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Abstract. For speech models that depend on sharing between phono-
logical representations an often overlooked issue is that phonological con-
trasts that are succinctly described language-internally by the phonemes
and their respective featurizations are not necessarily robust across lan-
guages. This paper extends a recently proposed method for assessing the
cross-linguistic consistency of phonological features in phoneme invento-
ries. The original method employs binary neural classifiers for individ-
ual phonological contrasts trained solely on audio. This method cannot
resolve some important phonological contrasts, such as retroflex conso-
nants, cross-linguistically. We extend this approach by leveraging prior
phonological knowledge during classifier training. We observe that since
phonemic descriptions are articulatory rather than acoustic the model
input space needs to be grounded in phonology to better capture phone-
mic correlations between the training samples. The cross-linguistic con-
sistency of the proposed method is evaluated in a multilingual setting
on held-out low-resource languages and classification quality is reported.
We observe modest gains over the baseline for difficult cases, such as
cross-lingual detection of aspiration, and discuss multiple confounding
factors that explain the dimensions of the difficulty for this task.
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1 Introduction

As the smallest constituents of phonological structure, distinctive features (DFs)
can be used to provide a linguistically rich and language-independent represen-
tation schema for speech [7]. In contrast to the abstract and language-dependent
phonemic representations commonly adopted in speech applications, such as au-
tomatic speech recognition (ASR) and text-to-speech (TTS), a unit of speech
is instead represented by a set of phonologically derived characteristics. In a
monolingual setting, one would typically use the phonemes of a language as the
basic sound units and derive their feature encodings from the corresponding DFs.
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Encoding speech in this way not only allows comparison of the structure of var-
ious phonemes, but also provides a flexible framework for modeling inter- and
intra-speaker pronunciation variability.

Various DF representations have been integrated successfully into the ASR
and TTS pipelines over the years. In ASR, adding DF detection to the recogni-
tion pipelines has been shown to increase recognition performance in monolin-
gual [18,22,23,31,33,34,41], multilingual [35,38,39] and low-resource settings [5,40].
However, detection accuracy of individual DFs can vary widely, with the differ-
ence between lowest and highest detector accuracy reported to be as high as
60% [35]. In recent years, more accurate DF detection has been achieved using
state-of-the-art deep learning methods [12,17,21,29]. In TTS, where one typically
starts from monolingual phonemic pronunciation dictionaries and phoneme in-
ventories, DFs were also shown to be beneficial, especially in multilingual sce-
nario [3,30,42].

As noted in [16], it is not clear a priori whether all DFs will be useful or valid
in a multilingual setting. If feature descriptions were phonetic rather than phone-
mic, and acoustic rather than articulatory, one would expect a close correspon-
dence between phonetic features and the acoustic signal. Similar observations
motivated other recent research aiming for more phonetic realism [25]. The real-
ity, however, is different. In practice, one often starts with phoneme inventories,
the pronunciation dictionaries based on these inventories and the DF represen-
tations based on the word-level dictionary-based phonemic transcriptions. This
procedure potentially introduces multiple sources of problems such as subopti-
mal design of the original phoneme inventories and under-specified phonemic
pronunciations. Additional complications arise due to the choice of DF system
for featurization as many competing feature systems are in use today. These is-
sues are further exacerbated in multilingual scenarios due to linguistic diversity
among languages.

One possible way of framing the question of practical utility and empirical
validity of the chosen features in a multilingual resource sharing setting was
proposed in [16], where the consistency of DF descriptions was evaluated on
a cross-lingual task in terms of classification quality on phoneme-size spans of
connected speech. One of the main empirical findings of that work is that the
postulated contrasts that generally hold within a language are not necessarily
robust across languages. This method is useful in several application scenarios:
design of multilingual phoneme inventories with optimal DF sharing, derivation
of phoneme inventories from speech in low- and zero-resource language docu-
mentation and evaluation of DF detector errors in ASR.

In this paper we continue the line of research in [16] by examining some of the
cases where phonemic contrasts do not hold cross-linguistically. We investigate
whether extending the original method by integrating prior linguistic knowledge
into the model can improve its performance across the board. Although there
are several open-source linguistic ontologies providing useful types of typological
information, such as aerial and phylogenetic features of Glottolog [10] and World
Atlas of Language Structures (WALS) [11], in this work we limit the scope
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of prior knowledge sources to two phonological typologies: PHOIBLE [24] and
PANPHON [26]. We hypothesize that the use of phonological grounding alone is
sufficient for cross-lingual phonemic contrast resolution.

