
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Slicer: Auto-Sharding for Datacenter Applications
Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani,

Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon,
Larry Kai, Alexander Shraer, and Arif Merchant, Google;

Kfir Lev-Ari, Technion—Israel Institute of Technology

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya

Slicer: Auto-Sharding for Datacenter Applications

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani,
Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon, Larry Kai,

Alexander Shraer, Arif Merchant, and Kfir Lev-Ari†

Google †Technion - Israel

Abstract
Sharding is a fundamental building block of large-scale
applications, but most have their own custom, ad-hoc
implementations. Our goal is to make sharding as eas-
ily reusable as a filesystem or lock manager. Slicer is
Google’s general purpose sharding service. It monitors
signals such as load hotspots and server health to dy-
namically shard work over a set of servers. Its goals are
to maintain high availability and reduce load imbalance
while minimizing churn from moved work.

In this paper, we describe Slicer’s design and imple-
mentation. Slicer has the consistency and global opti-
mization of a centralized sharder while approaching the
high availability, scalability, and low latency of systems
that make local decisions. It achieves this by separating
concerns: a reliable data plane forwards requests, and a
smart control plane makes load-balancing decisions off
the critical path. Slicer’s small but powerful API has
proven useful and easy to adopt in dozens of Google ap-
plications. It is used to allocate resources for web ser-
vice front-ends, coalesce writes to increase storage band-
width, and increase the efficiency of a web cache. It
currently handles 2-7M req/s of production traffic. The
median production Slicer-managed workload uses 63%
fewer resources than it would with static sharding.

1 Introduction
Many applications require the resources of more than one
computer, especially at Google’s typical scale. An ap-
plication that distributes its work across multiple com-
puters requires some scheme for splitting it up. Often,
work is simply split randomly. This is ubiquitous in web
services, where the dominant architecture puts a round-
robin load-balancer in front of a fleet of interchangeable
application processes (“tasks”).

However, in many applications, it is hard to ensure
that every task can service any request. For example,

0 1 2 3 4 5 6 7
time (days)

0
2
4
6
8

M
re

q/
s

0 2 4 6 8
Mreq/s

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Figure 1: Over five-minute intervals in a recent week, Slicer
directed a median of 2 Mreq/s of production traffic with peaks
exceeding 7 Mreq/s.

Google’s speech recognizer (§3.2.1) uses a different ma-
chine learning model for each spoken language. Loading
a model is too slow for interactive use: a language must
be resident before a request arrives. One task cannot fit
every model, making random request balancing unten-
able. Instead, each task loads only a subset of languages,
and incoming requests are routed to a prepared task.

In the past, Google applications like the speech recog-
nizer had their own one-off sharders. Experience taught
us that sharding is hard to get right: the plumbing is
tedious, and it can take years to tune and cover corner
cases. Rebuilding a sharder for every application wastes
engineering effort and often produces brittle results.

In practice, custom sharders typically make do with
simplistic static sharding that is unresponsive to changes
in workload distribution and task availability. Simple
schemes utilize resources poorly. In the speech recog-
nizer, resources required per language peak at different
times as speakers wake and sleep. When tasks fail, re-
quests must be redistributed among the healthy tasks.
When a datacenter fails, a great wave of traffic sloshes
over to the remaining datacenters, dramatically altering
the request mix. Before Slicer, the speech team handled
variation with overprovisioning and manual intervention.

Slicer refactors sharding into a reusable and easily
adopted building block akin to a filesystem or lock man-
ager. Slicer is a general-purpose infrastructure service

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 739

that partitions work across tasks in applications that ben-
efit from affinity. Slicer is minimally invasive to appli-
cations: they need only associate incoming requests with
a key of their choice that is used to rendezvous requests
with tasks. In the speech recognizer, the slice key is the
language. Other applications use fine-grained slice keys,
such as usernames or URLs. Slicer assigns part of the
key space to each task and routes incoming requests to
them via integration with Google’s front-end load bal-
ancers and RPC system.

Slicer addresses these needs by sharding dynamically.
It monitors the request load to detect hotspots. It moni-
tors task availability changes due to service provisioning,
system updates, and hardware failures. It rebalances the
key mapping to maintain availability of all keys and re-
duce load imbalance among tasks while minimizing key
churn.

Slicer can trade off consistency with availability, offer-
ing either strongly or eventually consistent assignments.
In consistent assignment mode, no task ever believes a
key is assigned to it if the Assigner does not agree. The
simplest application of this property ensures that at most
one task is authoritative for a key, reducing availability
but making it easy to write a correct application that mu-
tates state. Alternatively, Slicer can distribute overlap-
ping eventually consistent assignments, eliminating pe-
riods of unavailability and reacting rapidly to load shifts.

Slicer’s design differs significantly from past shard-
ing systems, driven by its use in dozens of large-scale
systems at Google. Slicer provides global optimization
and consistency guarantees possible with a centralized
load-balancer, but it achieves nearly the same resilience
to failures and low latency as systems that make purely
local decisions, such as distributed hash tables.

In a production environment, customers cannot tol-
erate flag days (synchronized restarts). By separat-
ing the forwarding data plane from the policy control
plane, Slicer simplifies customer-linked libraries and
keeps complexity in a central service where the team can
more easily coordinate changes.

This functionality is all exposed through a narrow,
readily adopted API that has proven useful in Google ap-
plications with a variety of needs:

Avoiding storage overhead. A stateless front-end that
accesses underlying durable storage on every request is
conceptually simple but pays a high performance cost
over keeping state in RAM. In some applications, includ-
ing our speech recognizer, this overhead dwarfs all other
time spent serving a user request. For example, a Google
pub-sub service[9] processes 600 Kreq/s, most of which
do one hash and one comparison to a hash in memory.

Fetching the hash via a storage RPC would be correct
but incur far more overhead and latency.

Automatic scaling. Many cluster management sys-
tems can automatically expand the number of tasks as-
signed to a job based on load, but these are typically
coarse-grained decisions with heavyweight configura-
tion. Our speech recognizer handles dozens of lan-
guages, and Slicer’s key redundancy provides a single-
configuration mechanism to independently scale those
many fine-grained resources.

Write aggregation. Several event processors at
Google (§3.3.1) ingest huge numbers of small events
and summarize them by key (such as data source) into
a database. Aggregating writes from stateless front ends
is possible, but aggregating like keys on the same task
can be more efficient; Data Analysis Pipeline sees 80%
fewer storage requests. Affinity provides similar bene-
fits for other expensive, immobile resources like network
sockets: Slicer routes requests for an external host to one
task with the socket already open.

Sharding state is well-studied; see Section 6. Slicer
draws on storage sharding [2, 14, 15] but applies to
more classes of application. Compared to other general-
purpose sharding systems [5, 10, 8, 13], Slicer offers
more features (better load balancing, optional assign-
ment consistency, and key replication) and an architec-
ture focused on high availability.

This paper makes the following contributions:

• An architecture that separates the assignment gen-
eration “control plane” from the request forwarding
“data plane”, which provides algorithmic versatil-
ity, high performance, resilience to failure, and ex-
ploits existing lease managers and storage systems
as robust building blocks.

• An effective load-balancing algorithm that mini-
mizes key churn and has proven effective in a va-
riety of applications.

• An evaluation on production deployments of sev-
eral large applications that shows the benefits and
availability of the Slicer architecture.

2 Slicer Overview and API
Slicer is a general-purpose sharding service that splits
an application’s work across a set of tasks that form a
job within a datacenter, balancing load across the tasks.
A “task” is an application process running on a multi-
tenant host machine alongside tasks from other applica-
tions. The unit of sharding in Slicer is a key, chosen by
the application. Slicer integrates with Google’s Stubby
RPC system to easily route RPCs originating in other ser-
vices and with Google’s frontend HTTP load balancers to

740 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

route HTTP requests from external browsers and REST
clients.

