snippets of known, trustworthy provenance such 
as trusted configuration files or literal strings that are 
part of the program itself. Arbitrary, potentially untrusted 
strings cannot be incorporated into a SQL statement—the 
TrustedSqlString builder API simply has no append 
method that accepts arbitrary String-typed values. This 
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results in a typing discipline that enforces the (otherwise 
ad-hoc) secure-coding guideline to assemble SQL queries 
from trusted strings and to supply dynamic parameters 
via query parameter binding (see, for example, OWASP’s 
guidance at bit.ly/3LUPyrk).

Similarly, XSS risk is addressed by defining a set of 
vocabulary types to represent strings that are safe for 
web platform injection sinks. For example, values of type 
SafeHtml can be safely returned as text/html web 
server responses, interpolated into an HTML document 
in an “HTML tag content” context, or assigned to the 
.innerHTML DOM property in browser-side JavaScript. 
These types and their associated safe builder APIs have 
been implemented in Google production languages. (For 
example, open-source implementations for TypeScript and 
Go are available at https://github.com/google/safevalues 
and https://github.com/google/safehtml, respectively. )

In addition, we developed a W3C standards proposal, 
Trusted Types, to integrate corresponding types natively 
into the web platform.7

Similar to the type-constrained SQL query API, we 
augmented server-side application frameworks, HTML 
templating systems, server-side response APIs, and 
browser-side application frameworks and templating 
systems to constrain API parameters to the corresponding 
type that, by its contract, is safe to use in the given API’s 
context.15

Constraining potentially unsafe usage of injection sinks 
through vocabulary types and safe abstractions achieves 
a high degree of confidence that any program accepted 
by compile- and runtime type checks is free of injection 
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vulnerabilities—if it compiles, it’s secure! (See references 6 
and 14 and reference 1, chapter 12, “Writing Code,” for more 
details on preventing injection vulnerabilities through Safe 
Coding.)

At Google we found that Safe Coding is the only 
approach that can substantially reduce the incidence 
of injection vulnerabilities, especially at the scale of 
Google’s codebase. For example, 10 years ago, we tended 
to encounter tens of XSS vulnerabilities per year for each 
large, complex web application like Gmail. Since then, 
Safe Coding practices and safe-types discipline, including 
browser-side Trusted Types enforcement, have been 
incorporated into internal web application frameworks 
that are widely used for new and existing web applications 
(bit.ly/3uLHFip). 

Today, the residual incidence of XSS vulnerabilities 
across all frameworks-based applications is in the low 
single digits (some residual XSS risk arises from, for 
example, pre-existing application components that have 
not yet been refactored to conform to the safe-types 
discipline and are exempted from enforcement on a 
“legacy” basis). Some large services, such as the Google 
Photos web front end, have not had any XSS vulnerabilities 
reported over their entire lifetimes. Similarly, SQL injection 
is essentially a nonissue in the Google internal codebase. In 
contrast, XSS and SQL injection occupy spots 2 and 3 in the 
CWE project’s 2023 Stubborn Weaknesses ranking.3

Safe Coding prevents injection vulnerabilities at modest 
initial and ongoing costs:14

3 We rely primarily on judicious API design that takes 
advantage of language-native type systems, augmented 
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with inexpensive code conformance checks where 
necessary—for example, the CompileTimeConstant check 
implemented as part of the Error Prone framework (bit.
ly/3RsSVIf). This results in minimal additional resource 
demands at application runtime and on build systems 
and CI/CD (continuous integration/continuous delivery) 
infrastructure.
3 Beyond initial efforts to develop safe APIs and 
frameworks, ongoing maintenance and support costs are 
modest. For example, at Google a small team of security 
engineers maintains Safe Coding libraries, framework 
components, and code conformance checks for secure 
web application development, and provides user support 
for a population of many thousands of web application 
developers at Google.

SAFE DEPLOYMENT
Production deployments of services, and the underlying 
infrastructure, can quickly get complicated, even in 
organizations much smaller than Google.