2 Distinctive Features and Their Typologies

Distinctive features were first established in phonological analysis in the 1950s [15],
after which various approaches to their representation have been proposed. For
this investigation, distinctive feature values are considered as binary — each
speech sound is represented by a set of DFs that are either present or absent
(see [7,9] for an overview of alternative feature systems). A sample representa-
tion for the phoneme /n/, taken from [9], which follows the binary representa-
tion scheme introduced in Chomsky and Halle’s The Sound Pattern of English
(SPE) [2] is [ +CONSONANTAL, +SONORANT, —CONTINUANT, +NASAL, +CORONAL |.

PHOIBLE is a free database of cross-linguistic phonological data compiled
from many linguistic sources. The online 2014 edition [24] includes 2155 phoneme
inventories with 2160 segment types found in 1672 distinct languages. The fea-
ture system in PHOIBLE aims to be descriptively adequate cross-linguistically
and is likely to change as new languages are added. Overall the feature system
consists of 37 “binary” features (such as LABIODENTAL and SPREADGLOTTIS that
for the simple phonemic segments take the ternary values: present (+), absent
(—) and not applicable (&). For complex segments, such as diphthongs, tuples
of the above values are used. For example, the value of a vowel feature syLLABIC
for diphthong /Ew/ is a pair (+, —).

PANPHON is a resource consisting of a database that relates over 5,000 TPA
segments (simple and complex) to their definitions in terms of about 23 articula-
tory features and a Python package to manipulate the segments and their feature
representations [26]. Unlike PHOIBLE, which documents the actual snapshot of
contemporary phonological knowledge of the world’s languages from the stand-
point of linguistic theory, PANPHON’s mission is to develop a methodologically
solid resource to facilitate research in NLP. One of the nice features of PANPHON
is its great flexibility, which is achieved as follows: The resource contains a core
set of approximately 146 segments represented in IPA and their corresponding
features. The non-trivial segments are derived from this set using formal rules
that describe the application of diacritics and modifiers, the feature specifications
that provide the necessary context for the modification and articulatory feature
changes required if the diacritic or modifier is applied. Similar to PHOIBLE,
a ternary system is used to represent each of the articulatory features loosely
based on well-established phonological classes.

3 Method and Corpora

We follow and extend the methodology proposed in [16]: to consider a phone-
mic contrast to be consistent or robust across languages, it needs to be easily
predicted on heldout languages. This is operationalized as follows: a particular
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Table 1. The six languages used in the experiments.

Name Code Family Documentation URL

Bengali bn Indo-Aryan Kjartansson et al.[19] http://www.openslr.org/37/
Gujarati gu Indo-Aryan He et al. [13] http://www.openslr.org/78/
Marathi mr Indo-Aryan He et al. [13] http://www.openslr.org/64/
Kannada  kn Dravidian He et al.[13] http://www.openslr.org/79/
Telugu te Dravidian He et al.[13] http://www.openslr.org/66/
Sundanese su Malayo-Polynesian Kjartansson et al.[19] http://www.openslr.org/44/

phonemic contrast is presented as a binary classification problem. An instance
of this problem consists of a span of a speech signal (e.g., a vowel in surrounding
context) and a positive or negative label (e.g., front vowel vs. back vowel). A
classifier is trained on a multi-speaker, multi-language dataset withholding one
or more languages. We then evaluate the trained classifier on the held-out data
and report its quality in terms of Area Under (resp. Over) the receiver operating
characteristic Curve (AUC, resp. AOC). If the binary contrast in question is
cross-linguistically consistent, we expect it to be readily predictable on held-out
languages.

For cases where cross-linguistic consistency does not hold, we propose to ex-
tend this method by grounding the task on the contextual phonological knowl-
edge provided by PHOIBLE and PanPHoN. This is realized by augmenting the
acoustic input features with dense categorical DF encodings. We hypothesize
that a certain contrast that cannot be resolved cross-lingually from the speech
signal alone may correlate with other contrasts that are robust. Such correla-
tions may in theory be captured by including the full DF context in classifier
training. At evaluation time, since the phonological context is unavailable, these
categorical input features are set to ‘not applicable’ ().