Slicer has the following components: a centralized
Slicer Service; the Clerk, a library linked into applica-
tion clients; and the Slicelet, a library linked into appli-
cation server tasks. (Figure 2). The Service is written
in Java; the libraries are available in C++, Java, and Go.
The Slicer Service generates an assignment mapping key
ranges (“slices”) to tasks and distributes it to the Clerks
and Slicelets, together called the subscribers. The Clerk
directs client requests for a key to the assigned task. The
Slicelet enables a task to learn when it is assigned or re-
lieved of a slice. The Slicer Service monitors load and
task availability to generate new assignments to main-
tain availability of all keys. Application code interacts
only indirectly with the Slicer Service via the Clerk and
Slicelet libraries.

2.1 Sharding Model
Application keys may be fine-grained, such as user IDs,
or coarse-grained, such as the languages in the speech
recognizer described in Section 3.2.1. Keys are an
atomic unit of work placement: all state associated with
a single key will be collocated on those task replicas to
which the key is assigned, but different keys may be as-
signed to different tasks. Slicer does not observe applica-
tion state; it merely notifies the task of the keys the task
should serve.

Slicer hashes each application key into a 63-bit slice
key; each slice in an assignment is a range in this hashed
keyspace. Manipulating key ranges makes Slicer’s work-
load independent of whether an application has ten keys
or a billion and means that an application can create new
keys without Slicer on the critical path. As a result, there
is no limit on the number of keys nor must they be enu-
merated.

Hashing keys simplifies the load balancing algorithm
because clusters of hot keys in the application’s keyspace
are likely uniformly distributed in the hashed keyspace.

Slicer
Service

RPCs
Assignments

(distributed in
background)

Job
Server
Slicelet

Server
Slicelet

Server
Slicelet

Client
Clerk

Figure 2: Abstract Slicer architecture.

The cost is lost locality: contiguous application keys are
scattered. Many Google applications are already struc-
tured around single-key operations rather than scans, en-
couraged by the behavior of existing storage systems.
For others, Section 2.2 offers a mitigation.

Some applications require all requests for the same
key to be served by the same task, for example, to main-
tain a write-through cache. For these, Slicer offers a con-
sistency guarantee on what assignments a Slicelet can
observe (§4.5). For many other applications, weaker se-
mantics are correct even when requests for the same key
are served by different tasks. For example, such systems
serve read-only data (such as Google Fonts), or provide
weak consistency to their users (such as Cloud DNS), or
have an underlying storage system that provides strong
consistency (such as event aggregation systems).

Such applications can configure Slicer with key re-
dundancy, allowing assignment of each slice to multi-
ple tasks. Slicer honors a minimum redundancy to pro-
tect availability and automatically increases replication
for hot slices, which we call asymmetric key redundancy.

2.2 Slicelet Interface
The application server task interacts with Slicer via the
“Slicelet” API (Figure 3). A simple application, like the
Flywheel URL status cache (§3.1.1), is free to ignore
this API entirely and answer whatever requests arrive;
Slicer transparently improves performance. An applica-
tion may register a SliceletListener to learn when
slices arrive and depart, so it can prefetch and garbage-
collect state (such as the speech models in Section 3.2.1).

A few affinity-mode applications use isAffin-
itizedKey to discover misrouted requests, such as
when retrying a request from the client is cheaper than
processing it at the wrong server (§3.3).

interface Slicelet {
boolean isAffinitizedKey(String key);
Opaque getSliceKeyHandle(String key);
boolean isAssignedContinuously(Opaque handle);

}
interface SliceletListener {
void onChangedSlices(List<Slice> assigned,

List<Slice> unassigned);
}

Figure 3: Slicer Server API

To support applications that require exclusive key
ownership to maintain consistent in-memory state, the
Slicelet provides an API inspired by Centrifuge [10]. The
task calls getSliceKeyHandle when a request ar-
rives, and passes the handle back to isAssignedCon-
tinuously before externalizing the result. Note that
checking assignment at beginning and end is insufficient,
since the slice may have been unassigned and reassigned

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 741

in the meantime. A task may also cache a handle across
multiple requests, for example to cache a user’s inbox
during a session.

To scan its store to preload state, an application may
need to map from hashed slices keys back to original
application keys. Applications with few keys (such as
language names in the speech recognizer) can precom-
pute an index at each task. Applications with many keys
typically adjust their storage schema, either by prefixing
the primary key with the hashed slice key or by adding
a secondary index. In future work, Slicer will support
unhashed application-defined keys and implement range
sharding to preserve locality among adjacent application-
defined keys.

By default, Slicer load balances on request rate (req/s).
The Slicelet integrates with Stubby to transparently mon-
itor request rate per slice. Some applications have highly
variable cost per request, or want to balance a different
metric like task CPU utilization. An extension to the API
of Figure 3 lets tasks report a custom load metric.

2.3 Clerk Interface
The Clerk provides a single function which maps a key to
the addresses of its assigned tasks (Figure 4). Most appli-
cations ignore this API and simply enable transparent in-
tegration with Google’s RPC system Stubby or Google’s
HTTP proxy GFE (Google Front End).

interface Clerk {
Set<Addr> getAssignedTasks(String key);

}

Figure 4: Slicer Client API

Stubby typically directs RPCs round-robin from each
client to a subset of tasks in a job. We extended Stubby to
accept an additional slice key argument with each RPC,
causing the task to be selected using Slicer’s assignment.
Stubby also has support for Google’s global load bal-
ancer, which selects the network-closest datacenter for
each RPC. With both enabled, the global load balancer
picks a datacenter, and Slicer picks the task from the job
in that datacenter.

The GFE is an HTTP proxy that accepts requests from
the Internet and routes each to an internal task. The GFE
offers a declarative language for selecting routing fea-
tures from a request’s URL, parameters, cookies, headers
and more. Slicer integration interprets any such feature
as a slice key.

3 Slicer Uses in Production Systems
Slicer is used by more than 20 client services at Google,
and it balances 2-7M requests per second with more than
100,000 application client processes and server tasks
connected to it (Figure 1). Prospective customers eval-

uate their systems against a test instance of Slicer that
routes another 2 Mreq/s.

This section illustrates some of Slicer’s use cases. Cur-
rent uses of Slicer fit three categories: in-memory cache,
in-memory store, and aggregation.
3.1 In-memory Cache Applications
Slicer is most commonly used for in-memory dynamic
caches over storage state.
3.1.1 Flywheel
Flywheel is an optimizing HTTP proxy for mobile de-
vices [11]. Flywheel tracks which websites have recently
been unreachable, enabling an immediate response to
a client that averts a timeout. Flywheel uses a set of
“tracker” tasks as a repository of website reachability.
In the original design, updates and requests were sent
to a random tracker task. Because the semantics are
forgiving, this worked but converged slowly. To hasten
unreachability detection, Flywheel now uses Slicer with
website server name as the key, so that updates and re-
quests converge on a single task.
3.1.2 Other cache uses
Many other services use Slicer to manage caches.

1. Meeting scheduler: manages meetings and provides
calendar functions. Includes a per-user cache for
faster responses.

2. Crawl manager: crawls pages and extracts meta-
data. Retains last crawl time per URL to provide
crawl rate-limiting.

3. Fonts service: serves fonts to various web and mo-
bile applications. Caches font files and subsets of
font files.

4. Configuration sync service: periodically checks
end-to-end configurations for entities from multiple
sources. Entity affinitization allows comparisons of
configurations from multiple sources.

