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Abstract

This paper presents first successful steps in designing search agents that learn meta-strategies
for iterative query refinement in information-seeking tasks. Our approach uses machine
reading to guide the selection of refinement terms from aggregated search results. Agents
are then empowered with simple but effective search operators to exert fine-grained and
transparent control over queries and search results. We develop a novel way of generating
synthetic search sessions, which leverages the power of transformer-based language models
through (self-)supervised learning. We also present a reinforcement learning agent with
dynamically constrained actions that learns interactive search strategies from scratch. Our
search agents obtain retrieval and answer quality performance comparable to recent neural
methods, using only a traditional term-based BM25 ranking function and interpretable
discrete reranking and filtering actions.

1 Introduction

Can machines learn to use a search engine as an interactive tool for finding information? Web search
is the portal to a vast ecosystem of general and specialized knowledge, designed to support humans in
their effort to seek relevant information and make well-informed decisions. Utilizing search as a tool is
intuitive, and most users quickly learn interactive search strategies characterized by sequential reasoning,
exploration, and synthesis (Hearst, 2009; Rutter et al., 2015; Russell, 2019). The success of web search relies
on machines learning human notions of relevance, but also on the users’ ability to (re-)formulate appropriate
∗Work carried out in part during internships at Google.
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queries, grounded in a tacit understanding of strengths and limitations of search engines. Given recent
breakthroughs in language models (LM) (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020) as
well as in reinforcement learning (RL) (Mnih et al., 2013; Silver et al., 2016; Berner et al., 2019), it seems
timely to ask whether, and how, agents can be trained to interactively use search engines. However, the lack
of expert search sessions puts supervised learning out of reach, and RL is often ineffective in complex natural
language understanding (NLU) tasks. The feasibility of autonomous search agents hence remains an open
question, which inspires our research.

We pursue a design philosophy in which search agents operate in structured action spaces defined as generative
grammars, resulting in compositional, productive, and semantically transparent policies. Further domain
knowledge is included through the use of well-known models and algorithms from NLU and information
retrieval (IR). Most notably, we develop a self-supervised learning scheme for generating high-quality search
session data, by exploiting insights from relevance feedback (Rocchio, 1971), used to train a supervised LM
search agent based on T5 (Raffel et al., 2020). We also build an RL search agent based on MuZero (Schrittwieser
et al., 2020) and BERT (Devlin et al., 2019), which performs planning via rule-constrained Monte Carlo tree
search and a learned dynamics model.

We run experiments on an open-domain question answering task, OpenQA (Lee et al., 2019). Search
agents learn diverse policies leading to deep, effective explorations of the search results. The MuZero agent
outperforms a BM25 (Robertson & Zaragoza, 2009) search function running over a Wikipedia index, on both
retrieval and answer quality metrics. This result provides novel evidence for the potential of knowledge-infused
RL in hard NLU tasks. The T5 agent can more easily leverage large pre-trained encoder-decoders and proves
superior to MuZero. Furthermore, a straightforward ensemble of agents is comparable in performance to the
current reference neural retrieval system, DPR (Karpukhin et al., 2020), while relying solely on interpretable,
symbolic retrieval operations. This suggests new challenges for future work; e.g., involving hybrid architectures
and policy synthesis. We open-source the code and trained checkpoints for both agents.1,2

2 Learning to Search

It has been a powerful vision for more than 20 years to design search engines that are intuitive and simple to
use. Despite their remarkable success, search engines are not perfect and may not yield the most relevant
result(s) in one shot. This is particularly true for rare and intrinsically difficult queries, which may require
interactive exploration by the user to be answered correctly and exhaustively.

It can be difficult for users to formulate effective queries because of the information gap that triggers the
search process in the first place (Belkin et al., 1982). O’Day & Jeffries (1993) found that reusing search results
content for further search and exploration is a systematic behavior (aka “orienteering”), a key ingredient for
solving the information need. Lau & Horvitz (1999) analyzed a dataset of one million queries from the logs of
the Excite search engine and report an average session length of 3.27 queries per informational goal. Teevan
et al. (2004) noticed that users facing hard queries can even decide to partially by-pass the search engine by
issuing a more general query and then navigating the links within the returned documents to find an answer.
Downey et al. (2008) observed that a user’s initial query is typically either too specific or too general and the
amount of work required to optimize it depends on the query frequency, with infrequent queries requiring
longer search sessions. They estimate from logs that tail information needs require more than 4 queries, while
common ones require less than 2 (on average). Contextual query refinement is a common technique (Jansen
et al., 2009), even among children (Rutter et al., 2015), used to improve search by combining evidence from
previous results and background knowledge (Huang & Efthimiadis, 2009). Such refinements often rely on
inspecting result snippets and titles or on skimming the content of top-ranked documents. This process is
iterative and may be repeated until (optimistically) a satisfactory answer is found.

It seems natural to envision artificial search agents that mimic this interactive process by learning the basic
step of generating a follow-up query from previous queries and their search results while keeping track of the
best results found along the way. We call this the learning to search problem.

1https://github.com/google-research/google-research/tree/master/muzero
2https://github.com/google-research/language/tree/master/language/search_agents
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2.1 Search Engine and Query Operations

We make the assumption that agents interact with a search engine operating on an inverted index architec-
ture (Croft et al., 2009, §2.2), which is popular in commercial engines and IR research. Specifically, we use
Lucene’s implementation3 as the search engine, in combination with the BM25 ranking function (Robertson
& Zaragoza, 2009). We frame search as the process of generating a sequence of queries q0, q1, . . . , qT ,4 where
q0 is the initial query, and qT is the final query – where the process stops. Each query qt is submitted to the
search engine to retrieve a list of ranked documents Dt.

We focus on the case where qt+1 is obtained from qt through augmentation. A query may be refined by
adding a keyword w ∈ Σidx, such that qt+1 = qtw, where Σidx is the vocabulary of terms in the search index.
The new term will be interpreted with the usual disjunctive search engine semantics. Furthermore, a query
can be augmented by means of search operators. We concentrate on three unary operators: ‘+’, which limits
results to documents that contain a specific term, ‘-’ which excludes results that contain the term, and ‘∧i’
which boosts a term weight in the BM25 score computation by a factor i ∈ R. In addition, the operator effect
is limited to a specific document field, either the content or the title. As an example, the query ’who is the
green guy from sesame street’ could be augmented with the term ’+contents:muppet’, which would limit the
results returned to documents containing the term ’muppet’ in the body of the document.

Only a small fraction of users’ queries include search operators, and this behavior is not well studied. Croft
et al. (2009, §6.2) estimate that less than 0.5% use ‘+’. However, it is noteworthy how power users can leverage
dedicated search operators, in combination with sophisticated investigative strategies, to solve deep search
puzzles (Russell, 2019). Additionally, unary operators are associated with explicit, transparent semantics and
their effect can be analyzed and interpreted. Crucially, however, as we show in this paper, these operators
are also pivotal in designing effective search agents because they allow us to generate self-supervised search
session training data in a principled fashion.

2.2 Results Aggregation and Observations Structure

Web searchers expect the best answer to be among the top few hits on the first results page (Hearst, 2009,
§5) and pay marginal attention to the bottom half of the 10 blue links (Granka et al., 2004; Joachims et al.,
2005; Nielsen & Pernice, 2009; Strzelecki, 2020). Likewise, a search agent considers only the top k documents
returned by the search engine at every step; we set k = 5 in all our experiments.

During a search session the agent maintains a list of the top-k documents overall, which is returned at the end
as the output. To aggregate the results from different steps during the search session we use a Passage Scorer
(PS) which builds upon a pre-trained BERT model. For each result document d ∈ Dt, the PS component
estimates the probability of d containing the (unspecified) answer P(d 3 answer | q) ∈ [0; 1]. This probability
can be viewed as a score that induces a calibrated ranking across all result documents within a session. Notice
that the score is always computed conditioning on the original query q = q0 and not qt.

At each session step a search agent computes a structured observation representing the state of the session
up to that point. The observation includes the query tokens and refinements describing qt. The top-k
documents in the session are represented by their title and a text snippet. The snippet is a fixed-length
token sequence centered around the text span that contains the most likely answer for q, as predicted by a
Machine Reader (MR) (Rajpurkar et al., 2016). For ranking (PS) and answer span prediction (MR) tasks we
use the same BERT system as in (Karpukhin et al., 2020). Query and aggregated results yield a segmented
observation token sequence ot which is truncated to length ≤ 512 , a common input length for pre-trained
transformer-based LMs (cf. Appendix B for more details and examples).

3https://lucene.apache.org/.
4We also refer to the query sequence as a session, or search episode.
5The answer is ‘‘Oscar the Grouch” who is a green muppet that lives in a trash can on Sesame street.
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Figure 1: Schematic agent interaction with the search engine (BM25) for the query “who is the green guy
from sesame street”.5This is a real example from the query expansion procedure described in Section 2.3,
see also Table A.9 for an expanded version. After receiving an initial set of documents (D0) for the original
question, the corresponding observation (o0) is compiled by ranking the documents according to their Passage
Score (PS), and creating snippets for the top-k documents around the answers extracted by the Machine
Reader (MR). Note that PS/MR always conditions on q0. The first action of the agent is to enforce the term
“muppet” to be in the content of the search results. The new document set D1 is returned by the search engine
and aggregated with the previous documents. Again, the set of documents is ranked by the Passage Scorer,
and the subsequent observation for the agent is compiled. The agent then chooses to enforce the presence of
the topical term “trash” and obtains another set of documents that are, again, aggregated and scored. The
final result D contains the top-k documents observed during the episode, according to the Passage Score.

The next step involves a language model which produces an embedding st from which the search agent will
generate the next query. We can represent diagrammatically the operations that lead to a query refinement as q0, . . . , qt

search ↓ engine

D0, . . . ,Dt

 MR/PS7−→ ot︸ ︷︷ ︸
observation

LM7−→ st︸ ︷︷ ︸
encoding

agent7−→ qt+1︸ ︷︷ ︸
generation

(1)

At each step t the top-k documents in the session are identified by means of their PS score. An observation
ot is computed for the top documents by means of a machine reader (MR). Then the search agent’s LM
encodes the observation ot and decodes the next query qt+1. Figure 1 illustrates the search agent and its
components at work with an example.

2.3 Rocchio Query Expansions and Rocchio Sessions

The query operations introduced above allow us to generate synthetic search sessions in a self-supervised
manner, making use of question-answer pairs (q, a). We initialize q0=q and aim to find a sequence of
refinements that make progress towards identifying high-quality documents, based on a designed scoring
function which combines retrieval and question answering performance (cf. Eq. 7, introduced in §4). A query
is not further refined if no score increasing refinement can be found or a maximal length is reached.

To create candidate refinements, we put to use the insights behind relevance feedback as suggested in Rocchio
(1971). Formalizing the query operations introduced in Section 2.1, an elementary refinement – called a
Rocchio expansion – takes the form

qt+1 := qt ∆qt,∆qt := [+| − | ∧i Title |Content ] wt, wt ∈ Σt := Σqt ∪ Στt ∪ Σαt ∪ Σβt (2)

where i is the boosting coefficient and Σt refers to a set of terms accessible to the agent. By that we mean
terms that occur in the observation ot – the search state at time t. We use superscripts to refer to the
vocabularies induced from the observation which identify the terms occurring in the question (q), titles (τ),
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Table 1: An observed example Rocchio session for the question “who won season 2 great british baking show”.
The colored span is the answer span prediction of the machine reader, indicating if the answer is wrong (red)
or correct (blue). The top BM25 retrieval results for the original query are passages from the articles about
“The Great American Baking Show” – the American version of the show mentioned in the query. The reason
for this confusion is that the British show is called “The Great British Bake Off ”, while the query term
“baking” matches the title of the wrong document. The first Rocchio expansion boosts the term “final”, i.e.,
puts more weight on this term while computing the relevance score. This is a reasonable choice as the terms
is likely related to the culmination of a periodic event, such as a seasonal show. In the two subsequent steps
the procedure requires the terms “bake” and “2” to be contained in the title of the retrieved documents.
In this way the results first continue to shift from the American Baking Show to the British Bake Off, and
eventually settle on the desired British Bake Off (series 2). The composite IR and QA score (defined in Eq.7)
increases from 0.040 for the original query to 0.552 for the final query.

Query and Search Results Score

q0 who won season 2 great british baking show

Top-2 documents retrieved with q0: 0.040

d1 Title The Great American Baking Show
Content . . . The first two seasons were hosted by Nia Vardalos and Ian Gomez, with Mary Berry

from the original "GBBO" series and . . .

d2 Title The Great American Baking Show (season 3)
Content . . . , ABC announced that Vallery Lomas won the competition, beating out runners-up

Cindy Maliniak and Molly Brodak in the final week . . .

q1 who won season 2 great british baking show (contents:“final”∧8)

Top-2 documents retrieved with q1: 0.142

d1 Title The Great British Bake Off
Content . . . The finalists were Brendan Lynch, James Morton and John Whaite, the last of

whom won the final in a surprise result. . . .

d2 Title The Great American Baking Show (season 2)
Content . . . In the final technical, Mary Berry set the challenge on the bakers to create a British

Battenberg cake with a checkerboard . . .

q2 who won season 2 great british baking show (contents:“final”∧8) +(title:“bake”)

Top-2 documents retrieved with q2: 0.186

d1 Title The Great British Bake Off
Content . . . The finalists were Brendan Lynch, James Morton and John Whaite, the last of

whom won the final in a surprise result. . . .

d2 Title The Great British Bake Off
Content . . . The final of the series where John Whaite was crowned the winner saw its highest

. . .

q3 who won season 2 great british baking show (contents:“final”∧8) +(title:“bake”) +(title:“2”)

Top-2 documents retrieved with q3: 0.552

d1 Title The Great British Bake Off (series 2)
Content . . . The competition was won by Joanne Wheatley. There was no Star Baker this

week, as Paul and Mary felt . . .

d2 Title The Great British Bake Off (series 2)
Content . . . contestants went on to a career in baking or have a change of career as a result of

appearing on the show. Joanne Wheatley has written two best selling books on baking
. . .
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predicted answer spans (α) or bodies (β) of documents in ot. Note that adding terms 6∈ Σt would make
refinements more difficult to reproduce for an agent and thus would provide supervision of low utility.

A crucial aspect of creating search sessions training data based on Rocchio expansions has to do with the
search complexity of finding optimal sequences of such expansions. The success of this search relies on the
notion of relevance feedback. We introduce q∗ = q + a as the “ideal” query: query q executed on the subset
of documents that contain answer a. The results of q∗ define the vocabulary Σ∗. We can now define two
special dictionaries that will allow us to narrow down the candidate terms to appear in the next refinement

Σ↑t = Σt ∩ Σ∗, Σ↓t = Σt − Σ∗ . (3)

During the search for an optimal session, it is possible to use accessible terms wt as additional keywords,
or in combination with exact match (‘+’), or weight boosting (‘∧’), if they also occur in the ideal result
set (wt ∈ Σ↑t ); and to exclude wt (‘-’) if they are not present in the ideal results (wt ∈ Σ↓t ). As in Rocchio
algorithm, this is meant to bring the query closer to the relevant documents and farther away from the
irrelevant ones. We have found experimentally that this leads to a good trade-off between the quality of
Rocchio expansions and the search effort to find them. We call a sequence of Rocchio expansions a Rocchio
session. Table 1 illustrates a Rocchio session for the query ’who won season 2 great british baking show’,
based on the experimental setup described in Section 5.