Consider an SRE (site reliability engineer) who is 
tasked with setting up a new production environment. 
The production environment includes devices (routers, 
firewalls, load balancers, database servers, applications 
servers, and more) made by several vendors, each with its 
own configuration UIs and config languages. The engineer 
has a playbook document that outlines the changes to 
be made, but setting up the environment is essentially a 
manual process.

This is error-prone—the engineer might accidentally 
make a change to the wrong device (perhaps caused by a 
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simple typo in a command-line argument) or make a change 
that has unintended consequences, because of subtle 
discrepancies in configuration semantics across different 
vendor devices.

This could result in a misconfiguration with security 
impact, such as exposing an internal network service to the 
public Internet, a missing or overbroad access-control list, 
or an outage in an unrelated service hosted in the same 
production environment.

When this happens, it’s tempting to say “They should 
have been more careful” but it’s ultimately an unreasonable 
expectation that any human has a perfectly accurate 
mental model of a production environment consisting of 
hundreds of devices with thousands of config settings 
expressed in several different configuration models.

Instead, just as for common coding mishaps, the 
potential for deployment mishaps should be treated as 
a hazard, and it should be the deployment environment’s 
responsibility to protect engineers from encountering 
these hazards.8

Safety from deployment hazards can be incorporated 
into deployment environments in several ways. Examples 
of practices found useful at Google include cloud 
platforms, config-as-code, and Zero Touch Prod and Safe 
Proxies.

Cloud platforms
When deployment environments are based on “bare-metal” 
servers and network devices, engineers are exposed to the 
full complexity and nonuniformity of their configuration 
surfaces. In contrast, cloud platforms provide a higher-level 

16 of 27



acmqueue | january-february 2024   89

security

abstraction and a consistent vocabulary of configuration 
points, and they expose common functionality (such as 
databases) as managed services. This reduces cognitive load 
caused by differences between configuration surfaces of 
different types of network devices and the need to manage 
lower-level aspects of servers that host higher-level 
services such as databases.

Cloud platforms can integrate enforcement of security 
invariants into their control planes. For example, Google’s 
production environment13 enforces binary authorization 
policies (https://cloud.google.com/docs/security/binary-
authorization-for-borg) to govern whether a deployment 
package can run with the privileges of a given role. For 
sensitive roles, these policies typically require that 
the binary package is accompanied by a provenance 
attestation (https://slsa.dev/provenance/v1) that it was 
built by an authorized, trusted build system from code in 
a trusted source repository where changes are reviewed 
under the two-person principle. This mechanism ensures, 
on an ongoing basis, the invariant that only explicitly 
authorized code can exercise the privileges of a given 
production role.

Config-as-code
Making changes to production systems directly—through 
configuration UIs (user interfaces) or CLIs (command-line 
interfaces)—is risky: Changes are actuated immediately, 
including any mistakes.

A safer approach is to capture the entire configuration 
in machine-readable config files stored in a versioned 
repository, and to automatically actuate changes to the 
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production environment based on this configuration. This 
pattern is often called config-as-code (or sometimes 
GitOps), because authoritative configuration is maintained 
in a source repository, just like an application’s source code.

Maintaining configuration in this fashion allows the 
introduction of safeguards against configuration mistakes:
3  The configuration repository can be set up to require 

two-person review. This gives a second engineer the 
opportunity to catch mistakes.

3  Changes to the configuration can be guarded by 
conformance checks that execute pre-submit and/
or before a configuration change is actuated. Similar 
to conformance checks on source code discussed 
earlier, such conformance checks can ensure safety 
and correctness invariants on the configuration on 
an ongoing basis. For example, a conformance check 
can ensure that the authorization policies of back-end 
RPC services adhere to common guidelines and best 
practices.

3  Common types of changes can be automated through 
tools that generate sections of configuration. The 
configuration for a new service instance can be 
generated automatically based on a template, reducing 
the opportunity for mistakes caused by typos.