5. Data analysis pipeline: analyzes stored data and
serves summary results. Caches query results per
source.

6. Job profiling: caches metadata used for job profiling
by job name.

7. User Contacts Cache: caches user’s contacts infor-
mation when fetched by a user’s mobile or web ap-
plication.

8. User Metadata Cache: caches user’s meta-
data/preferences for a user in a video display ap-
plication.

9. Service Control: caches aggregated metrics and
logs for public APIs.

742 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.2 In-memory Store Applications
The in-memory caches in the previous section handle
shard reassignment by discarding state, causing future
requests to the moved keys to see a cache miss. In con-
trast, the tasks of an in-memory store load any missing
data from an underlying store, and thus resharding events
only affect latency; the stored data remains available.
3.2.1 Speech Recognition
As mentioned in Section 1, a speech recognition system
uses Slicer to assign languages to tasks and route incom-
ing requests to a task with the required model loaded.
The speech team originally manually partitioned lan-
guages into task-sized sets and put each set in a separate
job. This approach required peak provisioning, failing
to multiplex resources to exploit diurnal shifts as popu-
lations wake and sleep. It was also operationally com-
plex, incurring manual overhead to monitor, maintain,
upgrade, and debug separately-configured jobs.
3.2.2 Cloud DNS
Google’s Cloud DNS service, which hosts millions of
domains owned by Google and its customers, uses Slicer
to assign DNS records to tasks, allowing the tasks to
quickly make purely local decisions using in-memory
state. Furthermore, Slicer’s key redundancy and load
balancing support allows the service to respond to load
changes in the key space. Since the application provides
DNS semantics, Slicer’s affinity mode is sufficient.

3.3 Aggregation Applications
Tasks receive requests for some key (e.g., customer id,
pubsub topic) and they aggregate them into larger writes
to a backing store. This reduces traffic on the under-
lying store: Event Pipeline 2 achieved a 4

5 reduction.
Slicer’s asymmetric key replication is particularly ef-
fective for aggregation, spreading hot key traffic across
many tasks. The tasks write concurrently and depend on
key-granularity append semantics at the store to preserve
correctness [14].
3.3.1 Event analysis
Two event analysis systems shard events by source id to
build up a model. Without Slicer, these systems would
have to read, modify and write the model on every event,
since aggregating writes would incur frequent expensive
optimistic concurrency control conflicts.

With Slicer, requests for a source id key are almost1

always routed to the same task. Therefore, a task can
afford to aggregate writes coarsely, since write conflicts
are rare. It can also cache the last model state it wrote,

1These services use Slicer’s affinity mode, which provides high
availability at the cost of perfect consistency (§4.5), relying on the
backend store’s conflict detection for data consistency.

skipping the read step of read-modify-write unless the
backend store detects a conflict. In these systems, traffic
per source varies by several orders of magnitude, making
load balancing essential.
3.3.2 Client Push: Pubsub System for Mobile De-

vices
Client Push [3] is a pubsub system that allows mobile
clients to subscribe to topics and receive all messages
published on that topic. Tasks are sharded by topic; they
write subscriptions to a table in which the slice key is
the prefix of the storage key. Slicer affinitization im-
proves efficiency by aggregating requests for a range of
keys to the storage servers. Slicer’s asymmetric replica-
tion spreads hot topics across many tasks, avoiding bot-
tlenecks.
4 Slicer Service Implementation
Slicer aims to combine the high-quality, strongly con-
sistent sharding decisions of a centralized system with
the scalability, low latency, and fault tolerance associated
with local decisions. This section describes how Slicer
achieves the best of both worlds.

The Assigner is the core of Slicer’s backend service.
It collects health, task provisioning, and load signals. It
uses its central view of those signals to produce a coher-
ent assignment of work to tasks (§4.4) that is strongly
consistent for applications that need it (§4.5).

Though the Slicer Service is conceptually centralized
(Figure 2), the implementation is highly distributed (Fig-
ure 5). By combining client-side caching, Distributors,
and Backup Distributors that provide a backstop against
catastrophic failures, the backend service also achieves
scalability (§4.2) and fault tolerance (§4.3) similar to a
purely local service.
4.1 Assignment Generation
The Assigner generates assignments using a sharding al-
gorithm described in Section 4.4. To enhance availabil-
ity, we run the Assigner service in several Google data-
centers around the world. Any Assigner may generate an
assignment for any job in any datacenter.

Deploying multiple Assigners increases availability
but admits the possibility of disagreement. Section 4.5
explains how subscribers can observe consistent assign-
ments. But even for eventually consistent applications,
the Assigners should converge, not thrash among com-
peting decisions. To facilitate convergence, Assigners
write decisions into optimistically-consistent storage. An
Assigner reads the stored assignment, generates a new
assignment, and assigns it a monotonic generation num-
ber. It writes the new assignment back to storage transac-
tionally conditioned on overwriting the previously read
value. If a concurrent write has occurred, the transac-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 743

Assigner

Store
(job state)

Client Watch
assignments

Server
Job

data
center

Job size
signal

Health
signal

Load
signal

RPCs

Distributor

Backup
Distributor

Watch
assignments

Slow
polling

Watch
assignments

Write and watch
assignments

Figure 5: Slicer backend service architecture. The Assigner
collects signals and uses them to make an assignment, informed
by a stored prior assignment to minimize churn. The Assigner
disseminates assignments to subscribers (Clerks and Slicelets)
through the distributor and through a passive backup path via
a store. All of this traffic is off the critical path of client-
server communications. The Assigner and Distributors are
replicated across datacenters; each component can serve any
job at Google.

tion fails, the Assigner abandons its new assignment, re-
trieves the new current assignment, and tries again.

For efficiency, in the steady state only a single pre-
ferred Assigner generates an assignment for a particular
job. Each Assigner periodically polls Google’s global
load balancer service to see if it is network-closest, and
hence preferred, for the jobs for which it is generating as-
signments. This definition is eventually consistent: there
may be brief periods when multiple Assigners are pre-
ferred.

Assignment storage makes the distributed Assigners
act as a single logical process. When failure causes a
change in preferred Assigner, the new one learns the de-
cisions of the prior one and carries them forward. Should
two Assigners both believe they are preferred, they will
thrash, but storage concurrency control prevents diver-
gence.

Slicer makes assignments for one job in one datacenter
at a time. Customers who run jobs in multiple datacen-
ters use a higher-level Google load balancer to route a
request to a datacenter, and then within that datacenter,
use Slicer to pick one task from the job.

4.2 Scalable Assignment Distribution
Because Slicer manipulates ranges of a hashed keyspace,
assignments have a concise representation. Even then,
large applications with thousands of tasks produce large
assignments that need to be distributed to all server tasks
and their clients (together, the subscribers). This distri-
bution must occur quickly after assignment change. At
large scales, distribution becomes a computational and
network bottleneck. We address it with a two-tier dis-

tribution tree: an Assigner generates and distributes an
assignment to a tier of Distributors, which distribute it to
the subscribers. Nothing in our model precludes adding
an additional tier to the tree.

Distribution is a pull model: a subscriber asks a Dis-
tributor for a job’s assignment; if the Distributor doesn’t
have it, the distrubutor asks the Assigner, which gen-
erates and distributes the assignment. Each Clerk and
Slicelet library maintains a long-lived stream with the
Distributor service using Google’s standard load bal-
ancer service, which routes its stream to the closest avail-
able instance.