The search for Rocchio sessions is done heuristically. Full implementation details with pseudo-code illustrating
the procedure and examples can be found in §5, Appendix A, and Appendix G – cf. also Table A.10.

3 Search Agents

3.1 Self-Supervised T5 Agent

It is straightforward to train a generative search agent in a supervised manner on the Rocchio sessions. We
use T5, a popular pretrained transformer encoder-decoder model. As a search agent, T5 learns to predict a
new search expansion from each observed state. In the spirit of everything-is-string-prediction, state and
expansions are represented as plain strings. See Appendix B for a full example.

Our T5 agent is trained via Behavioral Cloning (BC) (Michie, 1990). We treat each step in a Rocchio session
as a single training example. As is common in sequence prediction tasks, we use the cross-entropy loss for
optimization. BC is perhaps the simplest form of Imitation Learning (IL), and has been proven effective
in a variety of application domains (Sharma et al., 2018; Rodríguez-Hernandez et al., 2019). In our query
refinement task, it allows to inherit the expressive power of the Rocchio query expansions and, differently
from other IL approaches (Ross et al., 2011; Ho & Ermon, 2016; Dong et al., 2020), requires only offline
interactions with the search engine. Crucially, this enables scaling to the large action spaces and model
sizes typical of recent LMs. Our T5 agent can also be described as a Decision Transformer with fixed max
return (Chen et al., 2021).

3.2 Reinforcement Learning: MuZero Agent

Learning to search lends itself naturally to be modeled as a reinforcement learning problem. To explore
also the feasibility of learning search policies from scratch, we implement an RL search agent based on
MuZero (Schrittwieser et al., 2020). MuZero is a state-of-the-art agent characterized by a learnable model of
the environment dynamics. This allows the use of Monte Carlo tree search (MCTS) to predict the next action,
in the absence of an explicit simulator. In our use case, MuZero aims to anticipate the latent state implied by
each action with regard to the results obtained by the search engine. For instance, in the example of Figure 1,
it may learn to predict the effect of using the term ’muppet’ in combination with a unary operator. This
approach to planning is intuitive for search, as searchers learn to anticipate the effect of query refinements
while not being able to predict specific results. Furthermore, this offers a performance advantage of many
orders of magnitude against executing queries with the real search engine.
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3.2.1 Grammar-Guided Search

To map observations to states, the MuZero agent employs a custom BERT with dedicated embedding layers
to represent the different parts (cf. Appendix B for details). Compared to T5, MuZero has a more challenging
starting point: its BERT-based representation function is pre-trained on less data, it has fewer parameters
(110M vs. 11B) and no cross-attention: predictions are conditioned on a single vector, [CLS]. Moreover, it
cannot as easily exploit supervised signals. However, it can more openly explore the space of policies, e.g.
independent of the Rocchio expansions. Through many design iterations, we have identified it to be crucial
to structure the action space of the MuZero agent and constrain admissible actions and refinement terms
dynamically based on context. This provides a domain-informed inductive bias that increases the statistical
efficiency of learning a policy via RL.

We take inspiration from generative, specifically context-free, grammars (CFGs) (Chomsky, 1956) and
encode the structured action space as a set of production rules, which will be selected in (fixed) top-down,
left-to-right order. A query refinement is generated, in a way that mimics Rocchio expansions, as follows

Q⇒ U Q |W Q, U ⇒ Op FieldW, Op⇒ + | − |∧i, Field⇒ TITLE |CONTENT (4)

which allows for adding plain or structured keywords using unary operators. The selection of each refinement
term W proceeds in three steps, the first two can be described by the rules

W ⇒W q
t |W τ

t |W
β
t |Wα

t |W idx, W x
t ⇒ w ∈ Σxτ , x ∈ {q, τ, β, α} , W idx ⇒ w ∈ Σidx (5)

which means that the agent first decides on the origin of the refinement term, i.e., the query or the different
parts of the top-scored result documents, and afterwards selects the term from the corresponding vocabulary.
As the term origin correlates strongly with its usefulness as a refinement term, this allows to narrow down
the action space effectively. The agent is forced to pick a term from the larger vocabulary (approximately 1M
terms) of the search index Σidx during MCTS, as there is no observable context to constrain the vocabulary.

The third level in the action hierarchy concerns the selection of the terms. We have found it advantageous to
make use of subword units; specifically, BERT’s 30k lexical rules involving word pieces, to generate terms
sequentially, starting from a term prefix and adding one or more suffixes. Note that this part of the generation
is context-sensitive, as we restrict node expansions to words present in the vocabulary. We make use of tries
to efficiently represent each Σxτ and amortize computation. The grammar-guided MCTS is explained in more
detail in Appendix F.

4 The OpenQA Environment

We evaluate search agents in the context of open-domain question answering (Open-QA) (Voorhees, 2000;
Chen et al., 2017). Given a question q, we seek documents D that contain the answer a using a search engine,
the environment. Following common practice, we use Lucene-BM25 with default settings on the English
Wikipedia. BM25 has provided the reference probabilistic IR benchmark for decades (Robertson & Zaragoza,
2009), only recently outperformed by neural models (Lee et al., 2019). The Lucene system provides search
operators comparable to commercial search engines.

Exploration-based learning is vulnerable to discovering adversarial behaviors. As a safeguard we design a com-
posite reward. The score of a results set D, given q, interpolates three components. The first is the Normalized
Discounted Cumulative Gain (NDCG) at k. See Eq. 6a, where wi = log2(i+ 1)−1/

∑k
j=1 log2(j + 1)−1 are

normalizing weights, and rel(d|q) = 1, if a ∈ d, 0 otherwise:

a) NDCGk(D|q) =
k∑
i=1

wi rel(di|q), b) NDCEMk(D|q) =
k∑
i=1

wi em(di|q). (6)

NDCG is a popular metric in IR as it accounts for rank position, it is comparable across queries, and it is
effective at discriminating ranking functions (Wang et al., 2013). NDCG alone can have drawbacks: on “easy”
questions a score of 1 can be achieved in short meritless episodes, while on “hard” ones it may be impossible to
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(a) Rocchio sessions’ length (b) Score gain at each search step

Figure 2: The histogram on the left shows the length of the Rocchio sessions, using different grammars on
NQ Dev. The plot on the right shows the average score gain (score is computed according to Eq. 7) for each
Rocchio expansion step with grammar G4 on NQ Dev. Shaded area is between 5− 95th percentiles.

find a first valid step, since Eq. 6a takes discrete values. Hence, we introduce a second component, NDCEMk

(Eq. 6b) where em(d|q) = 1 if the answer extracted from d by the reader exactly matches a, 0 otherwise.
NDCEMk helps validate results by promoting high-ranking passages yielding correct answer spans. Finally,
to favour high-confidence result sets we add the normalized Passage Score of the top k results, leading to the
following scoring function

Sk(D|q) := (1− λ1 − λ2) ·NDCGk(D|q) + λ2 ·NDCEMk(D|q) + λ1 ·
1
k

k∑
i=1

PS(di|q) ∈ [0, 1] (7)

Based on (7), we define the search step reward

rt = S5(Dt|q0)− S5(Dt−1|q0). (8)

We train the MuZero agent directly on the reward. The reward is sparse, as none is issued in between search
steps. The T5 agent is trained indirectly on the reward via the induction of Rocchio sessions (cf. §2.3).

5 Experiments

For our experiments we use the OpenQA-NQ dataset (Lee et al., 2019). This data is derived from Natural
Questions (Kwiatkowski et al., 2019) and consists of Google queries paired with answers extracted from
Wikipedia by human annotators. The data includes 79,168 train questions, 8,757 dev questions and 3,610
for test. We use the provided partitions and Wikipedia dump. Following Lee et al. (2019) we pre-process
Wikipedia into blocks of 288 tokens, for a total of 13M passages. We evaluate each system on the top-5
288-token passages returned. Model selection and data analysis are performed on NQ Dev, using the reward
(Eq. 8) as the objective.

5.1 Rocchio Sessions Data

We generate synthetic search sessions using Rocchio expansions for 5 different combinations of types of
refinements. We refer to these as grammars: G0 (allows only simple terms), G1 (only term boosting, with
weight i ∈ {0.1, 2, 4, 6, 8}), G2 (‘+’ and ‘-’), G3 (G0+G2) and G4 (G0+G1+G2). Given the original query, a
Rocchio session is generated as follows: We attempt at most M = 100 possible refinements for each grammar
operator using terms from the constructed dictionaries Σ↑t and Σ↓t (see Eq. 3). For instance, for the ‘+’
operator we attempt refinements of the form ‘+(field: “term”)’, where term is taken from the top-M terms
in the intersection dictionary Σ↑t and field represents the field (content or title) where such term was found.
Dictionaries Σ↑t and Σ↓t are constructed (cf. §2.3) based on the set Σt of top N = 100 terms present in the
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documents retrieved so far, sorted according to Lucene’s IDF score. For each of such possible refinements we
issue the corresponding query to Lucene and, based on the returned documents, we evaluate the resulting
score. We use the scoring function of Eq. 7 with coefficients λ1=0.2, λ2=0.6, after a search against the final
quality metrics (cf. Appendix C). Then, we select the refinement leading to the highest score and neglect
the other ones. This process continues until no score-improving refinement can be found, for a maximum
of 20 refinement steps. A more formal description of the Rocchio session search procedure is summarized
in Algorithm 1 in Appendix A, while examples of such sessions are reported in Table 1, Table A.9 and
Table A.10.

In Figure 2a, we plot the histogram of the length of Rocchio sessions on NQ Dev, using the different grammars.
We observe that most sessions terminate after a number of steps significantly smaller than 20, either because
the maximum score is reached or because no score improvements can be found. For instance, using the G4
grammar, Rocchio sessions have an average length of 5.06 steps with standard deviation 3.28. Results are
similar on NQ Train, where with grammar G4 we obtain 298,654 single Rocchio expansion steps from 77,492
questions (in Table A.1 we report the numbers for different grammars). Moreover, we have observed the
first query expansion steps produce higher score gains with respect to later ones. This can be observed in
Figure 2b where we plot the average per-step score’s gain. This indicates that performing longer Rocchio
expansions yields diminishing marginal gains.

5.2 Agents Training and Inference

The machine reader and passage scorer, as well as MuZero’s hθ function, use 12-layer BERT systems.6 To
train the former, we generate for each query in NQ Train 200 candidate passages from our BM25 system,
picking one positive and 23 negative passages for each query at random whenever the query is encountered
during training. The reader/scorer is not trained further. MuZero’s representation function is trained jointly
with the rest of the MuZero system.

For the T5 agent we start from the pretrained T5-11B (11 billion parameters) public checkpoint and continue
training on the NQ Train Rocchio expansions. Training took about 5 days using 16 Cloud TPU v3. At
inference time, we found that fixing the sessions to 20 steps worked best for both T5 and MuZero. Indeed,
we observed performance increase monotonically with the search steps, with decreasing marginal gains (see
Figure 4 where we plot the NQ Dev performance of one of our T5 agents as well as the supervised Rocchio
sessions, as a function of the number of refinement steps). We report detailed training configurations and
ablations in Appendix D.

The MuZero implementation is scaled and distributed via an agent-learner setup (Espeholt et al., 2018) in the
SEED RL (Espeholt et al., 2020) framework allowing for centralized batching of inference for effective use of
accelerators. MuZero is trained on NQ Train for a total of 1.6 million steps (≈10 days) using 500 CPU-based
actors and 4 Cloud TPU v2 for inference and training on the learner.7 For each step, 100 simulations are
performed. During training, we limit sessions to a maximum of 20 steps. The agent also can decide to stop
early by selecting a dedicated stop action. Training of MuZero can be improved by providing advice to the
actors. An actor may receive information about which terms wt should be promoted, wt ∈ Σ↑t , or demoted,
wt ∈ Σ↓t . The probability of an episode receiving advice starts at 0.5 and decays linearly to 0 in one million
steps.

5.3 Results

Table 2 summarizes the results on OpenQA-NQ Test. We evaluate passage retrieval quality by means of
ranking (NDCG@5) and precision (Top-1, Top-5) metrics. We also report Exact Match (EM) to evaluate
answer quality. The baseline is Lucene’s BM25 one-shot search. Reranking the same BM25 documents
by the PS score (BM25+PS) is easy and improves performance on all metrics, particularly noticeable on
Top-1 and EM.8 We also evaluate a pseudo relevance feedback variant of the BM25+PS baseline (+RM3).
Following (Jaleel et al., 2004; Pal et al., 2013), at each iteration we pick the highest scoring term in the

6BERT-base, initialized from https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1.
7For details, see https://cloud.google.com/tpu.
8Top-5 is identical to BM25 since the documents are the same.
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Table 2: Results on the test partition of OpenQA-NQ. The BM25 column reports the performance of
the Lucene-BM25 search engine. BM25+PS refers to reranking the top-5 BM25 results with the BERT
passage scorer (PS). BM25+PS+RM3 is a pseudo-relevance feedback baseline that iteratively adds
terms to the query and uses the passage scorer (PS) to aggregate the retrieved results. MuZero is the
performance of the RL search agent using the full set of query expansion types (G4). T5-G1 is the best
T5 search agent, trained on the G1 grammar Rocchio sessions (using only term boosting). MuZero+T5s
is an ensemble of the documents returned by the MuZero agent and all T5 agents, ranked based on each
document PS score. For DPR’s performance (DPR) we report the most recent Top-1 and Top-5 results from
https://github.com/facebookresearch/DPR. Finally, Rocchio-G4 is an estimate of the headroom based
on the Rocchio sessions using the full grammar (G4). NDCG@5, Top-1 and Top-5 are retrieval quality
metrics, while EM (Exact Match) is the answer quality metric used in machine reading.

Metric BM25 +PS +RM3 MuZero T5-G1 MuZero+T5s DPR Rocchio-G4
NDCG@5 21.51 24.82 26.99 32.23 44.27 46.22 - 65.24
Top-1 28.67 44.93 46.13 47.97 52.60 54.29 52.47 73.74
Top-5 53.76 53.76 56.33 59.97 66.59 71.05 72.24 88.17
EM 28.53 41.14 40.14 32.60 44.04 44.35 41.50 62.35

search results based on the RM3 score, and add that term to the previous query with the ’+’ operator
applied to the document content. In Appendix E.1 we provide a detailed study of the retrieval performance
of this method, using all available operators, and comparing with an alternative IDF-based term selection
mechanism. Surprisingly, and somewhat against the general intuition behind pseudo relevance feedback, we
find that negating terms is more effective than promoting them. This seems to suggest that negative pseudo
relevance feedback, in combination with reranking (e.g., by the PS score), can provide a simple and useful
exploration device.