Zero Touch Prod and safe proxies
Zero Touch Prod is a set of principles and tools to ensure 
that every change to a production environment must be 
made by trusted automation (not directly by a human), 
prevalidated by trusted software, or made through an 
audited break-glass mechanism.5
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Conformance checks imposed on config-as-code are 
one way of adhering to this principle. It can be challenging, 
however, to accommodate all actions in a production 
environment through config-as-code, especially those 
needed when responding to an incident.

Safe Proxies are trusted systems that are interposed 
between human engineers and a production environment 
(see chapter 3 of reference 1). The safe proxy mediates all 
interactions with the production environment and can, for 
example:
3 Validate the safety of requested actions.
3  Impose security policy such as mandatory auditing and 

mandatory multiparty authorization.
3 Rate-limit potentially destructive actions.

In addition to enhancing safety with respect to human 
error (such as honest mistakes), these techniques also 
provide an effective control against insider risk and 
external compromise of privileged operators. When 
in place, these measures remove engineers’ ambient 
privileges to unilaterally execute powerful and sensitive 
actions in the production environment. Instead, changes 
and actions in production are guarded by two-person 
review, automated validation, and mandatory auditing.

SCALING SECURE DESIGN ACROSS  
APPLICATION ARCHETYPES
The previous sections discussed how to achieve 
substantial leverage over implementation bugs and 
deployment defects, by treating them not as individual 
defects but rather as an entire class of defects to 
be addressed through development and deployment 
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ecosystem design (programming languages, application 
frameworks, build systems, cloud platforms, and so on).

Similar thinking can even be applied to defects that, in 
isolation, are true design flaws rather than implementation 
bugs—that is, defects that arise from a fundamental choice 
about the shape or architecture of a product or service.

A key observation is that many types of potential 
architectural and design flaws, and the safety and security 
considerations and practices to avoid them, apply to 
all applications of a software-architectural archetype. 
Examples of such archetypes might include:
3  A system consisting of an end-user-facing web 

application front end communicating with back-end 
microservices through RPCs, which in turn rely on a SQL 
database for persistence.

3  A mobile application backed by a service API; the 
service API front end in turn makes RPCs to back-end 
microservices.
While many threats and secure-design considerations 

are indeed specific to a given application (e.g., a banking 
app is inherently different from a photo editor) typically, 
a substantial degree of commonality exists in the threat 
models across the entire class of applications of a given 
archetype.

For example, the safety and security design of (almost) 
any application that falls into either of these archetypes 
must consider areas such as:
3  Protecting the confidentiality and integrity of network 

and RPC traffic over the public Internet and internal 
networks.

3  Ensuring that all external client-server requests and 
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internal RPC requests are appropriately authenticated 
and authorized, governed by an explicit, intentional policy 
(although the details of the policy itself are usually 
specific to the application and its features).

3  Ensuring that the confidentiality and integrity of 
user/customer data is appropriately protected in 
conformance with the service provider’s policies (for 
example, through appropriate cryptographic schemes).

3  Ensuring that user data is deleted according to the 
service provider’s policies (such as when requested by a 
user or when a user leaves the service).

3 And many more.
Google has hundreds of web and mobile applications 

and external-facing API endpoints, and thousands of 
microservice back ends and internal RPC endpoints, but 
even organizations much smaller than Google usually have 
at least several. It’s undesirable for each team responsible 
for one of these services to develop a comprehensive 
threat model from scratch and to design appropriate 
mitigations for each one. Taking such a decentralized 
approach results in not only duplication of work, but also 
inferior outcomes: Threat modeling and secure design 
require expertise that is often not available in product 
development teams; while an organization’s security 
experts can help through consulting, their bandwidth is 
typically limited.