Assignment distribution is asynchronous. Affinity ap-
plications can tolerate temporary inconsistency, and con-
sistent applications ensure consistency via a separate
control channel (§4.5).

This architecture admits running Distributors in data-
centers close to subscribers to minimize WAN traffic. In
practice, to ease administration, we currently tolerate the
WAN traffic and run Distributors in the same datacenters
as Assigners.

Evolving Slicer is easier if we decouple our release
schedule from those of our customers. One design alter-
native we rejected was to have Slicer’s subscriber library
coordinate peer-to-peer assignment distribution among
customer tasks. The cost is that the Slicer team must
provision its own resources for assignment distribution,
but the benefit is to minimize logic linked into customer
binaries. Likewise, putting the logic that identifies the
preferred Assigner in the Distributor tier keeps it out of
subscriber libraries.

4.3 Fault Tolerance
We’ve designed Slicer to maintain request routing de-
spite failures of infrastructure and of Slicer itself.
Slicer’s control-plane separation ensures that most fail-
ures merely hinder timely re-optimization of the assign-
ment, yet requests continue to flow. The rest of this sec-
tion enumerates properties of the system which achieve
these goals.

Backup Assignment Retrieval Path. When an ap-
plication client or server task starts, it must fetch the cur-
rent assignment through the network of Distributors. The
Distributors share a nontrivial code base and thus risk a
correlated failure due to a code or configuration error. We
have yet to experience such a correlated failure, but our
paranoia and institutional wisdom motivated us to guard
against it.

Hence the Slicer Service includes a Backup Distribu-
tor which satisfies application requests simply by read-
ing the assignment from the store (§4.1). The Backup

744 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Distributor is simple, slowly evolving, and mostly inde-
pendent of the Distributor and Assigner code base.

If the Backup Distributor is the only one operating, the
system degrades to static sharding based on slightly stale
load and health information. This mode requires only:

1. Library code linked into application binaries,

2. the Backup Distributor service, and

3. a valid assignment in persistent storage.

Because it does not react to load shifts or server task fail-
ure, degraded mode is intended as a stopgap until an on-
call engineer restores the Assigner and Distributor net-
work.

Geographic Diversity. Distributors and Assigners run
in datacenters around the world. Any subscriber can
reach any Distributor via the Google global load balanc-
ing service, and likewise any Distributor can reach any
Assigner. If the preferred Assigner for a job has failed,
any Assigner can become preferred. This diversity toler-
ates machine, datacenter, and network failures.

Geographic Proximity. The preferred Assigner for
each job is the Assigner network-closest to the job (§4.1),
and a Distributor runs wherever there is an Assigner;
these decisions reduce dependence on WAN connectiv-
ity. If customers demanded it, Slicer Service could run
in every customer cell, eliminating all cross-datacenter
dependency.

Fate-Shared Storage Placement. Although no pro-
duction customers are configured this way, Slicer’s im-
plementation allows storing assignments in the same dat-
acenter as the job. By also placing an Assigner in the
same datacenter, the job can tolerate a network partition
of the datacenter.

Service-Independent Mode. Ultimately, even if ev-
ery component of the Slicer Service fails, requests con-
tinue to flow using the most recent assignment cached in
applicaion libraries. This mode has the same limitations
as the Backup Distributor mode, plus new or restarted
application client tasks are unable to initialize.

In summary, Slicer’s design tolerates machine, data-
center, and network failures including complete datacen-
ter partitions. It degrades gracefully under correlated bug
and configuration faults that destroy the Assigners, Dis-
tributors, or the entire Slicer Service.

4.4 Load Balancing
The ultimate goal of load balancing is to minimize peak
load; this enables a service to be provisioned with fewer
resources. We balance load because we do not know
the future: unexpected surges of traffic arrive at abritary
tasks. Maintaining the system in a balanced state max-

imizes the buffer between current load and capacity for
each task, buying the system time to observe and react.

Slicer’s initial assignment divides the keyspace
equally among available tasks, assuming that key load
is uniform (key distribution is uniform due to hashing).
If there is variation in either the rate at which different
keys receive requests or in the resources required to sat-
isfy those requests, some tasks may become overloaded
while others are underutilized. Slicer monitors key load
– either request rate, which can be automatically tracked
via the Slicelet integration with Stubby, or application-
reported custom metrics – to determine if load balancing
changes are required. The primary goal of load balanc-
ing is to minimize the load imbalance, which we define
as the ratio of the maximum task load to the mean task
load. In a perfectly balanced job where each task is han-
dling the same load, the imbalance is 1.

To provide intuition for the definition: the worst case
imbalance Slicer can cause is n/r, where r is the job’s
minimum key redundancy configuration and n is the task
count. For example, with n = 10 and r = 2, the worst de-
cision Slicer can make is to direct Stubby to route every
key to one of two tasks, giving a load imbalance value of
5.

Load imbalance can be reduced by adding or remov-
ing redundant tasks for a key or by reassigning keys from
one task to another. Besides reducing imbalance, Slicer
must respect configurations constraining the minimum
and maximum number of tasks that may be assigned to a
key. It should also limit key churn, the fraction of the key
space affected by reassignment. Key churn itself creates
load and increases overhead.

To scale to billions of keys, Slicer represents assign-
ments compactly with key ranges. Hence sometimes it
must split a hot slice—replace a key range [a,c) with two
ranges [a,b), [b,c)—so that its load can be distributed
among multiple tasks. To prevent unbounded assign-
ment size growth, Slicer must also create opportunities to
merge slices. It does so by assigning adjacent cool slices
to the same tasks, then merging the slice representations
into a single range.

At Google, independent mechanisms (sometimes hu-
mans) decide when to add or remove tasks from a job,
or add or remove CPU or memory from tasks in a job.
Thus Slicer focuses exclusively on redistributing imbal-
anced load among available tasks, not on reprovisioning
resources for sustained load changes.

4.4.1 Sharding Algorithm: Weighted-move
When Slicer determines that resharding is necessary, due
to changing load metrics or changes to the set of tasks in

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 745

the job, it produces a new assignment using the sharding
algorithm, which proceeds in the following phases:

1. Reassign keys away from tasks that are no longer
part of the job (e.g., due to hardware failure).

2. Increase/decrease key redundancy as required to
conform to configured constraints (e.g. due to a
change in the configuration).

3. Merge adjacent cold slices, moving one onto the
same task as the other, to defragment the assign-
ment. This step proceeds as long as

(a) there are more than 50 slices per task in aggre-
gate,

(b) merging two slices creates a slice with less
than mean slice load,

(c) merging two slices does not drive the receiv-
ing task’s load above the maximum task load,
and

(d) no more than 1% of the keyspace has moved.

4. In this phase, the sharding algorithm picks a se-
quence of moves with the highest weight, which we
define as the reduction in load imbalance for the
tasks affected by the move (benefit) divided by the
key churn (cost). Moves are applied to the assign-
ment in descending weight order until a key churn
budget (9% of the keyspace) is exhausted.

5. Split hot slices without changing their task assign-
ments. Splitting captures finer-grained load mea-
surements and opens new move options in the next
round. This step proceeds as long as

(a) the split slice is at least twice as hot as the
mean slice, and

(b) there are fewer than 150 slices per task in ag-
gregate.

In each iteration of phase 4, only moves affecting
the hottest task can reduce load imbalance (as defined
above), and for each slice in the hottest task, three pos-
sible moves are considered: reassigning the slice to the
coldest task to displace the load, redundantly assigning
the slice to the coldest task to spread the load, or re-
moving the slice which offsets the load to existing as-
signees. Note that increasing or decreasing assignment
redundancy may be illegal given the configuration for
the job, so some moves are disqualified. The algorithm
greedily makes the best move and repeats until the key
churn (cost) budget is exhausted. Successive iterations
of the loop may affect different tasks as prior moves re-
vise the estimate of which task is “hottest”.