The last column (Rocchio-G4) reports the quality metrics for the best Rocchio sessions data, using the
grammar with all operators (G4). Rocchio expansions make use of the gold answer and thus can be seen
as a, possibly conservative, estimate of the performance upper bound. As the external benchmark we use
DPR (Karpukhin et al., 2020), a popular neural retriever based on dual encoders, the dominant architecture
for deep learning-based ad hoc retrieval (Craswell et al., 2020).

T5 We evaluate T5 models trained on all 5 grammar variants. The best one, ‘T5-G1’ in Table 2, is limited
to term boosting (G1), and it learns to use all available weight values (Figure 3a). In terms of Top-1 this
agent outperforms the published and the most recently posted DPR results9 but has worse Top-5 than both.
Results for all five T5 agents are found in Table A.6, we notice that the performance varies by relatively small
amounts using different grammars, but it peaks noticeably with ’T5-G1’. Figure 4 shows the performance
of the best Rocchio sessions data (Rocchio-G4) and that of the best T5 model (G1) as a function of the
maximum number of steps allowed, both increasing monotonically as expected.

MuZero On the retrieval task the MuZero agent outperforms all BM25 variants. While this result may
seem trivial, it marked a milestone that required many iterations to achieve. The challenge for RL in IR, and
NLU, is extreme in terms of state and action space dimensionality, data sparsity etc. (Zhang et al., 2021).
Our ideas for tackling some of these key challenges by fitting out agents with domain knowledge in principled
ways, with the grammar-guided MCTS as the centerpiece, seem to point in a promising direction. MuZero
converges to a policy which uses only term boost action types with a weight of 2 – see Figure 3a for the
action distributions of different policies. The MuZero agent is not able to find better-performing, diverse
policies. This is an extreme case of a more general pattern. Different sub-grammars represent different tactics;
e.g., ‘+’ and ‘-’ affect the accessible documents in irreversible ways, while boosting only affects ranking. It is
challenging for all agents, and particularly MuZero, to modulate effectively multiple sub-policies.

9https://github.com/facebookresearch/DPR.
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Figure 3: The plot on the left shows the relative frequency of action types chosen by the best versions of the
MuZero RL agent, the T5 agent that is learned on supervised episodes with the G1 grammar (only term
boosting) ’T5-G1’, and the Rocchio sessions with grammar G4 (complete grammar consisting of action types:
simple terms, term boosting, ‘+’, and ‘-’) ’Rocchio-G4’. Interestingly, the MuZero agent converges to only
use the ‘light’ boosting operation with a weight of 2. The T5 agent, on the other hand, makes use of the
whole spectrum of the boosting operations, including the boosting with 0.1, which down-weights a particular
term. The Rocchio query expansion uses the ‘+’ operator on the contents field most often. This can be seen
as an effective but potentially dangerous operation as it is a hard filtering on the presence of a certain term,
potentially reducing the resulting retrieval set drastically. The right plot shows the depth of the documents
in terms of retrieval rank based on the original query explored by the three agents. Here, we see that for all
three agents, a significant portion of documents are retrieved beyond rank 1000, which means that they find
relevant documents entirely hidden from a system relying on BM25 with only the original query.

(a) Rocchio-G4 supervised episodes (b) T5-G1 episodes

Figure 4: Performance on NQ Dev as a function of the number of query refinement steps. The plot on the left
shows the results for the performance of the supervised Rocchio sessions with grammar G4 (all operators),
while on the right we plot the performance of the trained T5-G1 agent trained on the G1 Rocchio sessions.

Agents Ensemble In the last experiment we combine all trained agents, the five T5 agents and MuZero,
in one ensemble. We simply rank the union of all the documents returned by the ensemble, by means of the
PS score on each document, thus not requiring any additional parameters. This ensemble (‘MuZero+T5s’ in
Table 2) has slightly better precision than the recent DPR in top position, and slightly worse for the Top-5.
This results indicates that the ability to orchestrate diverse sub-policies may indeed be the key to future
progress for search agents. For the record, the current SOTA for Top-5 is 74.0 (Qu et al., 2021).
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Table 3: Example of a T5-G4 agent session exhibiting multiple tactics. The session shows the evolution of
the search query (first line in each section) and snippets of the top-3 retrieved documents from the search
engine. We skip q1 and q2 for brevity. The colored spans indicate the prediction of the machine reader; blue
if it is correctly predicted, red otherwise. In the top right corner of each section, we report the score of the
retrieved document set at that step, according to Equation 7.

Query and Search Results Score

q0 who averaged the most points in college basketball history

Top-3 documents retrieved with q0: 0.027

d1 Title Gary Hill (basketball)
Content . . . one of four on that team who averaged double figures in points. Senior Larry Jones

was OCU’s leading scorer at 19.7 points a game, sophomore Bud Koper added 15.9. . .
d2 Title Kevin Foster (basketball)

Content . . . his senior year, Foster averaged 21 points per game and was named the MVP and
All-District 18-5A First Team. He was also a Texas top- 30 player his final season . . .

d3 Title Paul Cummins (basketball)
Content . . . big home win over Army. As a freshman, Cummins high-scored with 13 points against

final-four team Louisville (2004). After graduating in 2008, Cummins played for . . .

q3 who averaged the most points in college basketball history (contents:“per”∧6)
(contents:“scorer”∧4) (contents:“3”∧6)

Top-3 documents retrieved with q3: 0.330

d1 Title Alphonso Ford
Content . . . seasons. With 3,165 career points scored in the NCAA Division I, he is 4th on the

all-time scoring list, behind only Pete Maravich, Freeman Williams, and Lionel . . .
d2 Title Buzzy Wilkinson

Content Buzzy Wilkinson Richard Warren "Buzzy" Wilkinson (November 18, 1932 – January
15, 2016) was an American basketball player who was selected by the Boston Celtics in
. . .

d3 Title Gary Hill (basketball)
Content . . . becoming one of four on that team who averaged double figures in points. Senior

Larry Jones was OCU’s leading scorer at 19.7 points a game, sophomore Bud Koper
. . .

q4 who averaged the most points in college basketball history (contents:“per”∧6)
(contents:“scorer”∧4) (contents:“3”∧6) +(contents:“maravich”)

Top-3 documents retrieved with q4: 0.784

d1 Title Alphonso Ford
Content . . . seasons. With 3,165 career points scored in the NCAA Division I, he is 4th on the

all-time scoring list, behind only Pete Maravich, Freeman Williams, and Lionel . . .
d2 Title Pete Maravich

Content . . . had posted a 3–20 record in the season prior to his arrival. Pete Maravich finished
his college career in the 1970 National Invitation Tournament, where LSU finished fourth
. . .

d3 Title 1970 National Invitation Tournament
Content . . . represented the final college games for LSU great Pete Maravich, the NCAA’s

all-time leading scorer. Maravich finished his three-year career with 3,667 points . . .

Answer Quality We conclude by discussing answer quality. Agents routinely produce answer spans, as
predicted by the reader/scorer, to build observations. The MR/PS component is trained once, before the
agents, on the output of BM25. However, agents deeply affect the results composition. As Figure 3b shows,
search agents dig deep in the original BM25 ranking. This is positive, as behavior discovery is one of the main
motivations for researching exploratory methods like RL. As a consequence, though, the MR/PS component
effectively operates out of distribution and the EM numbers of the internal reader are not competitive with
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recent methods, Table A.7 reports all the numbers including on NQ Dev. Ideally, one would co-train the
observation builder with the search agent. However, combining the two would introduce significant engineering
complexity in the current architecture. For instance, one could interleave training the two as in DQNs (Mnih
et al., 2013).

A simpler alternative is to add the answer prediction task to the T5 agent. Retrieval-augmented answer
generation is known to produce strong results (Izacard & Grave, 2021). Multitasking would simplify the
design of the generative agents and possibly produce better models. We make a first step in this direction by
training a dedicated T5 agent. The system uses as training input the top-5 documents of the Rocchio-G4
episodes, but its task is to generate the gold answer, instead of the query expansion. At evaluation time,
based on the output of the ‘T5-G1’ and ‘MZ+T5s’ agents, the EM performance of the answer generation T5
is comparable to methods that build on DPR, such as RAG (Lewis et al., 2020b) (44.5 EM). Although not as
good as FID (Izacard & Grave, 2021) that condition on many more (100) documents.

5.4 Discussion

Limitations of Current Policies Table 3 illustrates an example where the T5-G4 agent (with the full
set of operators) switches policy mid-session. The question is about basketball records and BM25 does not
find good results. In the first three steps the agent focuses on re-ranking by boosting terms like ‘per’ (from
the phrase ‘per game’ in the results for q0) and ‘scorer’. This produces a good hit and predicted answer span
(‘Pete Maravich’) at position 1 of step 3. The agent then switches to filtering mode, to focus on documents
containing the answer term predicted by the machine reader. While this is a clear instance of successful policy
synthesis, the T5-G4 agent does not master switching between policies well enough to perform better than
T5-G1, the agent that only uses boost operators. Table 4 provides an example that shows how T5-G1 is more
robust than T5-G4. T5-G4 starts by requiring the presence of a misspelled term (‘highschool’) which leads to
empty results and the end of the session because that step is not reversible. T5-G1, instead, makes its way
gradually in the session boosting topical terms (‘draftees’) and players names eventually solving the query.

The agents ensemble results prove that the ability to orchestrate complementary sub-policies provides a
performance advantage. This suggests that the action space may benefit by including more control actions,
e.g. to ’undo’ or ’go back’ to a specific state, to better support safe exploration and the emergence of meta
policies. We plan to investigate this in future work. The previous point extends to the agents’ architecture.
It is reasonable to hypothesise that the superior performance of T5 is due to two main factors. T5s are bigger
models, trained on more data, and rely on a more powerful prediction process based on the encoder-decoder
architecture. In addition, they are finetuned on a self-supervised task which provides significant headroom.
While large LMs seem the obvious choice forward there are open questions concerning exploration. It is not
clear how much the model can generalize, being trained offline and never being exposed to its own predictions.
This moves the learning problem back towards RL. We have started to investigate approaches in the direction
of decision/trajectory transformers (Chen et al., 2021; Janner et al., 2021). We believe they provide a natural
framework for bringing back key RL concepts which could play an important role; for example, by allowing
successful policy synthesis by training from different offline policies; e.g., from Rocchio and MuZero.

Artificial vs Human Search Policies Based on human search behavior (cf. §2), it seems natural to
model search as an iterative, contextualized machine learning process. In terms of the number of steps
required, Rocchio sessions peak at around 5 steps, while also for humans, especially for hard queries, several
step are often necessary. Qualitatively speaking, though, they look different. For a start, while powerful,
search operators (at least in the current form) don’t allow to easily capture the full spectrum of human
search tactics. Human search sessions have been characterized broadly in terms of three types of refinement
actions: specification, generalization and reformulation (Lau & Horvitz, 1999; Downey et al., 2008). In this
respect the current current search agents lack the ability to explicitly generalize and fully reformulate. They
mostly perform filtering and reranking. Search operators may be better suited to complement, as power tools,
other plain language query refinement methods rather than being the centerpiece of the agent’s action space.
Evaluating plain language reformulation functionality is thus an obvious next step. However, the generation
of the necessary training data in this case is an open question. We will focus on this problem in future work.
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We also point out that the policies that can be currently generated via the Rocchio sessions, or by exploration
via Muzero, are artificial because they are driven by a reward which is an imperfect proxy for human relevance.
In future work, we plan to investigate new learning methods that include modeling of human policies, e.g., in
combination with apprenticeship learning frameworks (cf. (Nakano et al., 2021)).

Thoughts on OpenQA-NQ The Natural Questions dataset (Kwiatkowski et al., 2019) is unique in that
it builds from real user queries, with a great deal of attention to annotation and data quality. On the other
hand, the dataset is designed for a setup where the document is given. Hence, annotations are consistent
only within that document, not at the collection level. The retrieval setting implies that the vast majority of
the data have not been validated by raters. Additionally, the human ratings cannot be easily and reliably
aligned with a pre-computed segmentation into passages. Thus, one typically relies on the heuristic relevance
function, based on the presence of the short answer string, which cannot discriminate unjustified answers.
While imperfect, this setup strikes a local optimum that has driven significant innovation in IR and QA
research by allowing direct comparison of many different approaches in a fast moving landscape; e.g. from
ORQA (Lee et al., 2019) to closed book QA (Roberts et al., 2020) to RAG (Lewis et al., 2020b; Qu et al.,
2021), DPR (Karpukhin et al., 2020) etc. Another possible downside is the overlap between partitions, as
pointed out in (Lewis et al., 2021a). We controlled for this factor periodically by splitting the dev partition
into known and unknown answers (based on the presence of the answer in the train data). Consistently
with (Lewis et al., 2021a) we find a significant drop on the unknown answers but the same relative performance
of methods.

Broader Impact We would like to note that pre-trained language models of the kind used here have
been shown to capture societal biases (Tan & Celis, 2019; Webster et al., 2020), which motivates a broad
discussion about potential harms and mitigations (Blodgett et al., 2020; Bender et al., 2021). We have no
reason to believe our architectures would exacerbate biases, but the overall problems may persist. We also
hope that end-to-end optimization methods based on composite rewards, as in this proposal, can contribute
to addressing some of these challenges; e.g., by providing means of adversarial testing, and by including
relevant metrics directly in the objective design. We stress here that, while our agents yield performance
comparable to neural retrievers, they rely solely on interpretable, transparent, symbolic retrieval operations.

6 Related Work

Query optimization is an established topic in IR. Methods range from hand-crafted rules (Lawrence & Giles,
1998) to data-driven transformation patterns (Agichtein et al., 2001). Narasimhan et al. (2016) use RL to
query the web for information extraction. Nogueira & Cho (2017) and Buck et al. (2018) use RL-trained
agents to seek good answers by reformulating questions with seq2seq models. These methods are limited to
one-step episodes and queries to plain natural language. This type of modeling is closely related to the use of
RL for neural machine translation, whose robustness is currently debated (Choshen et al., 2020; Kiegeland
& Kreutzer, 2021). Montazeralghaem et al. (2020) propose a feature-based network to score potential
relevance feedback terms to expand a query. Das et al. (2019) propose to perform query reformulation in
embedding (continuous) space and find that it can outperform the sequence-based approach. Xiong et al.
(2021) successfully use relevance feedback by jointly encoding the question and the text of its retrieved
results for multi-hop QA. Other work at the intersection of IR and RL concerns bandit methods for news
recommendation (Li et al., 2010) and learning to rank (Yue & Joachims, 2009). Recently, interest in Deep RL
for IR has grown (Zhang et al., 2021). There, the search engine is the agent, and the user the environment.
In contrast, we view the search problem from the user perspective and thus consider the search engine as the
environment.