Languages and Phoneme Inventories We use a smaller subset of the lan-
guages previously used for the experiments in [16]. Six languages from South
and Southeast Asia were chosen for the experiments: three languages from the
Indo-Aryan family (Bengali, Gujarati and Marathi), two languages from the
Dravidian family (Kannada and Telugu) and Sundanese, a Malayo-Polynesian
language. Open-source speech corpora for these languages are available, as shown
in Table 1, which for each language shows its BCP-47 language code [27], corpus
documentation reference and the corresponding location in the Open Speech and
Language Resources (OpenSLR) repository [28]. All datasets consist of multi-
speaker 48kHz audio and the corresponding transcriptions. In this work we
restrict the experiments to female speakers only to constrain the spectral vari-
ability due to gender-specific pitch differences. The Indo-Aryan and Dravidian
languages are interesting to investigate because, on the one hand, they exhibit
considerable phonological variation within each group, and on the other, share
several cross-group similarities [4]. The inclusion of Malayo-Polynesian language
is justified on the grounds of close historic contacts between the languages from
this family, such as Javanese and Sundanese, with the Dravidian languages [14].

We reuse the phoneme inventories from prior work [16], which borrowed the
South Asian phoneme inventories from [3] and Malayo-Polynesian phoneme in-
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Table 2. Phoneme inventories grouped by language families.

Phonemes (in IPA notation)

Shared abdzefghiklmnoprstfu

bn brdsnddrikinthrtaesddigttuee
Indo-Aryan gu bhdddrjkhnthithesddhghftttolne
mr bhdzhddrjkhnthtthresddhgh[tthu|nadzdz"Ihmhphtsoh
te djntdlpnstubrdrkithetdhghthfa
kn djntdlnnstobrdrkrtfrthdnghnfdz

Malayo-Polynesian su djntwxzaravan[?ary

Dravidian

Table 3. Details of the corpora used in the experiments.

Words ) . Duration

Code Speakers Utterances Total  Unique Segments (seconds)
bn 23 7,499 42,177 7,684 51,945 45 353.60
gu 18 2,853 23,065 8,172 27,481 15464.40
mr 10 1,719 17,103 2,889 20,131 10 864.30
kn 24 2,897 14,780 8,050 18,882 15533.70
te 24 3,351 11,220 4,186 15,784 9819.65
su 20 2,401 21,848 3,169 26,742 11541.40
Total 119 20,720 130,193 - 160,965 108 577.05

ventories from [43]. These phoneme inventories were designed with multilingual
speech applications in mind, where languages use a unified underlying phonolog-
ical representation, which is leveraged to make the most of the available data
and eliminate phonemic scarcity by conflating similar phonemes into a single
representative phoneme. The phoneme inventories for all languages use Inter-
national Phonetic Alphabet (IPA) and are shown in Table 2 grouped by their
language families. A subset of phonemes that is common to all the inventories is
shown as “Shared” in the first row of the table. While the inventories do not map
one-to-one to the inventories provided by existing typological resources, such as
PHOIBLE, there is nevertheless a significant correlation between them.

Basic overview of the corpora is provided in Table 3. There are 119 female
speakers in the combined dataset of 20,720 utterances corresponding to just
over 30 hours of speech and 130,193 words. Word-level phonemic transcriptions
containing 160,965 segments in total were provided by proprietary lexicons us-
ing phoneme inventories from Table 2. In order to determine segment bound-
aries, transcriptions where force-aligned with the acoustic parametrization of
the audio using standard Hidden Markov Model (HMM)-based recipe [44]. The
acoustic parametrization was obtained by downsampling the audio to 16 kHz and
parametrizing it into HTK-style Mel Frequency Cepstral Coefficients (MFCC) [6]
using 10msec frame shift. The dimension of the MFCC parameters is 39 (13
static + A + AA coefficients).

Phonemic Contrasts Each of the DF contrasts can be represented by two
sets of phonemes, one for which the feature is present, and one where it is
absent. Table 4 shows a list of phoneme groups, together with the corresponding
phonemes selected from our corpora, to study such contrasts. For the binary
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Table 4. Distinctive features and corresponding phonemes.

CONT

Feature Corresponding Phonemes
(+) eeraii
FRONT
(=) aaooidyuu:a
(+) iituu
HIGH
(=) eerxooidysaa:
s (+) bh dzh qh h kh Ih mh Dh tJh Lh qh gh th oh
’ (=) aarbddzdzdee:fiizjkimnpooprsttstftuurwxzenosdagy|pnsftu?
(+) aaree:rfhiizjllhooirsuurwxzaday|sfuuoh
(-)

bbhddzdzhdzddrkkhmmhnpnhpttstftththnddrgg pntth?

classification task, the former set of phonemes, provides the positive examples,
while the later one provides the negative examples. PHOIBLE and PANPHON
assign compatible feature values for the phonemes and contrasts shown.