The constants in the algorithm (50–150 slices per task,
1% and 9% key movement per adjustment) were cho-
sen by observing existing applications. Experience sug-
gests the system is not very sensitive to these values,
but we have not measured sensitivity rigorously. Future
work will estimate application-specific churn cost to bet-
ter tune the cost-benefit tradeoff.
4.4.2 Rebalancing suppression
Slicer balances request rate, task CPU utilization, or an
application-specified custom metric. When balancing
CPU and the maximum task load is less than 25% (an
arbitrary threshold), Slicer suppresses rebalancing: Be-
cause no task is at risk of overload, churn is waste.
4.4.3 Limitations
When balancing the request rate, Slicer ignores task het-
erogeneity: one task may be cool with 10,000 req/s but
another is swamped. CPU utilization balancing inher-
ently adjusts for such heterogeneity.

Some applications make high memory demands for
each key. If Slicer colocates many infrequently requested
keys on one task, that task may exhaust memory despite
manageable CPU load. Our future work will include
measuring memory usage and honoring constraints in the
algorithm.
4.4.4 A rejected design alternative
A variant of consistent hashing [22] with load balanc-
ing support [10] yielded both unsatisfactory load balanc-
ing and large, fragmented assignments. We refer to this
scheme as load-aware consistent hashing. Some appli-
cations had too few slice keys (tens to hundreds per task)
for consistent hashing to result in good statistical load
balancing.

Consistent hashing enables very compact assignments,
so long as the client carries the decoding algorithm.
Since evolving clients is burdensome (§4.2), Slicer in-
stead distributes assignments in decoded form. Consis-
tent hashing works best with many (1000) virtual nodes
per physical task but introduces a significant cost dis-
tributing decoded assignments.

More importantly, consistent hashing gives us less
control over hot spots. We can cool off a task by reduc-
ing its virtual node count, but the displaced traffic ends
up randomly distributed, not directed at a cool task, giv-
ing a poor tradeoff between key movement and balance
improvement.

We were originally drawn to the statelessness of con-
sistent hashing: it produces the same output from the
same inputs, which allowed recovering from an Assigner
failure without requiring access to the previous assign-
ment. In practice, once the Assigner begins balancing
load, creating a profitable reassignment requires knowl-

746 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

edge of the previous assignment, and thus it is important
that a recovering Assigner have access to prior state.

The load-aware consistent hashing algorithm we aban-
doned is similar to that in Centrifuge [10]. It was more
sophisticated in that it supported key replication, asym-
metric replication, and proportional response to imbal-
ance for faster reaction. After 18 months in service,
we replaced it with the weighted-move algorithm, which
balances better with less key churn (§5.2.1).

4.5 Strong Consistency
An application that needs to maintain data consistency
can do so by building upon Slicer’s optional assignment
consistency. It defines an authoritative assignment for
every moment and guarantees that no task ever believes a
key is assigned to it if that assignment does not agree. By
configuring the job for at most one replica of each key, at
no time will two Slicelets believe they are both assigned
the same key. The consistency feature is implemented,
but it is not yet deployed by customers in production.

The simplest way to provide strong consistency guar-
antees for keys would be to allocate a lease for each
key from a central lease manager. We opted against this
model, because it would require provisioning lease man-
ager resources in proportion to the number of keys, and
hundreds of millions of keys per sharded job are com-
mon. Existing lease managers such as Chubby [12] do
not scale to that level, so this would require building a
highly available, scalable lease manager and running it
in every datacenter at Google, which is a non-trivial ef-
fort.

While insufficiently scalable to provide a lease per key,
Chubby is highly available (the code is battle-tested, and
the system has its own operations team) and present in
every data center at Google. Slicer builds on Chubby to
provide a scalable lease-per-key abstraction using only
three Chubby locks per job. The scheme ensures that
only the keys being reassigned are unavailable during an
assignment change. The design preserves the robustness
of Slicer’s data plane, so that even if Slicer Service is
down, RPCs continue to flow with strong consistency,
since lease granting and maintenance is performed by the
highly-available and battle-tested Chubby. The Assigner
is only required for resharding.

The following describes how the leases provide strong
consistency.

To protect the work done while changing a strongly-
consistent assignment, an Assigner acquires the exclu-
sive job lease to ensure that exactly one Assigner per-
forms the work for writing. If the Assigner crashes dur-
ing the assignment-change operation, another Assigner

can acquire the job lease and resume the unfinished work.
Only Assigners interact with the job lease.

To achieve consistent assignment, the Assigner dis-
tributes assignments in the usual way, then writes the as-
signment generation number as the value of the guard
lease. A consistent Slicelet may only use an assignment
once it acquires the guard lease for reading. Clerks re-
quire no lease, since the only harm of a transient in-
consistent assignment at the Clerk is a misrouted request
bounced back for retry.

Changing the assignment entails recalling the guard
lease from Slicelet readers so the Assigner can rewrite its
value. In any large-scale system, recalling a lease often
means waiting out the expiration period for any task that
may have died while holding its lease. This recall period
entails complete application unavailability.

We make the observation that when an assignment A1
is replaced by A2, there is no reason to make unavailable
the unchanged slices, those that have identical assign-
ments in A1 ∩A2. A third bridge lease bridges over the
transition from A1 to A2, making A1∩A2 available during
the gap. The Assigner writes and distributes assignment
A2, creates the bridge lease, delays for Slicelets to ac-
quire the bridge lease for reading, and only then does it
recall and rewrite the guard lease. A Slicelet is allowed
to use the intersection if it holds the bridge lease.

For a synthetic benchmark, we measured a median
lease recall period of 2.6 s and 99th percentile period
of 4.1 s, implying that absent a bridge lease an entire
application would suffer seconds of unavailability when-
ever an assignment changes. Section 5.2.5 reports on a
benchmark that demonstrates how the bridge lease im-
proves availability.

Nothing about the consistent-assignment mechanism
limits it to the simple consistency propery of at most one
Slicelet per key; the Assigner could easily enforce an at-
most-three policy. The simpler policy is easy for applica-
tions to exploit, whereas allowing plural replicas would
require the application to consistently coordinate those
replicas, perhaps with state machine replication [24].
5 Evaluation
This section evaluates Slicer using both measurements
from the deployed system and experiments with real and
synthetic workloads.
5.1 Production Measurements
We measure production customers to evaluate Slicer’s
availability, load balancing, scale, and assignment con-
vergence time.
5.1.1 Availability
As the primary – but pessimistic – measure of produc-
tion availability, we evaluated the integration of Slicer

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 747

and Stubby. Specifically, we considered how often Slicer
was able to select a task for a Stubby client issuing an
RPC. Normally, Stubby selects any task in the destina-
tion job which the client locally believes to be healthy.
With Slicer, Stubby selects a healthy task from the set of
Slicer-provided candidates. If all tasks are unhealthy or
no assignment is available, the selection fails.

Over a one-week period, Slicer performed 260 bil-
lion task selections for a subset of its Stubby clients, of
which 99.98% succeeded. This value underestimates the
availability of Slicer, because some of the failures may
have been because all tasks were unhealthy, and ordinary
Stubby would also have failed to select a task, but we ex-
pect that such cases are rare. Thus, in those cases where
standard Stubby could have sent an RPC, then Stubby
with Slicer could have sent an RPC at least 99.98% of
the time.