The literature on searchers’ behavior is vast, see e.g. Strzelecki (2020) for an overview of eye-tracking studies.
While behavior evolves with interfaces, users keep parsing results fast and frugally, attending to just a few
items. From a similar angle, Yuan et al. (2020) offer promising findings on training QA agents with RL
for template-based information gathering and answering actions. Most of the work in language-related RL
is otherwise centered on synthetic navigation/arcade environments (Hu et al., 2019). This line of research
shows that RL for text reading can help transfer (Narasimhan et al., 2018) and generalization (Zhong et al.,
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2020) in synthetic tasks but skirts the challenges of more realistic language-based problems. On the topic of
grammars, Neu & Szepesvári (2009) show that Inverse RL can learn parsing algorithms in combination with
PCFGs (Salomaa, 1969).

Current work in OpenQA focuses on the search engine side of the task, typically using dense neural passage
retrievers based on a dual encoder framework instead of BM25 (Lee et al., 2019; Karpukhin et al., 2020).
Leveraging large pre-trained language models to encode the query and the paragraphs separately led to a
performance boost across multiple datasets, not just in the retrieval metrics but also in exact-match score.
While Karpukhin et al. (2020) use an extractive reader on the top-k returned paragraphs, Lewis et al. (2020b)
further improves using a generative reader (BART (Lewis et al., 2020a)). This design combines the strengths
of a parametric memory – the pre-trained LM – with a non-parametric memory – the retrieved Wikipedia
passages supplied into the reader’s context. This idea of combining a dense retriever with a generative reader
is further refined in Izacard & Grave (2021), which fuses multiple documents in the decoding step. A recent
line of work is concerned with constraining the model in terms of the number of parameters or retrieval
corpus size while remaining close to state-of-the-art performance (Min et al., 2021). This effort led to a
synthetic dataset of 65 million probably asked questions (Lewis et al., 2021b) used to do a nearest neighbor
search on the question – no learned parameters needed – or train a closed-book generative model.

7 Conclusion

Learning to search sets an aspiring goal for AI, touching on key challenges in NLU and ML, with far
reaching consequences for making the world’s knowledge more accessible. Our paper provides the following
contributions. First, we open up the area of search session research to supervised language modeling. Second,
we provide evidence for the ability of RL to discover successful search policies in a task characterized by
multi-step episodes, sparse rewards and a high-dimensional, compositional action space. Lastly, we show how
the search process can be modeled via transparent, interpretable machine actions that build on principled
and well-established results in IR and NLU.

Our findings seem to agree with a long-standing tradition in psychology that argues against radical behaviorism
– i.e., pure reinforcement-driven learning, from tabula rasa – for language (Chomsky, 1959). RL agents require
a remarkable share of hard-wired domain knowledge. LM-based agents are easier to put to use, because
they rely on massive pre-training and abundant task-specific data for fine tuning. Supplied with the right
inductive bias, LM and RL search agents prove surprisingly effective. Different architectures learn different,
complementary, policies, suggesting broad possibilities in the design space for future work.
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Table 4: Snippet of episode examples from the T5-G1 (boosting only) agent vs. the T5-G4 agent (all
operators). The best performing T5 agent makes use of the boosting-only grammar. This example showcases
one reason that might explain the superiority of this particular grammar. The BM25 results for the initial
query, do not lead to satisfactory results, with a score of 0.081. The T5-G1 adjustments to the query; first,
boosting “draftees”, and later boosting “thon”, and “satnam” leads to almost perfect retrieval results with a
score of 0.946. On the other hand, the T5-G4 agent decides to constraint the results in the first step to those
including the term “highschool”. While this is a topical term, this leads to a bad retrieval results set from
which the agent cannot recover in later steps (omitted for brevity). The reason for this becomes apparent
when inspecting the good search results of the T5-G1 agent: they do not contain the term “highschool”, but
the terms “high school” or “high schoolers”. The constraint action (“+”) filters these good documents out.

Query and Search Results Score

q0 who was the last nba player to get drafted out of highschool

Top-2 documents retrieved with q0: 0.081

d1 Title 1996 NBA draft
Content . . . Jermaine O’Neal, Peja Stojaković, Antoine Walker), and one undrafted

All-Star (Ben Wallace), for a grand total of 11 All-Stars. . . .

d2 Title 2009 NBA draft
Content . . . The 2009 draft marked the first time three sons of former NBA players

were selected in the top 15 picks of the draft . . .

T5-G1 q1 who was the last nba player to get drafted out of highschool (contents:“draftees”∧2)

Top-2 documents after aggregation with retrieval results from T5-G1 q1: 0.374

d1 Title NBA high school draftees
Content . . . hold themselves back a year in high school before declaring for the draft,

like with Satnam Singh Bhamara or Thon Maker. The NBA has long had
a preference for players who played basketball at the collegiate level . . .

d1 Title 1996 NBA draft
Content . . . Jermaine O’Neal, Peja Stojaković, Antoine Walker), and one undrafted

All-Star (Ben Wallace), for a grand total of 11 All-Stars. . . .

T5-G1 q3 who was the last nba player to get drafted out of highschool
(contents:“draftees”∧2) (contents:“thon”∧4) (contents:“satnam”∧4)

Top-2 documents after aggregation with retrieval results from T5-G1 q3: 0.946

d1 Title NBA draft
Content . . . However, because of the new age requirement put in place in 2005, high

school seniors are no longer eligible for the draft, unless they were declared
as postgraduates by the NBA, which would not happen until 2015 with Indian
prospect Satnam Singh Bhamara in the second round and again in 2016 with
South Sudanese–Australian prospect Thon Maker in the first round. . . .

d2 Title Eligibility for the NBA draft
Content . . . However, in recent years, other players like Satnam Singh, Thon Maker,

and Matur Maker have looked to enter the NBA draft while still being high
schoolers by exploiting a loophole where they enter the draft as high school
postgraduates. . . .

T5-G4 q1 who was the last nba player to get drafted out of highschool +(contents:“highschool”)

Top-2 documents after aggregation with retrieval results from T5-G4 q1: 0.081

d1 Title 1996 NBA draft
Content . . . Jermaine O’Neal, Peja Stojaković, Antoine Walker), and one undrafted

All-Star (Ben Wallace), for a grand total of 11 All-Stars. . . .

d2 Title 2009 NBA draft
Content . . . The 2009 draft marked the first time three sons of former NBA players

were selected in the top 15 picks of the draft . . .

16



Published in Transactions on Machine Learning Research (06/2022)

References
Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning search engine specific query transformations
for question answering. In Proceedings of WWW10, pp. 169–178, 2001.

N.J. Belkin, R.N. Oddy, and H.M. Brooks. Ask for Information Retrieval: Part I. Background and Theory.
The Journal of Documentation, 38(2), 1982.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623, New York, NY, USA, 2021. doi:
10.1145/3442188.3445922.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson,
Jakub Pachocki, Michael Petrov, Henrique Pondè de Oliveira Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.
Dota 2 with large scale deep reinforcement learning. https://arxiv.org/abs/1912.06680, 2019.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is power:
A critical survey of “bias” in NLP. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 5454–5476, 2020. doi: 10.18653/v1/2020.acl-main.485. URL https:
//aclanthology.org/2020.acl-main.485.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901, 2020.

Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Andrea Gesmundo, Neil Houlsby, Wojciech Gajewski,
and Wei Wang. Ask the right questions: Active question reformulation with reinforcement learning. In
International Conference on Learning Representations, 2018.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-domain
questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1870–1879, 2017.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

N. Chomsky. Three models for the description of language. IRE Transactions on Information Theory, 2(3):
113–124, 1956.

N. Chomsky. Review of B. F. Skinner, Verbal Behavior . Language, 39:26–58, 1959.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri Abend. On the weaknesses of reinforcement learning
for neural machine translation. In International Conference on Learning Representations, 2020.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and Ellen M. Voorhees. Overview of
the trec 2020 deep learning track. ArXiv, abs/2102.07662, 2020.

W.B. Croft, Donald Metzler, and Trevor Strohman. Search Engines Information Retrieval in Practice.
Addison Wesley, 2009.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step retriever-reader
interaction for scalable open-domain question answering. In International Conference on Learning Repre-
sentations, 2019.

17

https://aclanthology.org/2020.acl-main.485
https://aclanthology.org/2020.acl-main.485


Published in Transactions on Machine Learning Research (06/2022)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, 2019.

Hao Dong, Zihan Ding, and Shanghang Zhang (eds.). Imitation Learning, pp. 273–306. Springer Singapore,
2020.

Doug Downey, Susan Dumais, Dan Liebling, and Eric Horvitz. Understanding the Relationship between
Searchers’ Queries and Information Goals. In Proceedings of the 17th ACM Conference on Information and
Knowledge Management, 2008.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable distributed
deep-RL with importance weighted actor-learner architectures. In Proceedings of the 35th International
Conference on Machine Learning, pp. 1407–1416, 2018.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable and
efficient deep-rl with accelerated central inference. In International Conference on Learning Representations,
2020.

Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of user behavior in www search.
In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 478–479, 2004.

Marti Hearst. Search user interfaces. Cambridge University Press, Cambridge; New York, 2009.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 29, 2016.

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, and Mike Lewis. Hierarchical decision making
by generating and following natural language instructions. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Jeff Huang and Efthimis Efthimiadis. Analyzing and evaluating query reformulation strategies in web search
logs. In CIKM, pp. 77–86, 2009.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open domain
question answering. In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, 2021.

Nasreen Jaleel, James Allan, W. Croft, Fernando Diaz, Leah Larkey, Xiaoyan Li, Mark Smucker, and Courtney
Wade. Umass at trec 2004: Novelty and hard. 01 2004.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. In Advances in Neural Information Processing Systems, 2021.

B. J. Jansen, D. L. Booth, and A. Spink. Patterns of query reformulation during web searching. Journal of
the American Society for Information Science and Technology, 60(7):1358–1371, 2009.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accurately interpreting
clickthrough data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 154–161, 2005.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020.

18



Published in Transactions on Machine Learning Research (06/2022)

Samuel Kiegeland and Julia Kreutzer. Revisiting the weaknesses of reinforcement learning for neural machine
translation. In Proceedings of NAACL, 2021.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions:
a benchmark for question answering research. Transactions of the Association of Computational Linguistics,
2019.

T. Lau and E. Horvitz. Patterns of Search: Analyzing and Modeling Web Query Refinement. In Proceedings
of the seventh international conference on User Modeling, 1999.

Steve Lawrence and C. Lee. Giles. Context and page analysis for improved web search. IEEE Internet
Computing, 2, 1998.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open domain
question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 6086–6096, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, pp. 7871–7880, 07 2020a.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9459–9474,
2020b.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. Question and answer test-train overlap in open-
domain question answering datasets. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, 2021a.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you can do with
them, 2021b.

L. Li, W. Chu, J. Langford, and R.E. Schapire. A contextual-bandit approach to personalized news article.
In Proceedings of WWW, 2010.

M; Hayes-Miches J Michie, D; Bain. Cognitive models from subcognitive skills. IEE control engineering
series, 1990.

Sewon Min, Jordan Boyd-Graber, Chris Alberti, Danqi Chen, Eunsol Choi, Michael Collins, Kelvin Guu,
Hannaneh Hajishirzi, Kenton Lee, Jennimaria Palomaki, Colin Raffel, Adam Roberts, Tom Kwiatkowski,
Patrick Lewis, Yuxiang Wu, Heinrich Küttler, Linqing Liu, Pasquale Minervini, Pontus Stenetorp, Sebastian
Riedel, Sohee Yang, Minjoon Seo, Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola De Cao, Edouard
Grave, Ikuya Yamada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei Miyawaki, Shun Sato, Ryo Takahashi,
Jun Suzuki, Martin Fajcik, Martin Docekal, Karel Ondrej, Pavel Smrz, Hao Cheng, Yelong Shen, Xiaodong
Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao, Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Wen tau Yih.
NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop,
2013.

19



Published in Transactions on Machine Learning Research (06/2022)

Ali Montazeralghaem, Hamed Zamani, and James Allan. A reinforcement learning framework for relevance
feedback. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 59–68, 2020.

Reiichiro Nakano, Jacob Hilton, S. Arun Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt: Browser-assisted
question-answering with human feedback. ArXiv, abs/2112.09332, 2021.

Karthik Narasimhan, Adam Yala, and Regina Barzilay. Improving information extraction by acquiring
external evidence with reinforcement learning. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, 2016.

Karthik Narasimhan, Regina Barzilay, and Tommi S. Jaakkola. Deep transfer in reinforcement learning by
language grounding. Journal of Artificial Intelligence Research, 63, 2018.

Gergely Neu and Csaba Szepesvári. Training parsers by inverse reinforcement learning. Machine Learning,
77, 2009.

Jakob Nielsen and Kara Pernice. Eyetracking Web Usability. New Riders Publishing, 2009.

Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation with reinforcement learning. In
Proceedings of EMNLP, 2017.

Vicki L. O’Day and Robin Jeffries. Orienteering in an information landscape: How information seekers get
from here to there. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in
Computing Systems, 1993. URL https://doi.org/10.1145/169059.169365.

Dipasree Pal, Mandar Mitra, and Kalyankumar Datta. Query expansion using term distribution and term
association. 03 2013.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. RocketQA: An optimized training approach to dense passage retrieval for open-
domain question answering. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, 2021. URL https:
//aclanthology.org/2021.naacl-main.466.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 2383–2392, 2016.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the parameters
of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020. URL https://aclanthology.org/2020.emnlp-main.437.

Stephen Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond.
Foundations and Trends in Information Retrieval, 3(4):333–389, 2009.

J. J. Rocchio. Relevance feedback in information retrieval. In G. Salton (ed.), The Smart retrieval system -
experiments in automatic document processing, pp. 313–323. Englewood Cliffs, NJ: Prentice-Hall, 1971.

Erick Rodríguez-Hernandez, Juan Irving Vasquez-Gomez, and Juan Carlos Herrera-Lozada. Flying through
gates using a behavioral cloning approach. In 2019 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 1353–1358, 2019.

20

https://doi.org/10.1145/169059.169365
https://aclanthology.org/2021.naacl-main.466
https://aclanthology.org/2021.naacl-main.466
https://aclanthology.org/2020.emnlp-main.437


Published in Transactions on Machine Learning Research (06/2022)

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635,
11–13 Apr 2011.

Daniel M. Russell. The Joy of Search: A Google Insider’s Guide to Going Beyond the Basics. The MIT
Press, 2019.

Sophie Rutter, Nigel Ford, and Paul Clough. How do children reformulate their search queries? Information
Research, 20(1), 2015.

Arto Salomaa. Probabilistic and weighted grammars. Information and Control, 15:529–544, 1969.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver.
Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(588):604–609, 2020.

Shobit Sharma, Girma Tewolde, and Jaerock Kwon. Behavioral cloning for lateral motion control of
autonomous vehicles using deep learning. In 2018 IEEE International Conference on Electro/Information
Technology (EIT), pp. 0228–0233, 2018.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Artur Strzelecki. Eye-tracking studies of web search engines: A systematic literature review. Information, 11
(6), 2020.