We investigate four contrasts. The ‘front—back’ contrast, denoted FRONT in
the table, is defined as a combination of features: front vowel (+) is taken to
mean [+FRONT, —BACK| in both PHOIBLE and PanPHON, and back vowel (—)
is based on [—FroNT, +BACK]. We reproduce this experiment from [16] as a
sanity check because we use different training data. In the original work this
contrast was found to be consistent cross-linguistically. We extend the vowel
experiments to ‘high-low’ contrast (uicH), which for high vowels (4) is defined
as [+HiGH, —Low] and for low vowels (—) as [—HIGH, +Low] in both typologies.
The class of low vowels contains the close-mid back unrounded vowel /¥/, which is
unique to Sundanese in our language set. The next two contrasts are particularly
interesting to predict. In both cases the positive class (+) is formed by the set of
spectrally diverse phonemes. The sPREADGLOTTIS laryngeal feature (sc) includes
all the aspirated consonants in its positive class. The CONTINUANT manner of
articulation feature (denoted conT) specify the openness (+) or complete closure
(—) of the vocal tract during the phonation. We don’t restrict the +cont class
to consonants (fricatives and liquids) by also including all the vowels.

4 Experiments, Results and Discussion

Experiment Setup We use MFCCs prepared during the phoneme alignment
stage (described in Section 3) as acoustic parameters. Admittedly, the use of
MFCCs may be too restrictive: other representations, such as F0O or auditory-
derived features, may be better suited to model the acoustic cues that signal the
contrasts in each scenario [32]. Although we previously demonstrated moderate
gains of other acoustic features types over the MFCCs on a similar task [8], in
this work we limit the scope of investigation to MFCCs to keep the number of
experiments manageable.

For each phonemic contrast three experiment configurations are constructed.
For the baseline configuration, a single training example consists of 40 acoustic
frames. It is constructed by stacking the frames corresponding to the particular
phoneme plus its right and left context frames, possibly padding with zeros if the
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context is too short. Phonemes longer than 40 frames are ignored. The PHOIBLE
and PaNPHON configurations are constructed by extending the baseline input
features with 37 and 23 categorical features describing the phonemic segment,
respectively. For each DF, the input features corresponding to the classification
labels are masked out (set to ‘unspecified’ value @) in the training data. At
evaluation time, since no phonological information is available to PHOIBLE
and PANPHON configurations, all the input categorical features are set to &.
The training sets for PHOIBLE and PAanPHON are doubled by the simple data
augmentation technique: each training example is cloned once and the categorical
portion of its input features is masked out, so that the model can also learn to
generalize in the absence of phonological context.

The training and evaluation sets in our experiments always consist of disjoint
sets of languages and speakers. For each dataset we also limit the number of
training examples to 50,000 and evaluation examples to 10,000. In order to keep
the overall set of training labels balanced, with equal number of positive and
negative examples, we employ a simple under-sampling approach [20]. If enough
examples are available, we sample an equal number of them from every language
in the training set. Conversely, an imbalance in a language is preferred over the
lack of training examples. It is important to note that we do not guarantee that
the number of training examples is the same across speakers of a language.

We use mean and standard deviation computed over the training set input
features to scale the training as well as evaluation sets. We employ vanilla feed-
forward Deep Neural Network (DNN) binary classifier from TensorFlow [1]. A
simple two-layer architecture with 200 Softplus [46] units in each layer, dropout
probability of 0.2 [37], Adadelta optimizer [45] and the learning rate of 0.6 with
a large batch size of 6000 [36] were determined by tuning on the development
set. A single classifier is trained on five languages and evaluated on the sixth
held-out language. Overall we construct 72 classifiers: one for each of the six
held-out languages, three input feature configurations (baseline, PHOIBLE and
PaNPHON) and four phonemic contrasts (HIGH, FRONT, CONT and sG). Each train-
ing/evaluation experiment is repeated three times resulting in 216 experiments
overall and statistics for the Area Over the Curve (AOC) metric are accumu-
lated. We use AOC for better readability, since the Area Under the ROC Curve
(AUC) values are generally high.