We also examine availability at the server side. In an-
other week, we observed 272 billion requests arrive at
server tasks, of which only 11.6 million (0.004%) had
been misrouted. This measure overestimates availability
because it only considers requests that made it to a server
task, and it underestimates availability because many ap-
plications can tolerate misdirected requests with only an
impact on latency or overhead, not availability.

A secondary measure of availability is that of the
Slicer service itself. Our production monitoring period-
ically requests an assignment from each Distributor in-
stance. In one week, 99.75% of 329,978 requests suc-
ceeded. This probe underestimates availability because it
requires computation of a new assignment, whereas the
common path returns a cached one.

These measurements are over an admittedly short win-
dow, limited by production monitoring data retention
policy. That said, they indicate Slicer is a suitable build-
ing block for highly available applications.
5.1.2 Load balancing
We evaluate how well Slicer balances load across tasks,
how much key movement it incurs, and how much it im-
proves over static strategies.

Figure 6 shows the effectiveness of load balancing for
several production customer jobs belonging to three ser-
vices. Sampling five minute windows over a six hour pe-
riod, we measure the number of requests each task han-
dles, normalized as a fraction of the mean request count
for all tasks in the job during the window. The vast ma-
jority of time windows had values close to the mean, in-
dicating that the tasks were well-balanced. Peak loads
varied between 1.3× – 2.8× the mean load.

Figure 7 shows key churn for tasks in the same jobs
as in Figure 6. Churn counts the number of key-moves:

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Fraction of Mean Server Load

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Cloud DNS (max 1.1)
Continuous Profiling (max 2.3)
Crawl Manager (max 1.4)
Event Pipeline 1 (max 1.9)
Flywheel (max 1.4)
Fonts (max 2.3)
Notification (max 1.3)
Service Control (max 1.3)

Figure 6: Slicer successfully balances load: tasks in a job
rarely experience load 5% greater than the mean task load.

0.0 0.5 1.0 1.5 2.0
Fraction of keyspace loaded per hour

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Cloud DNS
Cloud ML
Continuous Profiling
Crawl Manager
Event Pipeline 1
Flywheel
Fonts
Notification
Service Control

Figure 7: Key movement costs for jobs belonging to customer
production services, sampled over one week. The median hour
in every job sees less than 20% of the keyspace move.

one key moving ten times in one hour produces the same
value as ten keys moving once. Here we see a broader
range of values, as some jobs exhibit higher variance
over time (e.g., Cloud DNS, which moves up to 40% of
its keys per hour), and some are quite stable over time
(e.g., Flywheel, which moves only 16% of its keys). We
report fraction of keyspace but not bytes of objects ac-
tually unloaded and reloaded because, by design, Slicer
does not know which keys in the key space actually ex-
ist, nor is it aware of the data associated with those keys
(§2.1).

Our production monitoring captured a shift from load-
aware consistent hashing to the weighted move algo-
rithm. Figure 8 shows the request rate per task for
the general-purpose key-value cache discussed in Sec-
tion 3.1 during the rollout of the weighted-move algo-
rithm. Under consistent hashing, the hottest task was
50% hotter than the mean. The weighted move algorithm
improves the balance, enabling operations engineers to
make tighter capacity planning decisions.

Ultimately, customers care about Slicer’s load balanc-
ing because it offers a big win over home-brew alterna-
tives. We observed production key distributions and load
distributions for all customer jobs. We built a model to
infer the load on the tasks had the load been balanced

748 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

11:20 11:30 11:40 11:50 12:00 12:10
Time

500

1000

1500

2000

3000

2500

R
eq

ue
st

s
pe

r s
ec

on
d

Figure 8: Load per task on a production key/value cache when
switching from load-aware consistent hashing to the weighted-
move algorithm at 11:50.

Ev
en

t P
ip

el
in

e
2

C
lo

ud
 D

N
S

N
ot

ifi
ca

tio
n

Fo
nt

s

Vo
ic

e
Se

ar
ch

Ev
en

t P
ip

el
in

e
1

C
ra

w
l M

an
ag

er
C

on
tin

uo
us

 P
ro

fil
in

g
Fl

yw
he

el

Se
rv

ic
e

C
on

tro
l0

2
4
6
8

10
12
14

M
ax

/M
ea

n
lo

ad

21
4

13
6

Static model
Slicer

Figure 9: Load balance for production jobs grouped by ser-
vice, contrasted with a static model. Slicer makes the median
job’s hottest task 63% less loaded.

statically. If the customer supplied an initial load esti-
mate, the model uses it; otherwise it spreads the keyspace
uniformly across tasks. The model mitigates random
clumping by partitioning the keyspace into 100 slices per
task.

Figure 9 contrasts, for each job, the actual load im-
balance under Slicer versus the load imbalance under the
static model. Load imbalance is the ratio between the
CPU load of the most loaded task and the mean CPU
load across tasks. Each pair of points shows the most
imbalanced hour in a one-week observation. For under-
loaded jobs, Slicer defers load balancing, and thus acts
identically to the static model; Figure 9 elides such jobs.
Service operators provision for peak loads; Slicer pro-
vides a median reduction of 63% and as much as 99.3%
for the most skewed job.

5.1.3 Scale

Slicer serves more than 20 unique systems (§3). Each
is a unique software stack that integrates Slicer in a
different way. This table extracts aggregate statistics
from production monitoring.

0 2 4 6 8 10
Assignment distribution time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

fra
ct

io
n

95.0%
 < 1.7s

99.0%
 < 5.9s

99.9%
 < 9.0s

Figure 10: Once emitted by the Assigner, 95% of assignments
reach subscribers within 2 s.

Services 22 mean / mean /
Jobs 263 service job
Tasks (Slicelets) 11387 517 43
Clerks 113,338 5151 430
Requests/sec 6M 266K 22K
Assignments/hour 662 30 2.5
Assignment traffic 180 8.2 0.37

(MBps)
Key churn/hour 4%

Presently the production Slicer Service includes six
Assigners provisioned with three cores each. Sampling
one minute windows on each task over one week, the
median sample utilizes 0.13 core, and the 99th percentile
utilizes 2.34 cores. Considering the entire Service—
Assigners, Distributors, Backup Distributors—Slicer
uses 0.3% of the CPU and 0.2% of the RAM used by
the sliced services and their clients.
5.1.4 Assignment Convergence Time
It is desirable for Slicer to effect assignment changes
rapidly, to minimize the period of divergence among sub-
scribers. Figure 10 shows the CDF of assignment dis-
tribution latencies across affinity-mode production cus-
tomers for one week. Assignments generally arrive
within the second.
5.1.5 Assignment Computation Time
Most production assignments take a fraction of a second
to compute; the 64th percentile is 17ms and the maxi-
mum a few seconds.
5.2 Experiments
Experiments in this section explore details and trade-offs
under controlled conditions.
5.2.1 Comparing load balancing strategies
We recorded slice keys for RPCs issued to three pro-
duction users of Slicer: Client Push (see Section 3.3.2),
Cloud DNS (see Section 3.2.2) and Flywheel (see Sec-
tion 3.1.1). We then replayed these requests against
three algorithms: static uniform sharding (in which the

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 749

Client Push Cloud DNS Flywheel
0

2

4

6

8

10

12

14
Im

ba
la

nc
e

(lo
w

er
 is

 b
et

te
r)

Static
Load-aware Consistent Hashing (no asymmetric replication)
Load-aware Consistent Hashing
Weighted Move (no asymmetric replication)
Weighted Move

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
hu

rn
 (l

ow
er

 is
 b

et
te

r)

Figure 11: Slicer’s centralized weighted move algorithm
balances better than static and load-aware consistent hashing
schemes, and churns less than load-aware consistent hashing.

key space is divided uniformly amongst all tasks), load-
aware consistent hashing (see Section 4.4.4) and Slicer’s
weighted-move algorithm (see Section 4.4.1). In addi-
tion, we compared the performance of the algorithms
with and without asymmetric key redundancy (not appli-
cable for static sharding which cannot dynamically as-
sign keys to additional tasks).