Yi Chern Tan and L. Elisa Celis. Assessing social and intersectional biases in contextualized word representa-
tions. In Advances in Neural Information Processing Systems, 2019.

Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger. The Perfect Search Engine
is Not Enough: A Study of Orienteering Behavior in Directed Search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2004.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Ellen Voorhees. The trec-8 question answering track report. In TREC, 11 2000.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of ndcg type ranking
measures. In Proceedings of the 26th Annual Conference on Learning Theory, pp. 25–54, 2013.

Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel, Emily Pitler, Ellie Pavlick, Jilin Chen, and Slav Petrov.
Measuring and reducing gendered correlations in pre-trained models. https://arxiv.org/abs/2010.06032,
2020.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas Oguz. Answering complex open-domain questions with
multi-hop dense retrieval. In International Conference on Learning Representations, 2021.

Xingdi Yuan, Jie Fu, Marc-Alexandre Côté, Yi Tay, Chris Pal, and Adam Trischler. Interactive machine
comprehension with information seeking agents. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, Online, July 2020. Association for Computational Linguistics.

Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits problem.
In Proceedings of ICML, 2009.

21



Published in Transactions on Machine Learning Research (06/2022)

Weinan Zhang, Xiangyu Zhao, Li Zhao, Dawei Yin, and Grace Hui Yang. Drl4ir: 2nd workshop on deep
reinforcement learning for information retrieval. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2681–2684, 2021.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to new environment dynamics
via reading. In International Conference on Learning Representations, 2020.

22



Published in Transactions on Machine Learning Research (06/2022)

Appendix

A Rocchio Sessions

Algorithm 1: Rocchio Sessions
input :A question-answer pair (q, a), k = 5, num_steps = 20, N = 100, M = 100
output :A set of observation-query expansion pairs for training a T5 agent RQE = {(ot,∆qt)}
RQE← ∅ qt ← q;
Dt ← ∅ ; // Unique documents found in the session
q∗ ← q +(contents:“a”) ; // The ideal query
D∗ ← LuceneBM25(q∗) ; // Use search to get the top k documents

// Use the agent PS and MR components to rerank the documents, extract answer spans to compute
the snippets from the top k results, and compile the observation (cf. also Appendix B)

o∗ ← ComputeObservation(q, q∗,D∗, k);
Σ∗ ← TopNTermsByLuceneIDF(o∗, N) ; // Collect good search terms
for t← 1 to num_steps do
Dt ← Dt ∪ LuceneBM25(qt);
ot ← ComputeObservation(q, qt,Dt, k);
Σt ← TopNTermsByLuceneIDF(ot, N);
Σ↑t ← Σ∗ ∩ Σt, Σ↓t ← Σt − Σ∗;
st ← ComputeScore(q,Dt, k); // Compute the score using Eq.(7)
max_score← st;
best_action← ∅;
// Evaluate all available operators
for op ∈ {+,−,∧0.1,∧2,∧4,∧6,∧8, ‘ ’} do

num_tries← 0;
for w ∈ Σ↑t ∪ Σ↓t do

if (op == ′−′ ∧ w ∈ Σ↓) ∨ (op 6= ′−′ ∧ w ∈ Σ↑) ∧ (num_tries < M) then
∆qt ← op(w.field, w.term); // Query refinement according to semantic operator
q′ ← qt + ∆qt;
D′ ← Dt ∪ LuceneBM25(q′);
s′ ← ComputeScore(q,D′, k);
num_tries← num_tries + 1;
if s′ > max_score then

max_score← s′;
best_action← ∆qt;

end
else

continue;
end

end
end
if max_score > st then

// If the best action improves the score, add this step to the data, and continue the
session

qt ← qt + best_action;
RQE← RQE ∪ (ot, best_action);

else
return RQE;

end
end
return RQE
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Algorithm 1 provides a schematic summary of the procedure for generating Rocchio sessions described in §5.1,
using the full set of grammar operators (G4). We omit the terms source for simplicity and readability, but it
should be straightforward to reconstruct. Table A.10 shows another example of such a Rocchio expansion
session.

In Table A.1 below, we report the total number of expansion steps performed on NQ Train. These are used
as supervised training data for our T5 agents.

G0 G1 G2 G3 G4
243,529 313,554 230,921 246,704 298,654

Table A.1: Total number of Rocchio expansion steps in NQ Train for different grammars on the 77,492
Rocchio sessions.

B Observation Building Details

This section provides more details and examples about the encoding of observations for both the MuZero and
the T5 agent. As described in Section 2.2, the main part of the observation consists of the top-5 documents
from all results retrieved so far, ∪ti=0Di. The documents are sorted according to the PS score and reduced
in size by extracting fixed-length snippets around the machine reader’s predicted answer. Moreover, the
corresponding Wikipedia article title is appended to each document snippet. The computational complexity
of this step is determined by running a BERT-base (110M parameters) machine reader separately (albeit
possibly in parallel) over five passages. In addition to the top documents, the observation includes the original
question and information about any previous refinements. While the main part of the observation is shared
between the MuZero and the T5 agent, there are differences in the exact representation. The following two
paragraphs give a detailed explanation and example for both agents.

B.1 MuZero Agent’s State (cf. §2.2)

The MuZero agent uses a custom BERT (initialized from BERT-base) with additional embedding layers to
represent the different parts of the observation. It consists of four individual embedding layers as depicted in
Figure A.1. At first, the standard layer for the tokens of the query, the current tree, and the current top-5
documents D. The second layer assigns a type ID to each of the tokens representing if a token is part of the
query, the tree, the predicted answer, the context, or the title of a document. The last two layers add scoring
information about the tokens as float values. We encode both the inverse document frequency (IDF) of a
word and the documents’ passage selection (PS) score. Figure A.2 shows a concrete example of a state used
by the MuZero agent.

q0
<latexit sha1_base64="q2caZ2IDFqyYjSdGSku7a55qoZo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbOLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp/rHn9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEA0I2c</latexit>

IDq
<latexit sha1_base64="S0KyQJZBI0YqkLq0M+KKvEvYoTg=">AAAB8nicbVBNSwMxEM36WetX1aOXYBE8ld0q6LGoB71VsB+wXUo2zbah2WRNZsWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSK4Adf9dpaWV1bX1gsbxc2t7Z3d0t5+06hUU9agSijdDolhgkvWAA6CtRPNSBwK1gqHVxO/9ci04UrewyhhQUz6kkecErCS3wH2BNnt9bj70C2V3Yo7BV4kXk7KKEe9W/rq9BRNYyaBCmKM77kJBBnRwKlg42InNSwhdEj6zLdUkpiZIJuePMbHVunhSGlbEvBU/T2RkdiYURzazpjAwMx7E/E/z08huggyLpMUmKSzRVEqMCg8+R/3uGYUxMgSQjW3t2I6IJpQsCkVbQje/MuLpFmteKeV6t1ZuXaZx1FAh+gInSAPnaMaukF11EAUKfSMXtGbA86L8+58zFqXnHzmAP2B8/kDfL2RYg==</latexit>

l0, . . . , lm
<latexit sha1_base64="P5xe/uYHktZogTVUW0BvkmIixw0=">AAAB+HicbVBNSwMxFHxbv2r96KpHL8EieChltwp6LHrxWMHWQrss2TTbhibZJckKtfSXePGgiFd/ijf/jWm7B20dCAwzb3gvE6WcaeN5305hbX1jc6u4XdrZ3dsvuweHbZ1kitAWSXiiOhHWlDNJW4YZTjupolhEnD5Eo5uZ//BIlWaJvDfjlAYCDySLGcHGSqFb5qFXRb1+YnQV8VCEbsWreXOgVeLnpAI5mqH7ZcMkE1QawrHWXd9LTTDByjDC6bTUyzRNMRnhAe1aKrGgOpjMD5+iU6v0UZwo+6RBc/V3YoKF1mMR2UmBzVAvezPxP6+bmfgqmDCZZoZKslgUZxyZBM1aQH2mKDF8bAkmitlbERlihYmxXZVsCf7yl1dJu17zz2v1u4tK4zqvowjHcAJn4MMlNOAWmtACAhk8wyu8OU/Oi/PufCxGC06eOYI/cD5/ADTmkiY=</latexit>

IDtree
<latexit sha1_base64="OzLFw5Y5TBBJc+3iKwq1/gtgcuw=">AAACAXicbZDLSsNAFIYnXmu8Rd0IboJFcFWSKuiyqAvdVbAXaEOZTE/boZMLMydiCXHjq7hxoYhb38Kdb+O0zUJbfxj4+M85nDm/Hwuu0HG+jYXFpeWV1cKaub6xubVt7ezWVZRIBjUWiUg2fapA8BBqyFFAM5ZAA19Awx9ejuuNe5CKR+EdjmLwAtoPeY8zitrqWPtmG+EB05urrJNOESVAlnWsolNyJrLnwc2hSHJVO9ZXuxuxJIAQmaBKtVwnRi+lEjkTkJntREFM2ZD2oaUxpAEoL51ckNlH2unavUjqF6I9cX9PpDRQahT4ujOgOFCztbH5X62VYO/cS3kYJwghmy7qJcLGyB7HYXe5BIZipIEyyfVfbTagkjLUoZk6BHf25Hmol0vuSal8e1qsXORxFMgBOSTHxCVnpEKuSZXUCCOP5Jm8kjfjyXgx3o2PaeuCkc/skT8yPn8ARwmXbw==</latexit>

IDa, IDc, IDt,
<latexit sha1_base64="Pq+o2XO/fCS05/DLkgopL0U/2/8=">AAACF3icbVBLS8NAEN7UV42vqEcvi0XwICWpgh6LetBbBfuANpTNdtMu3TzYnYgl5F948a948aCIV735b9y2OdjWgYXvMcPsfF4suALb/jEKS8srq2vFdXNjc2t7x9rda6gokZTVaSQi2fKIYoKHrA4cBGvFkpHAE6zpDa/GfvOBScWj8B5GMXMD0g+5zykBLXWtstkB9gjp7XXWTUl2gv9QOktB065Vssv2pPAicHJQQnnVutZ3pxfRJGAhUEGUajt2DG5KJHAqWGZ2EsViQoekz9oahiRgyk0nd2X4SCs97EdSvxDwRP07kZJAqVHg6c6AwEDNe2PxP6+dgH/hpjyME2AhnS7yE4EhwuOQcI9LRkGMNCBUcv1XTAdEEgo6SlOH4MyfvAgalbJzWq7cnZWql3kcRXSADtExctA5qqIbVEN1RNETekFv6N14Nl6ND+Nz2low8pl9NFPG1y+kR5+Y</latexit>

. . . , IDa, IDc, IDt
<latexit sha1_base64="qKsCb2atCEiqQxge4IG7VDqmGOY=">AAACHHicbVDLSsNAFJ34rPUVdelmsAgupCStoMuiLnRXwT6gDWEynbRDJw9mbsQS8iFu/BU3LhRx40Lwb5y2WdjWAwPnnnMvd+7xYsEVWNaPsbS8srq2Xtgobm5t7+yae/tNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh1dhvPTCpeBTewyhmTkD6Ifc5JaAl16wWu70I1CnuAnuE9PY6c1OSzZR0toTMNUtW2ZoALxI7JyWUo+6aX3oJTQIWAhVEqY5txeCkRAKngmXFbqJYTOiQ9FlH05AETDnp5LgMH2ulh/1I6hcCnqh/J1ISKDUKPN0ZEBioeW8s/ud1EvAvnJSHcQIspNNFfiIwRHicFO5xySiIkSaESq7/iumASEJB51nUIdjzJy+SZqVsV8uVu7NS7TKPo4AO0RE6QTY6RzV0g+qogSh6Qi/oDb0bz8ar8WF8TluXjHzmAM3A+P4F1fSh4A==</latexit>

idf(q0)
<latexit sha1_base64="/jziBSASRLIwoL8ExveH0GltBCw=">AAAB+XicbVBNS8NAEN3Urxq/oh69BItQLyWpgh6LXjxWsB/QhrDZbNqlm03cnRRL6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzgpQzBY7zbZTW1jc2t8rb5s7u3v6BdXjUVkkmCW2RhCeyG2BFORO0BQw47aaS4jjgtBOMbmd+Z0ylYol4gElKvRgPBIsYwaAl37LMPtAnyFkYTauPvnPuWxWn5sxhrxK3IBVUoOlbX/0wIVlMBRCOleq5TgpejiUwwunU7GeKppiM8ID2NBU4psrL55dP7TOthHaUSF0C7Ln6eyLHsVKTONCdMYahWvZm4n9eL4Po2suZSDOggiwWRRm3IbFnMdghk5QAn2iCiWT6VpsMscQEdFimDsFdfnmVtOs196JWv7+sNG6KOMroBJ2iKnLRFWqgO9RELUTQGD2jV/Rm5MaL8W58LFpLRjFzjP7A+PwBkWWS9g==</latexit>

0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit>

0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit>

Layer
<latexit sha1_base64="Em1Ed+z6u16Dm98c3Ksvxjomalg=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXQxsIigvmQ5Ah7m7lkye7dsbsnHCG/wsZCEVt/jp3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJH2DTcCOwkCqkMBLaD8c3Mbz+h0jyOHkyWoC/pMOIhZ9RY6bEXhOSOZqj65Ypbdecgq8TLSQVyNPrlr94gZqnEyDBBte56bmL8CVWGM4HTUi/VmFA2pkPsWhpRidqfzA+ekjOrDEgYK1uRIXP198SESq0zGdhOSc1IL3sz8T+vm5rwyp/wKEkNRmyxKEwFMTGZfU8GXCEzIrOEMsXtrYSNqKLM2IxKNgRv+eVV0qpVvYtq7b5WqV/ncRThBE7hHDy4hDrcQgOawEDCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AVN5kBc=</latexit>

Query
<latexit sha1_base64="EZ1q8F+EydebgOoqUorliQkEdW4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXQxjIB8yHJEfY2c8mSvb1jd08IR36FjYUitv4cO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu7nfeUKleSwfzDRBP6IjyUPOqLHSYz8ISTNFNR2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp6RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/J0OukBkxtYQyxe2thI2poszYjEo2BG/15XXSrlW9q2qtWavUb/M4inAG53AJHlxDHe6hAS1gEMEzvMKbo5wX5935WLYWnHzmFP7A+fwBeZKQMA==</latexit>

Tree
<latexit sha1_base64="g3aYmPNFnnTGPj1O9uwOB7HuJeI=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXQxjJCviA5wt5mLlmyt3fu7gnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByN/c7T6g0j2XTTBP0IzqSPOSMGit1+0FImgpxUK64VXcBsk68nFQgR2NQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz1JJI9R+trh3Ri6sMiRhrGxJQxbq74mMRlpPo8B2RtSM9ao3F//zeqkJb/yMyyQ1KNlyUZgKYmIyf54MuUJmxNQSyhS3txI2pooyYyMq2RC81ZfXSbtW9a6qtYdapX6bx1GEMziHS/DgGupwDw1oAQMBz/AKb86j8+K8Ox/L1oKTz5zCHzifP4abj6A=</latexit>