Results and Discussion Table 5 shows the AOC values for the detection HIGH,
FRONT, CONT and sG DFs across multiple training configurations. Each row in the
table represents the held-out language on which the classifier trained on five lan-
guages is evaluated. Each AOC value is the mean over three runs. Confidence
interval (95%) range computed using t-test over sample size n = 3 is shown along-
side each AOC mean. As can be seen from the table, the front vs. back vowel
contrast FRONT is very robust across languages having the lowest AOC values
among all the contrasts begin tested. This result confirms the result for FRONT
reported in [16, Table 6] on different data. The second best contrast which is
very consistent cross-lingually is the coNT manner of articulation contrast. This
result is somewhat contrary to our expectations as the positive class +conT is
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Table 5. AOC for HIGH, FRONT, cONT and sG DFs on held-out languages.

L HIGH FRONT

Baseline PANPHON PHOIBLE Baseline PANPHON PHOIBLE
bn 6.68 (£0.41) 6.68 (£2.95) 5.64 (£0.27) 1.97 (£0.11 2.14 (£1.86) 2.78 (£0.21)
gu 7.06 (£0.12) 7.96 (+1.41) 7.64 (£0.30) 0.69 (£0.12) 0.82 (£0.21) 0.72 (+0.05)

mr 7.03 (+0.66

N NN NN

)
( ) (
7.67 (£0.75) 7.93 (£0.52) 2.11 (£0.11
( ) 8.63 (£0.25) 0.60 (&0.01
= o

N NN N

)
(+0.21) (
2.58 (£0.79)  2.03 (£0.16)
0.56 (£0.19)  0.50 (£0.06)
(£0.20) (
(+£0.36) (

kn 7.65 (£0.61) 9.30 (£1.78
te 6.00 (£0.09) 8.36 (£2.45) 7.50 (£0.44) 1.61 (£0.05 1.44 (£0.20) 1.32 (£0.07)
su 3.09 (+£0.16) 5.32 (£1.02) 4.83 (+£1.09) 1.90 (£0.13) 3.69 (£0.36) 3.57 (+0.23)
L CONT el

Baseline PANPHON PHOIBLE Baseline PANPHON PHOIBLE

bn 2.00 (£0.16) 3.18 (£0.05) 3.00 (+0.88) 8.07 (£1.89) )

gu 3.17 (£0.69) 3.16 (£0.09) 3.09 (£0.37) 10.79 (£3.62) 10.58 (£0.62) 10.54 (£0.21)
mr 2.94 (+£0.33) 3.45 ( ) 3.57 (£0.57) 14.77 (£3.13) 14.36 (£0.71) 14.65 (£1.57)
kn 2.16 (£0.50) 2.29 (£0.24) 2.13 (£0.74) 13.45 (£3.32) 12.14 (+0.38) 12.34 (£0.25)
te 1.82 (£0.05) 1.53 (£0.20) 1.46 (£0.30) 13.39 (£3.20) 13.30 (£1.83) 13.42 (£0.64)
su 1.16 (£0.50) 1.83 ( ) 1.66 (£0.42) 18.68 (£2.86) 16.63 (£2.03) 18.15 (0.59)

6.61 (£5.00) 5.69 (£5.45)

+0.20

15 - | e Baseline

mm PANPHON
= PHOIBLE
10 H
i eEE III |

CONT FRONT HIGH sG

AOC

o

Fig. 1. Average AOC per DF classification across all held-out languages.

very heterogeneous including sounds like fricatives and vowels. The high vs. low
vowel contrast HIGH is not as robust across languages as the FRONT contrast, but
is also reasonably consistent cross-lingually, with the best predictions among the
held-out configurations obtained for Sundanese. The worst performing configura-
tions are found for the contrast sc that separates the aspirated sounds from the
rest. With the exception of Bengali, this contrast is not robust across languages.
We hypothesize that this contrast is hard to detect cross-lingually because the
negative class -sa is very heterogeneous (including all the unaspirated consonants
and vowels) and aspiration is acoustically more ambiguous compared to other
contrasts we considered.

As can be seen from Table 5, the inclusion of phonological context in the
classifier’s input feature space leads only to the minor occasional statistically
significant improvements over the baseline (shown in bold). In most of the other
cases when the mean AOC values for the PHOIBLE and PANPHON configurations
are lower than the baseline, the improvements are not statistically significant
because of the overlap in confidence intervals. In order to summarize the per-
formance of the classifiers across all the held-out languages for each phonemic
contrast, we recomputed the statistics per each contrast, with Figure 1 showing
the AOC means and confidence intervals computed for the sample size n = 18
(three runs for six languages). As can be seen from the figure, the phonologically
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(a) Cross-lingual setup. (b) Language-internal setup.