Figure 11 shows the mean across all resharding de-
cisions for measurements of load imbalance, the ratio of
the max task load to the mean task load, and of key churn,
the fraction of the key space reassigned (both defined in
§4.4). Slicer’s algorithm – weighted-move with redun-
dancy – significantly outperforms both other algorithms
on load imbalance, with reduced key churn relative to
consistent hashing (though not static sharding, which be-
ing static has no key churn). Asymmetric replication pro-
vides significant load balancing benefits, though with a
small increase in key churn (due to increased opportuni-
ties to address imbalance).

Note that this experiment isolates the impact of load
balancing from other factors such as task failures and
pre-emption.
5.2.2 Assigner Failure and Recovery
To evaluate Slicer’s robustness to Assigner failure, we
presented power-law skewed load to twenty tasks. Once
the system stabilized, we killed the Assigner task, caus-
ing clients and server tasks to continue using the last-
generated assignment. After 2 hours, we restored the
Assigner.

Results are shown in Figure 12. The pre-failure and
post-recovery curves are essentially identical: the As-
signer rebalanced load upon recovery. The outage curve
shows degraded load balancing, since the assignment
stagnated while the load changed. However, the recent
static balance is better than uniform sharding (not shown
in Figure 12) on the same workload. Production work-
loads tend to be more stable over time; the outage curve

0 1 2 3 4
Fraction of mean server load

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Before Assigner failure
After Assigner failure
After Assigner restored

Figure 12: Load balancing before, during, and after an As-
signer failure.

0 200 400 600 800 1000
Reassignment Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

99% < 719

Figure 13: The Assigner typically effects a response to a load
shift in 480 seconds.

for such workloads should remain closer to the actively-
balanced curves.

In practice, if an Assigner fails, any other Assigner
can pick up the slack. We configured a test job with two
Assigners, killed the active one, and observed that the
other became initialized 17.1 s later (σ = 2.7 s). This
delay is the period of polls to the Google load balancer
for preferred Assigner checks (§4.1).
5.2.3 Load Reaction Time
How quickly does Slicer respond to a load shift? In
this experiment, five client tasks offer 8 Kreq/s of syn-
thetic load to ten server tasks, consisting of 100 keys in
a power-law distribution with exponent 1.5. Every nine-
teen minutes, the clients’ distribution shifts to move the
hottest load to different keys. We report the latency from
clients shifting load to tasks reporting a max/mean load
imbalance below 1.2. Figure 13 shows a median delay
of 480 s, which is a function of the 1 m delay from the
Google monitoring system and Slicer’s 5 m load obser-
vation window. One window is insufficient because, un-
less the load shifts very early in the window, Slicer’s first
observation doesn’t convince it to shift enough load to
completely restore balance.
5.2.4 Scaling Benchmark
One of Slicer’s essential architectural decisions is cen-
tral decisionmaking and a distributed data plane. In the
experiment in Figure 14, we contrast Slicer’s plumbing
with a natural alternative that indirects routing decisions
to a centralized authority. In the centralized version,
clients preface each request with a request to the au-
thority, and server tasks contact the authority on each
request to confirm the routing decision. Here the au-
thority is implemented as a single Clerk task relaying

750 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9
goodput (Kreq/s)

0

10

20

30

40

50
la

te
nc

y
(m

s)
central authority
Slicer

0 1 2 3 4 5 6 7 8 9
goodput (Kreq/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
PU

 (c
or

es
)

Authority
Distributor
Assigner
Distributor
Assigner

Figure 14: On the left is a latency-throughput curve, on the
right CPU consumption versus retired load. Once the central
authority saturates its CPU allocaton at 5 Kreq/s, it encounters a
scaling limit. This simple experiment lacks admission control,
so the throughput drops under overload; a production system
would hit the same wall more gracefully.

decisions from an Assigner and Distributor, although a
real centralized system would simply colocate load bal-
ancing with the authority interface. In both cases, a set
of 2000 clients simulated on 100 tasks offers increasing
load against 50 server tasks. The authority saturates its
CPU at 5 Kreq/s, but Slicer scales smoothly since every
component’s workload is independent of aggregate client
request rate.
5.2.5 Consistency Benchmark
Section 4.5 described how Slicer preserves availability
in consistent assignment mode by using bridge leases
to carry unchanged key assignments across the distribu-
tion period of a new assignment. We evaluate its impor-
tance under a synthetic dynamically skewed workload in
which 25 clients drive 43 Kreq/s against 50 server tasks.
Over three days, 99.85% of requests were satisfied; ab-
sent bridging, only 99.19% of requests would have been
satisfied.

The getSliceKeyHandle operation takes 153 µs
and isAssignedContinuously takes 94 µs.

6 Related Work
As a general purpose sharding system, Slicer is similar
to Centrifuge [10], Orleans [13], Ringpop [8], and Mi-
crosoft Service Fabric [5].

It is most similar to Centrifuge, which also uses a cen-
tral manager, assigns ranges of a hashed keyspace, and
provides leases. Slicer differs in four respects. First,
Slicer’s architecture is more available. If the Centrifuge
manager is unavailable, all leases expire and no RPCs
flow. Slicer’s control-plane separation ensures that as-
signments remain valid and RPCs flow even if the entire
Slicer service fails. Slicer’s separate backup distribution
path keeps working even when the service is down. Sec-
ond, Slicer’s separation of assignment distiribution from

assignment generation enables much higher scales: an
Assigner can servie 104 Distributors, and a Distributor
104 subscribers. Third, Centrifuge is a single-cluster
system. Slicer’s Assigner can be accessed from a dif-
ferent cluster, enabling failover across clusters. Fourth,
Slicer’s load balancing is better than Centrifuge’s. Slicer
moved from Centrifuge-style consistent hashing (S4.4.4)
to the weighted-move algorithm (§4.4). It achieves better
balance while moving an order-of-magnitude fewer keys
(§5), works for both many and few application keys, and
creates more compact assignments. Slicer’s load balanc-
ing supports custom metrics and key redundancy.

As compared to Orleans and Ringpop, Slicer uses a
centralized algorithm rather than a client-based consis-
tent hashing [22], which allows it to provide better load
balancing and to offer consistency guarantees, which
those systems cannot. Service Fabric does not support
dynamic sharding: sharding must be specified by the ap-
plication and cannot be adjusted on the fly to balance
load [6]. Additionally, both Orleans and Service Fab-
ric are frameworks and are more invasive to applications
than Slicer’s small API.

As a sharding manager, Slicer also has elements in
common with sharding managers embedded in storage
systems. For example, Bigtable [14], HBase [2], and
Spanner [15] are all structured in terms of ranges of an
application-defined keyspace. Only the HBase algorithm
is publically described; it has several strategies, all of
which have splits and moves as base operations. Un-
like Slicer, it does not support key redundancy or bal-
ancing on application-defined metrics. Moreover, stor-
age system sharding managers are not usable outside
of the storage system, and they often make storage-
specific assumptions that limit their flexibility. For ex-
ample, Bigtable requires at most one task per tablet to
enforce consistency, whereas Slicer is free to add redun-
dant copies of keys if permitted by the application

Social Hash [28] makes cluster-level sharding deci-
sions for HTTP requests and storage systems. Slicer
shares Social Hash’s separation of coordinated central
decisionmaking from distributed forwarding. Where
Slicer treats keys independently, Social Hash optimizes
placement using inter-key locality available in social
graphs. Slicer operates at fine granularity in space (tasks)
and in time (seconds to minutes). Slicer supports a wide
variety of applications and supports consistent assign-
ment.