Document Results
<latexit sha1_base64="tER6OCei91txxSw8zoRuVJ1TuOI=">AAAB/XicbVDLSgMxFL3js9bX+Ni5CRbBVZmpC10WdeGyin1AO5RMeqcNzTxIMkIdir/ixoUibv0Pd/6NaTsLbT0QOJxzb3Jy/ERwpR3n21paXlldWy9sFDe3tnd27b39hopTybDOYhHLlk8VCh5hXXMtsJVIpKEvsOkPryZ+8wGl4nF0r0cJeiHtRzzgjGojde3Djh+Q65ilIUaa3KFKhVZdu+SUnSnIInFzUoIcta791enldzBBlWq7TqK9jErNmcBxsZMqTCgb0j62DY1oiMrLpunH5MQoPRLE0hyTYar+3shoqNQo9M1kSPVAzXsT8T+vnergwst4lKQaIzZ7KEgF0TGZVEF6XCLTYmQIZZKbrIQNqKRMm8KKpgR3/suLpFEpu2flym2lVL3M6yjAERzDKbhwDlW4gRrUgcEjPMMrvFlP1ov1bn3MRpesfOcA/sD6/AEquJUK</latexit>

Tokens
<latexit sha1_base64="xPRtvX+9aDwyajmVkfv9HeuXxJI=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5ioWXQxjJCviA5wt5mLlmzt3vs7gnhyH+wsVDE1v9j579xk1yhiQ8GHu/NMDMvTDjTxvO+ncLG5tb2TnG3tLd/cHhUPj5pa5kqii0quVTdkGjkTGDLMMOxmygkccixE07u5n7nCZVmUjTNNMEgJiPBIkaJsVK7KSco9KBc8areAu468XNSgRyNQfmrP5Q0jVEYyonWPd9LTJARZRjlOCv1U40JoRMywp6lgsSog2xx7cy9sMrQjaSyJYy7UH9PZCTWehqHtjMmZqxXvbn4n9dLTXQTZEwkqUFBl4uilLtGuvPX3SFTSA2fWkKoYvZWl46JItTYgEo2BH/15XXSrlX9q2rtoVap3+ZxFOEMzuESfLiGOtxDA1pA4RGe4RXeHOm8OO/Ox7K14OQzp/AHzucPp3SPLA==</latexit>

Type
<latexit sha1_base64="atUwDPx+A0CTFKhORAxU7OQ3szo=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd140GPQi8cIeUGyhNnJbDJkHsvMrBCW/IIXD4p49Ye8+TfOJnvQxIKGoqqb7q4o4cxY3//2Nja3tnd2S3vl/YPDo+PKyWnHqFQT2iaKK92LsKGcSdq2zHLaSzTFIuK0G03vc7/7RLVhSrbsLKGhwGPJYkawzaWWk4aVql/zF0DrJChIFQo0h5WvwUiRVFBpCcfG9AM/sWGGtWWE03l5kBqaYDLFY9p3VGJBTZgtbp2jS6eMUKy0K2nRQv09kWFhzExErlNgOzGrXi7+5/VTG9+GGZNJaqkky0VxypFVKH8cjZimxPKZI5ho5m5FZII1JtbFU3YhBKsvr5NOvRZc1+qP9WrjroijBOdwAVcQwA004AGa0AYCE3iGV3jzhPfivXsfy9YNr5g5gz/wPn8AG8yORg==</latexit>

IDF Score
<latexit sha1_base64="jwnweot7Hmhg2q8/vqDv/uONvUs=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBA8hd140GNQEb1FNA9JljA76SRD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFMWfG+v63t7S8srq2ntvIb25t7+wW9vbrRiWaQo0qrnQzIgY4k1CzzHJoxhqIiDg0ouHlxG88gTZMyQc7iiEUpC9Zj1FinfR4e3WN76nS0CkU/ZI/BV4kQUaKKEO1U/hqdxVNBEhLOTGmFfixDVOiLaMcxvl2YiAmdEj60HJUEgEmTKcHj/GxU7q4p7QrafFU/T2REmHMSESuUxA7MPPeRPzPayW2dx6mTMaJBUlni3oJx1bhyfe4yzRQy0eOEKqZuxXTAdGEWpdR3oUQzL+8SOrlUnBaKt+Vi5WLLI4cOkRH6AQF6AxV0A2qohqiSKBn9IrePO29eO/ex6x1yctmDtAfeJ8/1ROPxQ==</latexit>

PS Score
<latexit sha1_base64="RNcqSotruBTNJRftMaxzgrmi+Lk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0stAzaWEZiPiA5wt5mLlmyt3fu7gnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSATXxnW/nbX1jc2t7cJOcXdv/+CwdHTc0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzUqTdIg8UK+6WyW3HnIKvEy0kZctT7pa/eIGZphNIwQbXuem5i/Iwqw5nAabGXakwoG9Mhdi2VNELtZ/N7p+TcKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms+fJgCtkRkwsoUxxeythI6ooMzaiog3BW355lbSqFe+yUr2vlms3eRwFOIUzuAAPrqAGd1CHJjAQ8Ayv8OY8Oi/Ou/OxaF1z8pkT+APn8wdlu4+L</latexit>

idf(a0), idf(c0), idf(t0), . . . , idf(an), idf(cn), idf(tn)
<latexit sha1_base64="O3B7wVKWAjKvpJYGqWtO7ERfMS8=">AAACVHicbZFLSwMxFIUzU6u1aq26dBMsQgtSZqqgy6IblxXsA9oyZNJMG5rJDMkdsQz9kboQ/CVuXJg+Fu3UC4HDd+/hJid+LLgGx/m27Nxefv+gcFg8Oj4pnZbPzjs6ShRlbRqJSPV8opngkrWBg2C9WDES+oJ1/enTot99Y0rzSL7CLGbDkIwlDzglYJBXng6AvUPKR8G8SjyndoM3AM0CWIFRBHqLE09mnTLrlDWvXHHqzrLwrnDXooLW1fLKn2YVTUImgQqidd91YhimRAGngs2Lg0SzmNApGbO+kZKETA/TZShzfG3ICAeRMkcCXtJNR0pCrWehbyZDAhOd7S3gf71+AsHDMOUyToBJuloUJAJDhBcJ4xFXjIKYGUGo4uaumE6IIhTMPxRNCG72ybui06i7t/XGy12l+biOo4Au0RWqIhfdoyZ6Ri3URhR9oB8LWZb1Zf3aOTu/GrWttecCbZVd+gMhtbHy</latexit>

a0, c0, t0, . . . , an, cn, tn
<latexit sha1_base64="Rppm5OufQnYTVueQ68teunkfTis=">AAACDHicbVDLSgMxFM3UV62vqks3wSK4KGWmCrosunFZwbZCOwyZNNOGZjJDckcopR/gxl9x40IRt36AO//GpJ2Fth7I5XDOvUnuCVPBNbjut1NYWV1b3yhulra2d3b3yvsHbZ1kirIWTUSi7kOimeCStYCDYPepYiQOBeuEo2vrdx6Y0jyRdzBOmR+TgeQRpwSMFJQrJHCrmNoCtvT6CegqJoG0qrSq7XJr7gx4mXg5qaAczaD8Za6hWcwkUEG07npuCv6EKOBUsGmpl2mWEjoiA9Y1VJKYaX8yW2aKT4zSx1GizJGAZ+rviQmJtR7HoemMCQz1omfF/7xuBtGlP+EyzYBJOn8oygSGBNtkcJ8rRkGMDSFUcfNXTIdEEQomv5IJwVtceZm06zXvrFa/Pa80rvI4iugIHaNT5KEL1EA3qIlaiKJH9Ixe0Zvz5Lw4787HvLXg5DOH6A+czx/8d5hv</latexit>

idf(l0), . . . , idf(lm)
<latexit sha1_base64="MIAgd3IkT6c4y69KHryVQl8wn4c=">AAACEHicbVDLSgMxFM3UV62vUZdugkVsQcpMFXRZdOOygn1AOwyZNNOGZh4kd8Qy9BPc+CtuXCji1qU7/8a0nUVtPRByOOfem9zjxYIrsKwfI7eyura+kd8sbG3v7O6Z+wdNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzhzcRvPTCpeBTewyhmTkD6Ifc5JaAl1zztAnuElPf8cUm4VvkMd3sRKH3N60HZNYtWxZoCLxM7I0WUoe6a33oQTQIWAhVEqY5txeCkRAKngo0L3USxmNAh6bOOpiEJmHLS6UJjfKKVHvYjqU8IeKrOd6QkUGoUeLoyIDBQi95E/M/rJOBfOSkP4wRYSGcP+YnAEOFJOrjHJaMgRpoQKrn+K6YDIgkFnWFBh2AvrrxMmtWKfV6p3l0Ua9dZHHl0hI5RCdnoEtXQLaqjBqLoCb2gN/RuPBuvxofxOSvNGVnPIfoD4+sXngucUA==</latexit>

PS(d0), . . . , PS(dn)
<latexit sha1_base64="QR3EuXrMcVUn08aNZEEsH4fTc7M=">AAACDnicbVDLSgMxFM34rPU16tJNsBRakDJTBV0W3bisaB/QDkMmTdvQTGZI7ohl6Be48VfcuFDErWt3/o3pY1FbD4Qczrn3JvcEseAaHOfHWlldW9/YzGxlt3d29/btg8O6jhJFWY1GIlLNgGgmuGQ14CBYM1aMhIFgjWBwPfYbD0xpHsl7GMbMC0lP8i6nBIzk2/k2sEdIq3ejQsd3iqe43YlAm2tOlkXfzjklZwK8TNwZyaEZqr79bebQJGQSqCBat1wnBi8lCjgVbJRtJ5rFhA5Ij7UMlSRk2ksn64xw3igd3I2UORLwRJ3vSEmo9TAMTGVIoK8XvbH4n9dKoHvppVzGCTBJpw91E4EhwuNscIcrRkEMDSFUcfNXTPtEEQomwawJwV1ceZnUyyX3rFS+Pc9VrmZxZNAxOkEF5KILVEE3qIpqiKIn9ILe0Lv1bL1aH9bntHTFmvUcoT+wvn4BZDibDQ==</latexit>

Figure A.1: Schematic illustration of the MuZero search agent’s state for the BERT representation function.
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Table A.2: Example state of the MuZero search agent that is the input to the BERT representation function.
The ‘Type’ layer encodes the state part information for each token. The ‘IDF’ and ‘PS’ layer are additional
layers with float values of the IDF and the PS score of the input tokens, respectively.

Tokens [CLS] who carries the burden of going forward with evidence in a trial

· · ·
Type [CLS] query query query query query query query query query query query query
IDF 0.00 0.00 6.77 0.00 7.77 0.00 5.13 5.53 0.00 5.28 0.00 0.00 5.77
PS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tokens [SEP] [pos] [content] burden ##s [neg] [title] sometimes [SEP] lit ##igan ##ts [SEP]

· · ·
Type [SEP] tree tree tree tree tree tree tree [SEP] answer answer answer [SEP]
IDF 0.00 0.00 0.00 9.64 9.64 0.00 0.00 4.92 0.00 10.64 10.64 10.64 0.00
PS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.80 -3.80 -3.80 -3.80

Tokens kinds for each party , in different phases of litigation . the burden

· · ·
Type context context context context context context context context context context context context context
IDF 7.10 0.00 0.00 4.36 17.41 0.00 4.18 7.46 0.00 7.92 17.41 0.00 7.77
PS -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80 -3.80

Tokens suspicion " , " probable cause " ( as for [SEP] evidence [SEP]

· · ·
Type context context context context context context context context context context [SEP] title [SEP]
IDF 7.80 17.41 17.41 17.41 7.91 5.41 17.41 17.41 0.00 0.00 0.00 5.28 0.00
PS -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20 -12.20

B.2 T5 Agent’s State (cf. §3.1)

T5 represents the state as a flat string. The input is a concatenation of the original query, zero or more
expansions, and five results. For each result, we include the answer given by the reader, the document’s title,
and a span centered around the answer. The prediction target is simply the next expansion. See Table A.3
for a full example.

Table A.3: Example state (input) and prediction (target) of the T5 agent with linebreaks and emphasis
added for readability. We use a 30 token span in our experiments.

Input Query: ’how many parts does chronicles of narnia have’.
Contents must contain: lewis.
Contents cannot contain: battle boost 2.0.

Answer: ’seven’.
Title: ’The Chronicles of Narnia’.
Result: The Chronicles of Narnia is a series of seven fantasy novels by C. S. Lewis. It is considered a
classic of children’s literature and is the author’s best-known work, having...

Answer: ’seven’.
Title: ’The Chronicles of Narnia (film series)’.
Result: ’"The Chronicles of Narnia", a series of novels by C. S. Lewis. From the seven books, there have
been three film adaptations so far – (2005), "" (2008) and "" (2010)...

Answer: ’seven’.
Title: ’Religion in The Chronicles of Narnia’.
Result: ’Religion in The Chronicles of Narnia "The Chronicles of Narnia" is a series of seven fantasy
novels for children written by C. S. Lewis. It is considered a classic of...

Answer: ’seven’.
Title: ’The Chronicles of Narnia’.
Result: ’Lewis’s early life has parallels with "The Chronicles of Narnia". At the age of seven , he moved
with his family to a large house on the edge of Belfast...

Answer: ’Two’.
Title: ’The Chronicles of Narnia’.
Result: ’found in the most recent HarperCollins 2006 hardcover edition of "The Chronicles of Narnia".
Two other maps were produced as a result of the popularity of the 2005 film ...

Target Contents must contain: novels

25



Published in Transactions on Machine Learning Research (06/2022)

Figure A.2: Performance (NDCG@5, EM, and Top-5, respectively) of the Rocchio episodes from NQ-dev
guided by the composite score of Equation 7, as a function of the coefficients λ1 and λ2.

C Reward details

We investigate the effects of the three score components in the definition of the composite scoring function of
Eq. 7. As mentioned in Section 4, in our experiments we have observed that using only the NDCGk score
as reward signal (i.e., setting λ1 = λ2 = 0 in Eq. 7) has several limitations. This motivated us to introduce
the NDCEMk and PS components with the intent of: 1) providing further guidance to the agent (whenever
NDCGk cannot be increased, the agent can further refine the query by increasing NDCEMk or PS), and 2)
regularizing the search episodes by making the score more robust with respect to exploratory behaviors that
could lead to drift.

We run a grid search over the reward coefficients λ1, λ2 and, for each of their values, we evaluate the
performance of the Rocchio sessions on NQ Dev (for a high throughput, we select grammar G3 and set
N = M = 20). Figure A.2 shows the respective end-to-end performance in terms of our three main quality
metrics: NDCG@5, EM, and Top-5.

