
SRE & Python
Ramón Medrano Llamas, Sr. Staff SysEng
@rmedranollamas





1What is SRE?



Incentives aren't aligned.

Developers
Agility

Operators
Stability



Reducing product lifecycle friction

Concept Business Development Operations Market

Agile 
solves this

DevOps 
solves this



 SRE is a job function, a mindset, and 
a set of engineering approaches to 
running better production systems.

 Site Reliability Engineers develop 
solutions to design, build, and run 
large-scale systems scalably, 
reliably, and efficiently.

What do SRE teams do?

 We approach our work with a spirit of 
constructive pessimism: we hope for 
the best, but plan for the worst.

 

 We guide system architecture 
by operating at the intersection 
of software development and 
systems engineering.



5 key areas
1. Reduce organizational silos

2. Accept failure as normal

3. Implement gradual changes

4. Leverage tooling and automation

5. Measure everything

DevOps 

is a set of practices, guidelines and 
culture designed to break down silos in 
IT development, operations, architecture, 
networking and security.

Site Reliability Engineering
is a set of practices we've found to work, 
some beliefs that animate those 
practices, and a job role. 

class SRE implements DevOps



2The practices of 
SRE



 Alerting: triggers notification 
when conditions are detected

• Page: Immediate human 
response is required

• Ticket: A human needs to take 
action, but not immediately

 Monitoring: automate 
recording system metrics

• Primary means of 
determining and 
maintaining reliability

Monitoring & Alerting

 Only involve humans 
when SLO is threatened

• Humans should never 
watch dashboards, read 
log files, and so on just 
to determine whether 
the system is okay



Demand 
forecasting and 
capacity planning
Plan for organic growth
Increased product adoption and usage by 
customers.

Determine inorganic growth
Sudden jumps in demand due to feature 
launches, marketing campaigns, etc.

Correlate raw resources to service capacity
Make sure that you have enough spare capacity 
to meet your reliability goals.



Efficiency and 
performance
Capacity can be expensive —> optimize utilization

● Resource use is a function of demand (load), 
capacity, and software efficiency

● SRE demands prediction and provisioning, 
and can modify the software

SRE monitors utilization and performance

● Regressions can be detected and acted upon
● Immature team: by adjusting the resources 

or by improving the software efficiency
● Mature team: rollback

Source: Pixabay (no attribution required)

https://pixabay.com/photos/light-architecture-lamp-idea-power-1283795/


Quickly and accurately 
detect problems

Roughly 70%1 of outages 
are due to changes in a 
live system

1 Analysis of Google internal data, 2011-2018

Change management

 Remove humans from the loop 
with automation to:

• Reduce errors
• Reduce fatigue
• Improve velocity

Implement progressive 
rollouts

Roll back changes safely 
when problems arise

Mitigations:



Provisioning
 A combination of change management 
and capacity planning

● Increase the size of an existing 
service instance/location

● Spin up additional instances/locations

 Needs to be done quickly

● Unused capacity can be expensive

 Needs to be done correctly

● Added capacity needs to be tested
● Often a significant configuration change —> 

risky



3Software 
engineering 
within SRE



1. Breadth and depth of production knowledge.
Scalability, graceful degradation during 
failure, and the ability to easily interface with 
other infrastructure or tools.

2. SREs are embedded in the subject matter.
They easily understand the needs and 
requirements of the tool being developed.

3. Direct relationship with the intended user.
This results in frank and high-signal user 
feedback. Releasing a tool to an internal 
audience with high familiarity with the 
problem space means that a development 
team can launch and iterate more quickly.

SRE is 
unique 
within 
Google



● Intent-based capacity management.

● State what you need, let the Solver find out how.

● All the configuration language is Python.

● Well integrated with tens of data sources (demand, 
performance data).

● The Cluster and Network Topology are Python 
rules, too. Checked into source control.

● The solver is a C++ kernel.

Case study: 
Auxon



● Framework for automation of rollouts.

● Iterate quickly! Plugins! Flexibility!

● Sisyphus got a lot of adoption: it came at the right 
time, with the right flexibility.

● Managing this Python codebase was a very large 
challenge. Its strength was its weakness.

● Used typing and static analysis to improve code 
quality.

Case study:
Sisyphus



● Planet scale monitoring system.

● Huge in-memory time series database. 
Hierarchical, very high throughput.

● Base for mostly all alerting and SLO measurement.

● Query language, "mash", it is a Python DSL.

● Most of the dashboards build in a Python 
framework, Gmon/Viceroy.

Case study:
Monarch



Questions?



Book covers copyright O’Reilly Media. Used with permission.

Find Google SRE publications—including the SRE Books, articles, trainings, 
and more—for free at sre.google/resources.

https://sre.google/resources/


Thank you
Ramón Medrano Llamas, Sr. Staff SysEng
@rmedranollamas