BASIL [19] and Kunkle [23] balance I/O workloads
in large-scale storage systems; like Slicer, they perform
what-if planning and evaluate migrating hot data. They
differ from Slicer in several important respects. First,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 751

they place a relatively small number of items, and they
have application-specific load data for each item. For ex-
ample, BASIL places virtual disks within a storage array.
This is a different problem than in Slicer, which places a
potentially vast number of items (e.g., hundreds of mil-
lions), is agnostic to the application, and can only col-
lect information at coarse granularity. Second, Slicer has
a larger space of possible load balancing moves avail-
able; in addition to migrating slices, it can also split and
merge them, and it can add or remove redundant copies.
Besides minimizing imbalance, Slicer’s algorithm also
minimizes assignment fragmentation.

In theory, sufficiently fast storage available to all front-
ends can sometimes obviate the need to cache sharded
data in the front-end. Caches such as Memcached [4]
and Redis [7] as well as in-memory stores such as Ram-
Cloud [25] and Dynamo [16] can be used. However,
remote storage always adds the cost of (un)marshalling
data along with a network roundtrip to access data. In
addition, such solutions do not help when the shared re-
source isn’t state, such as a network socket. Finally,
eliminating external caches and collocating data with
code reduces how many services must be provisioned
and maintained.

Sharding solutions have been recently proposed [29,
27, 20] for specific databases, focusing on dynamic load
balancing (as opposed to balancing the number of keys
per task). Accordion [27] places partitions but does not
modify their boundaries and thus cannot handle hot data.
SPORE [20] replicates hot keys but does not support dy-
namic task membership or key migration. EStore [29] is
a dynamic sharding manager that like SPORE identifies
hot keys and migrates them, but it does does not support
key redundancy. When hot keys cool down, EStore mi-
grates previously hot keys back to their original shards,
which creates unnecessary churn.

Software and hardware network load balancers [17,
26, 18, 21, 1] employ one or more controllers that ei-
ther process messages themselves or program a set of
distributed switches to carry out a load balancing pol-
icy. Such load balancers may have a notion of affinity
or session “stickiness”. However, such balancers imple-
ment static hashing for requests or sessions; when they
react to load shifts, they do not maximize affinity. The
do not provide server tasks with early assigment signals
to facilitate prefetching, or termination signals to facil-
itate garbage collection. They do not offer asymmetric
key redundancy, nor do they enable assignment consis-
tency.

7 Conclusions
Slicer is a highly available, low-latency, scalable and
adaptive sharding service that remains decoupled from
customer binaries and offers optional assignment con-
sistency. These features and the consequent architecture
were driven by the needs of real applications at Google.
Slicer makes it easy to exploit sharding affinity and has
proven to offer a diversity of benefits, such as object
caching, write aggregation, and socket aggregation, to
dozens of deployed applications.

Production deployment of Slicer shows that the system
meets its load balancing and availability goals. Real ap-
plications experience a max:mean load ratio of 1.3–2.8,
assisting peak load capacity planning. Slicer balances
load better than load-aware consistent hashing, and does
so while creating an order of magnitude less key churn.
Slicer is available, correctly routing production customer
requests at least 99.98% of the time, making it a build-
ing block for highly-available applications. Adoption by
over 20 projects with a variety of use cases demonstrates
the generality of its API.

References
[1] Amazon ELB. https://aws.amazon.com/

elasticloadbalancing/.

[2] Apache HBase. https://hbase.apache.org/.

[3] Firebase topic messaging. https://firebase.
google.com/docs/cloud-messaging/android/
topic-messaging.

[4] Memcached. https://memcached.org/.

[5] Microsoft service fabric. https://azure.
microsoft.com/en-us/documentation/services/
service-fabric/.

[6] Partitioning in microsoft service fabric. https://azure.
microsoft.com/en-us/documentation/articles/
service-fabric-concepts-partitioning/.

[7] Redis. http://redis.io/.

[8] Uber ringpop. https://eng.uber.com/
intro-to-ringpop/.

[9] A. Adya, G. Cooper, D. Myers, and M. Piatek. Thialfi: A client
notification service for internet-scale applications. In Proc. 23rd
ACM Symposium on Operating Systems Principles (SOSP), pages
129–142, 2011.

[10] A. Adya, J. Dunagan, and A. Wolman. Centrifuge: Integrated
lease management and partitioning for cloud services. In Pro-
ceedings of the 7th USENIX conference on Networked systems de-
sign and implementation, pages 1–1. USENIX Association, 2010.

[11] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Green-
stein, S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin.
Flywheel: Google’s data compression proxy for the mobile web.
In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 367–380, 2015.

[12] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In Proc. of OSDI, 2006.

752 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://hbase.apache.org/
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://memcached.org/
https://azure.microsoft.com/en-us/documentation/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-concepts-partitioning/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-concepts-partitioning/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-concepts-partitioning/
http://redis.io/
https://eng.uber.com/intro-to-ringpop/
https://eng.uber.com/intro-to-ringpop/

[13] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. The-
lin. Orleans: cloud computing for everyone. In ACM SOCC,
2011.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[15] J. Corbett et al. Spanner: Google’s globally distributed database.
ACM Trans. Comput. Syst., 31(3), Aug. 2013.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: amazon’s highly available key-value store. In
ACM SIGOPS Operating Systems Review, volume 41, pages 205–
220. ACM, 2007.

[17] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein. Maglev: A fast and reliable software network load
balancer. In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16), pages 523–535, 2016.

[18] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang. Duet: Cloud scale load balancing with hardware and
software. ACM SIGCOMM Computer Communication Review,
44(4):27–38, 2015.

[19] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL: Au-
tomated io load balancing across storage devices. In File and
Storage Technologies (FAST), 2010.

[20] Y.-J. Hong and M. Thottethodi. Understanding and mitigating the
impact of load imbalance in the memory caching tier. In Proceed-
ings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, pages 13:1–13:17, New York, NY, USA, 2013. ACM.

[21] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford. Ef-
ficient traffic splitting on commodity switches. In Conference on
Emerging Networking Experiments and Technologies (CoNEXT),
2015.

[22] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. In STOC, pages 654–663, 1997.

[23] D. Kunkle and J. Schindler. A load balancing framework for clus-
tered storage systems. In High Performance Computing-HiPC
2008, pages 57–72. Springer, 2008.

[24] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[25] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosen-
blum, et al. The case for ramclouds: scalable high-performance
storage entirely in dram. ACM SIGOPS Operating Systems Re-
view, 43(4):92–105, 2010.

[26] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, et al. Ananta: cloud
scale load balancing. ACM SIGCOMM Computer Communica-
tion Review, 43(4):207–218, 2013.

[27] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and
U. F. Minhas. Accordion: Elastic scalability for database systems
supporting distributed transactions. Proceedings of the VLDB En-
dowment, 7(12):1035–1046, 2014.

[28] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta, A. Ad-
cock, H. Kllapi, and M. Stumm. Social Hash: An assignment
framework for optimizing distributed systems operations on so-
cial networks. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages 455–468,
Santa Clara, CA, Mar. 2016. USENIX Association.

[29] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store: Fine-
grained elastic partitioning for distributed transaction processing
systems. Proceedings of the VLDB Endowment, 8(3):245–256,
2014.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 753