The results in Figure A.2 support our intents: by introducing NDCEMk and PS scores in the reward (i.e.,
setting λ1, λ2 > 0), the Rocchio expansions can achieve significantly higher performance, in all the three
metrics, with respect to using only an NDCGk score (λ1 = λ2 = 0) (notably, it improves also the NDCG@5
itself, meaning that the agent is not trading-off performance metrics but it is indeed producing higher quality
sessions). It is also worth pointing out the role of the NDCEMk score component, weighted by coefficient
λ2. Notice that good NDCG@5 and Top-5 performance could be achieved also setting λ2 = 0 (see, e.g.,
the bottom-right corner λ1 = 1, λ2 = 0). However, this leads to definitely worse EM results compared to
when λ2 > 0. Intuitively, a NDCEMk component λ2 > 0 ensures that the returned documents, in addition
to containing the gold answer (thus having high NDCG@5 and Top-5), are also relevant for the query
(thus reaching a high EM). Hence, it is crucial to prevent semantic drifts. Based on these results we set
λ1 = 0.2, λ2 = 0.6, which is a sweet spot in Figure A.2.

D Model, Training Configuration, and Computational Complexity

D.1 MuZero

The MuZero agent learner, which performs both inference and training, runs on a Cloud TPU v2 with 8
cores which is roughly equivalent to 10 Nvidia P100 GPUs in terms of TFLOPS.10 One core is allocated
for training and 7 cores are allocated for inference. We use 500 CPU based actors along with 80 actors
dedicated to evaluation. Each agent is trained for 1.6 million steps, with 100 simulations per step, at an
approximate speed of 10,000 steps per hour. In total, training takes about 10 days. Hyperparameters are
listed in Table A.4.

10The Cloud TPU v2 has a peak performance of 180 TFLOPS (https://cloud.google.com/tpu), whereas the Nvidia P100
GPU goes up to 18.7 TFLOPS depending on precision (https://cloud.google.com/compute/docs/gpus).
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Computational Complexity The computational complexity of a single step of the MuZero agent is
determined by the complexity of the state encoding function (“h” in Figure A.3b) and the number of
simulations during MCTS. For the state encoding function, we use BERT-base to encode the state and a
GRU cell with a hidden size of 32 to encode the past actions. The maximum sequence length of the state is
512. The recurrent inference function during the MCTS (“g” in Figure A.3b) is an LSTM with a hidden
dimension of 512 that is invoked for each of the number of simulations (typically 100). On top of the LSTM
representation, we use MLPs (“f” in Figure A.3b) with a single hidden layer with hidden dimension 512 as
the policy, value, and reward head.

Tuning We carried out extensive model selection and tuning while implementing the MuZero algorithm using
TicTacToe and Atari environments, and based on the information available in the original paper (Schrittwieser
et al., 2020). We ran these experiments on a single TPU, to ensure the replicability of healthy training runs
without extensive computing resources. We did not try to match the performance of the MuZero paper on
the Atari and board games, because that would have required significantly more compute resources and
time and it was beyond the scope of our project. Optimizing MuZero can be hard because of the many
hyperparameters, especially in the learning to search task where training can take a long time to stabilize.
Thus, we relied to a large extent on the existing configuration and attempted primarily to optimize the
MCTS process. We tried to find better parameters – via simple grid search – of prioritized and importance
sampling (exponents), replay buffer and queue (sizes), action selection softmax (temperature), exploration
noise (Dirichlet α), the c1, c2 parameters of the Upper Confidence Bound score and the number of simulations.
In the end the main parameter that consistently affected performance was the number of simulations. More
simulations yield better performance, and slower training. We observed diminishing improvements after 100
simulations and settled on that as the final value. We also experimented with resetting the weights on the
three-component loss (policy, value, reward) without observing convincing improvements. We did not try to
finetune the representation function, the off-the-shelf BERT. A summary of the MuZero hyperparameters
configuration is in Table A.4.

Table A.4: Hyperparameters for MuZero.

Parameter Value
Simulations per Step 100
Actor Instances 500
Training TPU Cores 1
Inference TPU Cores 7
Initial Inference Batch Size (hθ) 4 per core
Recurrent Inference Batch Size (fθ, gθ) 32 per core
LSTM Units (gθ) One layer of 512
Feed-forward Units (fθ) One layer of 32
Training Batch Size 16
Optimizer SGD
Learning Rate 1e−4
Weight Decay 1e−5
Discount Factor (γ) .9
Unroll Length (K) 5
Max. #actions Expanded per Step 100
Max. context tokens from document title 10
Max. context tokens from document content 70

D.2 T5

The T5 agent is trained for about 5 days on 16 Cloud TPU v3, starting from the pre-trained T5-11B
checkpoint. We select the final checkpoint based on the best Dev performance.
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Computational Complexity The computational cost of the T5 agent is determined by the T5 model size
and sequence lengths. To encode the state we use a maximum sequence length of 512. The decoder predicts
the query expansion and has < 32 tokens. Additionally we use a beam size of 4. All reported experiments
use the largest model, XXL with 11 billion parameters. Smaller models yield competitive but lower results.
XXL consists of a 24 layer encoder and decoder with 128-headed attention mechanisms. The “key” and
“value” matrices of all attention mechanisms have an inner dimensionality of 128. The feed-forward networks
in each block consist of a dense layer with an output dimensionality of 65,536 and all other sub-layers and
embeddings have a size of 1024.

Tuning We ran many T5 experiments over the course of the project but didn’t perform extensive hy-
perparameter tuning. As can be seen in Table A.5 we use mostly standard parameters for finetuning the
11B parameter public T5 model following (Raffel et al., 2020). For example we did not experiment with
learning-rate schedules, dropout rates, uncommon batch sizes etc. Our experiments mostly explored other
design choices: how to represent the input (cf. Table A.3), how much of the context to use (here 30 token
context worked slightly better than 70 tokens and was faster to train) and we compared the different grammar
types (G0-G4). For these experiments we used the T5-large model because it was quicker and we found that
the insights carry over to the larger variants. After training we evaluated several checkpoints and picked the
best checkpoint on the Dev set, as is common practice. We then ran the best checkpoint on the test set.

Table A.5: Hyperparameters for T5.

Parameter Value
Number of Parameters 11B
Encoder/Decoder Layers 24
Feed-forward dimension 65536
KV dimension 128
Model dimension 1024
Number of Heads 128
Batch Size (in tokens) 65536
Dropout Rate 0.1
Learning Rate (constant) 0.0005
Optimizer AdaFactor
Maximum input length (tokens) 512
Maximum target length (tokens) 32
Finetuning steps on NQ Train 41400
Max. context tokens from document title 10
Max. context tokens from document content 30
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E Results

Table A.6 reports the results for the different versions of the T5 agent, evaluated on dev. We don’t evaluate
all agents with the generative answer system, for answer quality we report only the performance of the
internal machine reader (EM-MR). Table A.7 reports extended results, including for NQ Dev and the PS/MR
component answer quality eval (EM-MR). Moreover, in Figure 4b we plot the performance of our T5-G1
agent on NQ Dev as a function of the maximum number of query refinements. We observed the performance
increase monotonically with the number of refinements and that most of the performance gain is achieved in
the early steps, in accordance with the respective supervised Rocchio episodes (Figure 4a).

Table A.6: Results of all T5 Agents on NQ Dev.

Version NDCG@5 Top-1 Top-5 EM-MR Reward
G0 40.75 52.12 64.93 30.22 33.30
G1 43.10 52.12 66.09 29.50 35.55
G2 41.16 51.51 63.54 30.03 33.81
G3 41.69 51.34 64.17 29.77 33.95
G4 41.53 50.98 63.49 29.70 34.25

Table A.7: Results on NQ Dev and Test.

Metric Data BM25 +PS +RM3 MuZero T5-G1 MuZero+T5s DPR Rocchio-G4
NDCG@5 Dev 19.83 22.95 25.09 30.76 43.10 45.30 - 64.89

Test 21.51 24.82 26.99 32.23 44.27 46.22 - 65.24
Top-1 Dev 28.17 43.06 44.81 46.02 52.12 54.15 - 74.99

Test 28.67 44.93 46.13 47.97 52.60 54.29 52.47 73.74
Top-5 Dev 50.47 50.47 53.61 57.71 66.09 70.05 - 88.21

Test 53.76 53.76 56.33 59.97 66.59 71.05 72.24 88.17
EM-MR Dev 15.31 25.15 26.22 27.17 29.50 31.12 - 47.38

Test 14.79 25.87 26.95 28.19 30.08 30.58 41.50 46.34
EM-T5 Dev 28.98 40.70 41.65 32.48 44.75 44.47 - 63.78

Test 28.78 41.14 40.14 32.60 44.04 44.35 41.50 62.35

E.1 Pseudo-Relevance Feedback Baselines

We investigate the performance of multiple pseudo-relevance feedback (PRF) baselines on our setup. We
employ these baselines by running search sessions of length k, where, at each step, we choose the most relevant
term of the top-retrieved documents and add it to the query. To determine the most relevant term, we use
either inverse document frequency (IDF), computed over our full retrieval corpus, or RM3 (Jaleel et al., 2004).
For RM3, we use the model described in Eq. 20 of Pal et al. (2013) with µ = 2500. After each expansion
step, we use the passage scorer (PS) to score and rank the documents. This is an important step, as we do
this approach iteratively, so the baseline is more comparable to our agent’s setup. While a standard PRF
baseline on top of BM25 adds a term to the query (equivalent to our “or”-operator), we investigate the effect
of different Lucene operators that our agents have access to. In particular, we run for each of our 10 operators
(“or”, “+content”, “+title”, “-content”, “-title”, “∧.1”, “∧2”, “∧4”, “∧6”, “∧8”) a PRF baseline with k = 20
steps (same as our agents). The results are reported in Table A.8. Interestingly, the “-title”-operator, which
limits search results not to contain any documents where the specified term is part of the title, works best
across all metrics, datasets, and relevancy algorithms. This is in contrast to the standard motivation of PRF
to promote relevant terms that appeared in the search results. Instead, requesting search results to contain
new documents (with different titles) seems to be the stronger heuristic. We believe that these experiments
underline the benefit of a learned agent to automatically pick the right operator based on the search session
context.
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Table A.8: Results on NQ Dev and Test for the pseudo-relevance feedback sessions. Here, we run episodes
of length 20 where we determine, at each step, the most relevant term from the retrieved results using
either inverse-document frequency “IDF” or “RM3”. We add the term using one of our 10 operators: simply
appending the term (“or”), enforcing the term in the content or title (“+c”/“+t”), limiting the search to
documents that not contain the term in the context or title (“-c”/“-t”), and boosting the term with different
values (“∧.1”,“∧2”,“∧4”,“∧6”,“∧8”). After each step in the episode, we aggregate the documents using
the scores from our passage scorer (PS). The largest value in each table row is indicated in bold, and the
second-largest is underlined.

Metric Data Alg or +c +t -c -t ∧.1 ∧2 ∧4 ∧6 ∧8
NDCG@5 Dev IDF 24.78 25.13 24.61 25.12 26.81 23.67 24.45 24.43 24.37 24.30

Dev RM3 25.09 25.41 24.78 24.98 26.32 23.69 24.53 24.60 24.50 24.35
Test IDF 26.48 26.60 26.33 27.32 29.33 25.51 26.35 26.25 26.19 26.08
Test RM3 26.99 26.98 26.70 26.90 28.59 25.47 26.60 26.61 26.54 26.37

Top-1 Dev IDF 44.52 44.87 44.56 45.35 47.09 44.13 44.45 44.36 44.30 44.21
Dev RM3 44.81 45.21 44.45 45.56 46.92 44.17 44.53 44.54 44.42 44.32
Test IDF 45.93 45.90 46.10 47.09 49.29 45.84 46.18 46.01 45.98 45.90
Test RM3 46.13 46.41 46.30 47.37 49.03 45.78 46.41 46.24 46.18 46.10

Top-5 Dev IDF 53.08 53.15 52.95 54.27 56.49 51.74 52.59 52.68 52.61 52.58
Dev RM3 53.61 53.85 53.19 54.29 56.01 51.91 52.88 53.06 52.91 52.82
Test IDF 55.62 55.62 55.42 57.37 60.14 54.96 55.56 55.50 55.50 55.42
Test RM3 56.33 56.27 56.07 57.54 59.58 55.04 55.99 56.02 55.99 55.93

F Details and Examples for the Grammar-Guided MCTS

Q ⇒ W Q | U Q | STOP
U ⇒ Op Field W

Op ⇒ − | + | ∧i
i ∈ {0.1, 2, 4, 6, 8}

Field ⇒ title | contents
Wx ⇒ Vx | Vx Wx

Wx ⇒ Vx | Vx Wx

V x ⇒ {w|w ∈ VB ∧
trie(Σx).HasSubstring(w)}

V
x ⇒ {w|#w ∈ V #

B ∧
trie(Σx).HasSubstring(−→w )}

(a) The productions of the query grammar: x identi-
fies a specific vocabulary induced by the aggregated
results at time t (index omitted), VB (V #

B ) is the
BERT wordpiece prefix (suffix) vocabulary, −→w de-
notes the string ending at w, including the preceding
wordpieces.