Fig. 2. Relative improvements (%) in AOC over the baselines.

grounded classifiers do not improve (on average) over the corresponding base-
lines for conT, FRONT and HIGH contrasts. This is likely due to the task being
already unambiguous enough for the baseline classifier, where the introduction
of additional context actually increases the confusion. Note that the inclusion of
phonological context from both the PHOIBLE and PANPHON sources improves
the detection of aspiration contrast sG. This improvement, however, is not sta-
tistically significant because of the confidence intervals overlap.

In order to further evaluate the influence of phonemic grounding on the de-
tection of each phonemic contrast, we compared the relative improvements in
AOC over the baselines for our current cross-lingual setup, shown in Figure 2 (a),
with the language-internal setup shown in Figure 2 (b). The language-internal
configurations are constructed similarly to the cross-lingual ones (also 216 config-
urations overall), with the only difference that the training and evaluation data
is confined to one language. As can be seen from the figures, phonemic grounding
has very little influence on the classifier performance in language-internal case.
We hypothesize that this is due to the fact that the phonological context that
DFs provide already exists implicitly in the structure of the acoustic training
data (i.e. the phonemes in the positive and negative classes) and therefore repre-
senting it explicitly does not show an effect. In the cross-lingual case, however,
phonological context helps detection of sc, the most “difficult” contrast under
investigation.

In order to assess the discriminatory power of the phonological typologies
alone for our task, we also constructed classifiers without relying on acous-
tics. For each phonemic contrast we constructed three types of classifiers for
PHOIBLE and PanPuON typologies: Naive Bayes (NB), linear regression (LR)
and support vector machine with linear kernel function (svm). Stratified k-fold
cross-validation with contrast task-dependent value of k constrained by the mini-
mal negative or positive class size (as shown in Table 4) was employed. Crucially,
the input features that directly correlate with the labels were masked out dur-
ing training and evaluation. For example, when constructing and evaluating the
classifier for contrast HicH, both HIGH and Low input features were set to &. The
average AOC values over k runs are shown in Table 6 for each contrast, classifier
and typology type. Comparing these classifiers’ performance with the classifiers
trained on the full acoustic and phonological data (Table 5) it is evident that
the classifiers trained on phonology alone are significantly less accurate. Apart
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Table 6. Average AOC for phonological input features alone.

Source men (k = 4) FRONT (k = 5) cont (k = 25) sG (k=14)

PHOIBLE 22.92 25.00 31.25 30.00 30.00 25.00 10.00 6.00 16.00 33.93 50.29 57.44
PanPHON 29.17 37.50 37.50 25.00 40.00 20.00 12.00 14.00 16.00 46.13 54.46 54.46

from conT, the best performing contrast in Table 6, which also correlates rea-
sonably with the results for the full training in Table 5, the rest of the classifiers
struggle to detect the contrasts in question based on the phonological context
alone. The classifier for sa performs the worst. It is interesting to note that,
while these classifiers are generally useful on their own, apart from the very un-
reliable detector for sc, their accuracy increases significantly once we combine
the phonological (articulatory) input space with the acoustics. One confounding
factor that may explain detection inaccuracies in this scenario are the typologi-
cal features themselves — in the case of PHOIBLE and PANPHON the remaining
phonological features in the context of the contrast itself may not be enough
(e.g., due to their potential ambiguity or wrong definitions) to signal the con-
trast. This merits further research into the design of feature inventories that are
highly consistent in multilingual settings.

5 Conclusion

The results from this investigation provide a starting point for further research
on the impact of a priori phonological knowledge on cross-lingual DF classifi-
cation. The modest gains on the baseline recorded for SG classification require
further contextualisation through experimentation on a wider group of DFs. In
addition, it would be of value to explore the impact of phonological processes
such as assimilation and co-articulation on DF detection accuracy. Exploring
an alternative network configuration may also be beneficial, such as training a
sequence model over feature detectors or embeddings. In summary, it is clear
that it is not only the relationship between acoustic representations of speech
and phonological feature inventories that is complex — the internal relationship
between individual DFs within feature inventories is also impactful and should
be taken into consideration when designing feature inventories for use in multi-
lingual settings.
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the experiments, and Isin Demirgahin and Rob Clark for fruitful discussions.
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