At Google we take advantage of common threat model 
aspects and secure design considerations by building 
frameworks and platforms that inform, govern, and 
constrain important aspects of the architecture and 
design (both in terms of code and mapping to production 
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resources) of applications and services built on the 
framework.9 These applications inherit security (also 
privacy and reliability) best practices designed and 
built into the framework, usually through collaboration 
between domain experts (security engineers, SREs) and 
framework engineers.

Many design choices (Which secure transport protocol 
should I use? How should I authenticate and authorize 
requests? How do I encrypt data at rest?) are incorporated 
in the design of the framework, and application developers 
are relieved from making these decisions—and from 
potentially making a suboptimal choice.

This approach reduces the risk of design-level security 
defects and gives leverage to scarce expert bandwidth—
experts can focus their attention on the design and 
implementation of frameworks and platforms, while having 
an impact on a large number of development projects that 
rely on that framework.

Furthermore, after frameworks are widely adopted as 
a platform for application development, future security 
improvements and mitigations for novel attacks and 
defect classes can often be deployed swiftly, scalably, 
and efficiently, taking advantage of the well-defined 
structure of frameworks-based applications. For example, 
security and web frameworks teams at Google routinely 
roll out new security features and mitigations at scale to 
existing frameworks-based applications, often without 
any need for involvement or time investment by the teams 
that maintain individual applications. (See the blog post 
A Recipe for Scaling Security, at bit.ly/3u6C71R, for more 
details.)
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CONTINUOUS ASSURANCE AT SCALE
At Google we sometimes say, “Software engineering is 
programming integrated over time,” to recognize the vast 
difference between one or a few people writing a few-
thousand-line program in days or weeks, versus hundreds 
of teams of hundreds of developers jointly working, over 
years or even decades, on a codebase of several hundred 
million lines of code.16

This distinction matters when it comes to ensuring 
security invariants for software products and the degree 
of confidence in the product adhering to these invariants. 
For a small, self-contained program written by a small 
group over a short period of time, developers are less likely 
to make mistaken assumptions that lead to defects, and it 
is indeed feasible for an expert to read and understand the 
entire codebase and perform a high-confidence security 
assessment.

Once a service’s design, codebase, and production 
footprint get larger and more complex, this no longer 
works: The risk of defects caused by mistaken assumptions 
(or plain mistakes and forgetfulness) increases. It becomes 
infeasible for an expert, or even a group of experts, to 
fully and deeply understand the entire artifact, resulting in 
limits on high-confidence security assessments. 

If the experts need to read and understand most of a 
codebase of many hundreds of thousands of lines of code, 
it’s likely they will miss something, or make a mistake in 
their assessment. (Tool support such as static analyzers 
can sometimes help; however, these typically need to 
accept some degree of imprecision to scale to large 
codebases, and hence can also “miss things.”) 
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Furthermore, security assessments by human experts 
apply to the specific version under review and are difficult 
to scale to every release of software that is under active 
ongoing feature development.

As explained in this article, Google addresses this 
challenge by designing a developer ecosystem to 
ensure that all services developed and deployed in this 
environment have the desired properties. We achieve high 
levels of assurance by applying the principle of “Design 
for Understandability” (chapter 6 in reference 1): Key 
developer ecosystem components are designed to ensure 
the property for any arbitrary application, assuming only 
that application code is well-typed, passes conformance 
checks, and satisfies basic assumptions. (Code written 
and reviewed under the two-person principle is generally 
assumed not to deliberately subvert security invariants—
for example, through use of reflection or unsafe casts.) 

This allows us to have confidence that the property 
holds for all applications, based solely on understanding 
key developer ecosystem components, and without having 
to consider or understand application-specific code. 
There is still a residual risk of defects, but it is confined 
within those key components. These tend to be stable, 
and domain experts can thoroughly scrutinize them for 
potential defects.

In light of the framing as programming over time, 
designing developer ecosystems as Safe Coding and Safe 
Deployment environments allows us to achieve continuous 
assurance at scale: It provides confidence that every 
production release of every application of supported 
archetypes satisfies desired safety and security invariants.
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