{ot, at}
<latexit sha1_base64="j4pUnFObpA5efrmHhIdduT/srRw=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBg5SkCnosevFYwX5AE8Jmu2mXbnbD7kQooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMi1LBDbjut1NaW9/Y3CpvV3Z29/YPqodHHaMyTVmbKqF0LyKGCS5ZGzgI1ks1I0kkWDca38387hPThiv5CJOUBQkZSh5zSsBKvp+rEC4wCcGfhtWaW3fnwKvEK0gNFWiF1S9/oGiWMAlUEGP6nptCkBMNnAo2rfiZYSmhYzJkfUslSZgJ8vnNU3xmlQGOlbYlAc/V3xM5SYyZJJHtTAiMzLI3E//z+hnEN0HOZZoBk3SxKM4EBoVnAeAB14yCmFhCqOb2VkxHRBMKNqaKDcFbfnmVdBp177LeeLiqNW+LOMroBJ2ic+Sha9RE96iF2oiiFD2jV/TmZM6L8+58LFpLTjFzjP7A+fwBnXuRaA==</latexit>
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f � MLP
<latexit sha1_base64="it5FEgc7j9dBBQnoqxvrgIEMqag=">AAAB9XicdVDLSgNBEJyNrxhfUY9eBoPgxWU3WTd6C3rxoBDBJEISw+xkNhky+2CmVw1L/sOLB0W8+i/e/BsnD0FFCxqKqm66u7xYcAWW9WFk5uYXFpeyy7mV1bX1jfzmVl1FiaSsRiMRyWuPKCZ4yGrAQbDrWDISeII1vMHp2G/cMql4FF7BMGbtgPRC7nNKQEs3Pj7ALWD3kF6cV0edfMEy3WPbdV1smVbJKTvFMbGdw5KDbdOaoIBmqHby761uRJOAhUAFUappWzG0UyKBU8FGuVaiWEzogPRYU9OQBEy108nVI7ynlS72I6krBDxRv0+kJFBqGHi6MyDQV7+9sfiX10zAP2qnPIwTYCGdLvITgSHC4whwl0tGQQw1IVRyfSumfSIJBR1UTofw9Sn+n9SLpl0yi5dOoXIyiyOLdtAu2kc2KqMKOkNVVEMUSfSAntCzcWc8Gi/G67Q1Y8xmttEPGG+f6MSSJg==</latexit>

g
<latexit sha1_base64="maoQxtH7pYqpPJ94K5V0L7rHrXY=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnomwSS3oBePCZgFkiH0dHqS1p6F7h4hDPkCLx4U8eonefNv7CyCij4oeLxXRVU9PxFcaYw/rNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesrbkWrJdIRkJfsK5/dzX3u/dMKh5HN3qaMC8k44gHnBJtpNZ4WCxhG1cr9WodYbtSxjXsGuK65TK+QI6NFyjBCs1h8X0wimkaskhTQZTqOzjRXkak5lSwWWGQKpYQekfGrG9oREKmvGxx6AydGWWEgliaijRaqN8nMhIqNQ190xkSPVG/vbn4l9dPdVDzMh4lqWYRXS4KUoF0jOZfoxGXjGoxNYRQyc2tiE6IJFSbbAomhK9P0f+k49pO2XZblVLjchVHHk7gFM7BgSo04Bqa0AYKDB7gCZ6tW+vRerFel605azVzDD9gvX0CMkiNNA==</latexit>

r1
<latexit sha1_base64="29/L9k/R8taJosbck0IKsPduPpw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZndBJPcgl48RjSJkKxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZOHoKIFDUVVN91dfiK40hh/WLmV1bX1jfxmYWt7Z3evuH/QVnEqKWvRWMTy1ieKCR6xluZasNtEMhL6gnX88cXM79wzqXgc3ehJwryQDCMecEq0ka7lndMvlrCNq5V6tY6wXSnjGnYNcd1yGZ8hx8ZzlGCJZr/43hvENA1ZpKkgSnUdnGgvI1JzKti00EsVSwgdkyHrGhqRkCkvm586RSdGGaAglqYijebq94mMhEpNQt90hkSP1G9vJv7ldVMd1LyMR0mqWUQXi4JUIB2j2d9owCWjWkwMIVRycyuiIyIJ1Sadggnh61P0P2m7tlO23atKqXG+jCMPR3AMp+BAFRpwCU1oAYUhPMATPFvCerRerNdFa85azhzCD1hvn2bLjeI=</latexit>

r2
<latexit sha1_base64="BIqZJSBdw/UVj0WMxUNtj3DVEtg=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZndBJPcgl48RjSJkKxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZOHoKIFDUVVN91dfiK40hh/WLmV1bX1jfxmYWt7Z3evuH/QVnEqKWvRWMTy1ieKCR6xluZasNtEMhL6gnX88cXM79wzqXgc3ehJwryQDCMecEq0ka7lndsvlrCNq5V6tY6wXSnjGnYNcd1yGZ8hx8ZzlGCJZr/43hvENA1ZpKkgSnUdnGgvI1JzKti00EsVSwgdkyHrGhqRkCkvm586RSdGGaAglqYijebq94mMhEpNQt90hkSP1G9vJv7ldVMd1LyMR0mqWUQXi4JUIB2j2d9owCWjWkwMIVRycyuiIyIJ1Sadggnh61P0P2m7tlO23atKqXG+jCMPR3AMp+BAFRpwCU1oAYUhPMATPFvCerRerNdFa85azhzCD1hvn2hPjeM=</latexit>

g � LSTM
<latexit sha1_base64="ZZZdqCh7cuUGeibdQjuQhrslnog=">AAAB+HicdVBNS0JBFJ1nX2YfWi3bDEnQpsf4lNSd1KZFgZGaoCLzxlEH530wc19kD39JmxZFtO2ntOvfNH4EFXXgwuGce7n3HjeUQgMhH1ZiaXlldS25ntrY3NpOZ3Z2GzqIFON1FshANV2quRQ+r4MAyZuh4tRzJb9xR2dT/+aWKy0CvwbjkHc8OvBFXzAKRupm0gN8jNvA7yC+uK5dTrqZLLFJsVAuljGxC3lSIo4hjpPPkxOcs8kMWbRAtZt5b/cCFnncByap1q0cCaETUwWCST5JtSPNQ8pGdMBbhvrU47oTzw6f4EOj9HA/UKZ8wDP1+0RMPa3Hnms6PQpD/dubin95rQj6pU4s/DAC7rP5on4kMQR4mgLuCcUZyLEhlClhbsVsSBVlYLJKmRC+PsX/k4Zj5/K2c1XIVk4XcSTRPjpARyiHiqiCzlEV1RFDEXpAT+jZurcerRfrdd6asBYze+gHrLdPDPCStw==</latexit>

f
<latexit sha1_base64="7vlF0RJn4w84MT4kp6d6HfqkD7M=">AAAB6HicdVDLSsNAFL3xWeur6tLNYBFchaSNqe6Kbly2YB/QhjKZTtqxkwczE6GEfoEbF4q49ZPc+TdO2goqeuDC4Zx7ufceP+FMKsv6MFZW19Y3Ngtbxe2d3b390sFhW8apILRFYh6Lro8l5SyiLcUUp91EUBz6nHb8yXXud+6pkCyObtU0oV6IRxELGMFKS81gUCpbpntpu66LLNOqOjWnkhPbOa86yDatOcqwRGNQeu8PY5KGNFKEYyl7tpUoL8NCMcLprNhPJU0wmeAR7Wka4ZBKL5sfOkOnWhmiIBa6IoXm6veJDIdSTkNfd4ZYjeVvLxf/8nqpCi68jEVJqmhEFouClCMVo/xrNGSCEsWnmmAimL4VkTEWmCidTVGH8PUp+p+0K6ZdNStNp1y/WsZRgGM4gTOwoQZ1uIEGtIAAhQd4gmfjzng0XozXReuKsZw5gh8w3j4BM5WNNQ==</latexit>

p1, v1
<latexit sha1_base64="jlVfM0mDP+5A56MqRCPIGI/Iq+E=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwISHTxlR3RTcuK9gHtCFMppN26OThzKRQQn/CjQtF3Po77vwbJ20FFT1w4XDOvdx7j59wJpVlfRiFldW19Y3iZmlre2d3r7x/0JZxKghtkZjHoutjSTmLaEsxxWk3ERSHPqcdf3yd+50JFZLF0Z2aJtQN8TBiASNYaambeOgMTjzklSuW6Vwix3GgZVo1u25Xc4Ls85oNkWnNUQFLNL3ye38QkzSkkSIcS9lDVqLcDAvFCKezUj+VNMFkjIe0p2mEQyrdbH7vDJ5oZQCDWOiKFJyr3ycyHEo5DX3dGWI1kr+9XPzL66UquHAzFiWpohFZLApSDlUM8+fhgAlKFJ9qgolg+lZIRlhgonREJR3C16fwf9KumqhmVm/tSuNqGUcRHIFjcAoQqIMGuAFN0AIEcPAAnsCzcW88Gi/G66K1YCxnDsEPGG+fKIGPZw==</latexit>

g
<latexit sha1_base64="maoQxtH7pYqpPJ94K5V0L7rHrXY=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnomwSS3oBePCZgFkiH0dHqS1p6F7h4hDPkCLx4U8eonefNv7CyCij4oeLxXRVU9PxFcaYw/rNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesrbkWrJdIRkJfsK5/dzX3u/dMKh5HN3qaMC8k44gHnBJtpNZ4WCxhG1cr9WodYbtSxjXsGuK65TK+QI6NFyjBCs1h8X0wimkaskhTQZTqOzjRXkak5lSwWWGQKpYQekfGrG9oREKmvGxx6AydGWWEgliaijRaqN8nMhIqNQ190xkSPVG/vbn4l9dPdVDzMh4lqWYRXS4KUoF0jOZfoxGXjGoxNYRQyc2tiE6IJFSbbAomhK9P0f+k49pO2XZblVLjchVHHk7gFM7BgSo04Bqa0AYKDB7gCZ6tW+vRerFel605azVzDD9gvX0CMkiNNA==</latexit>

Q ) U Q
<latexit sha1_base64="8zLrLkFXbUfUMTk+CT/81H95NRU=">AAACCHicdVDLSgNBEJyNrxhfqx49OBgET2E3CZjcgl48JmIekCxhdjJJhsw+mOlVw7JHL/6KFw+KePUTvPk3TrIRVLSgoajqprvLDQVXYFkfRmZpeWV1Lbue29jc2t4xd/daKogkZU0aiEB2XKKY4D5rAgfBOqFkxHMFa7uT85nfvmZS8cC/gmnIHI+MfD7klICW+uZhD9gtxI0E9y75aAxEyuAGp2ITN5K+mbcK5WKpapdwSipWSiqVKrYL1hx5tEC9b773BgGNPOYDFUSprm2F4MREAqeCJblepFhI6ISMWFdTn3hMOfH8kQQfa2WAh4HU5QOeq98nYuIpNfVc3ekRGKvf3kz8y+tGMKw4MffDCJhP00XDSGAI8CwVPOCSURBTTQiVXN+K6ZhIQkFnl9MhfH2K/yetYsEuFYqNcr52togjiw7QETpBNjpFNXSB6qiJKLpDD+gJPRv3xqPxYrymrRljMbOPfsB4+wR1yppF</latexit>

U )
Op Field W

<latexit sha1_base64="oC/7txvfst7H8lVOpKpsf7Z4fKY="></latexit>

U )
Op Field W

<latexit sha1_base64="oC/7txvfst7H8lVOpKpsf7Z4fKY="></latexit>

at+1
<latexit sha1_base64="oGnwLT1UKbU5kPL24Jb88ys+J+M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtWk/wwtv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+yWnu4qtRv8ziKcAKncA4eXEMd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wftaY9M</latexit>

(b) The MuZero MCTS with grammar-
guided node expansions represented as
edge labelled with CFG rules.

Figure A.3

Figure A.3a lists the detailed rules schemata for the query grammar used by the MuZero agent – explained
in Section 3.2.1. An optional STOP rule allows the agent to terminate an episode and return the results
collected up to that point. Using the BERT sub-word tokens as vocabulary allows us to generate a large
number of words with a total vocabulary size of ∼30k tokens.
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Our implementation of MuZero modifies the MCTS to use the query grammar for efficient exploration.
Figure A.3b shows the different network components used during MCTS. Each node expansion is associated
with a grammar rule. When the simulation phase is complete, the visit counts collected at the children of the
MCTS root node provide the policy π from which the next action at+1 is sampled.

Each simulation corresponds to one or more hypothetical follow-up queries (or fragments) resulting from
the execution of grammar rules. The MCTS procedure executes Depth-First node expansions, guided by
the grammar, to generate a query top-down, left-to-right, in a forward pass. To control the process, we
add two data structures to MCTS nodes: a stack γ, and an output buffer ω: γ contains a list of unfinished
non-terminals, ω stores the new expansion. The stack is initialized with the start symbol γ = [Q]. The output
buffer is reset, ω = [], after each document search. When expanding a node, the non-terminal symbol on the
top of γ is popped, providing the left-hand side of the rule associated with the new edge. Then, symbols on
the right-hand side of the rule are pushed right-to-left onto γ. When a terminal rule is applied, the terminal
symbol is added to ω. The next time γ contains only Q, ω holds the new query expansion term ∆qt to be
appended to the previous query qt for search.

γ = {Q}, ω = {}

γ = {U,Q}, ω = {}

γ = {Op,Field,W,Q}, ω = {}

. . .

. . .

U⇒ Op Field W

γ = {W,Q}, ω = {}

γ = {Wβ ,Q}, ω = {}

γ = {Vβ ,Wx
,Q}, ω = {}

γ = {Wβ
,Q}, ω = {dial}

γ = {Vβ
,Q}, ω = {dial}

γ = {Q}, ω = {dialects}

γ = {W,Q}, ω = {}

γ = {Widx,Q}, ω = {}

. . .

. . .

W⇒Widx

SEARCH Q⇒W Q

Vβ ⇒ ects

Wβ ⇒ Vβ

Vβ ⇒ dial

Wβ ⇒ Vβ Wβ

W⇒Wβ

Q⇒W Q
Q⇒ U Q

Figure A.4

Figure A.4 illustrates the process. Nodes represent the stack γ and output buffer ω. Edges are annotated
with the rule used to expand the node. We illustrate the left-branching expansion. Starting from the top,
the symbol "Q" is popped from the stack, and a compatible rule, "Q⇒W Q", is sampled. The symbols "W"
and "Q" are added to the stack for later processing. The agent expands the next node choosing to use the
document content vocabulary (W⇒Wβ), then it selects a vocabulary prefix (‘dial’), adding it to the output
buffer ω, followed by a vocabulary suffix (‘ects’). At that point, the stack contains only Q, and the content
of ω contains a new expansion, the term ‘dialects’. A latent search step is simulated through MuZero’s gθ
sub-network. Then the output buffer ω is reset.
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After the latent search step, the simulation is forced to use the full trie (W ⇒Widx), which includes all terms
in the Lucene index. This is necessary since there is no observable context that can be used to restrict the
vocabulary. Instead of simply adding an OR term (Q⇒W Q), the right branch of the example selects an
expansion with unary operator and field information (Q⇒ U Q).

G Search Session Examples

Table A.9 and Table A.10 show example Rocchio sessions using the full grammar. Table A.11 shows a session
generated by the MuZero agent.

Table A.9: Example episode from a Rocchio session with grammar G4 (Rocchio-G4). The question asks
for the name of the “green guy from sesame street” (referring to ‘‘Oscar the Grouch”, a green muppet that
lives in a trash can on Sesame street). The query expansions add the requirement that the content of the
documents should contain the words “muppet”, and “trash”; both terms closely related to the answer “Oscar
the Grouch” but not mentioned in the original query. The score increases from 0.040 for the original query to
0.891 for the final query.

Query and Search Results Score

q0 who is the green guy from sesame street

Top-2 documents retrieved with q0: 0.040

d1 Title Music of Sesame Street
Content . . .Christopher Cerf, who Gikow called "the go-to guy on "Sesame Street" for classic

rock and roll as well as song spoofs . . .

d2 Title Sesame Street characters
Content . . .Forgetful Jones, a "simpleton cowboy" with a short-term memory disorder; and

even Kermit the Frog, the flagship character of The Muppets. . . .

q1 who is the green guy from sesame street +(contents:“muppet”)

Top-2 documents retrieved with q1: 0.505

d1 Title History of Sesame Street
Content . . . Raposo’s "I Love Trash", written for . . .Oscar the Grouch, was included on the

first album of "Sesame Street" songs, . . .

d2 Title Julie on Sesame Street)
Content . . . Andrews and "special guest star" Como interacted with the Muppet characters

(including Kermit the Frog, Big Bird, Cookie Monster, . . .Oscar the Grouch and Bert
and Ernie), . . .

q2 who is the green guy from sesame street +(contents:“muppet”) +(contents:“trash”)

Top-2 documents retrieved with q2: 0.891

d1 Title A Muppet Family Christmas
Content . . . all the Muppets sing a medley of carols and swap presents (exceptOscar the Grouch,

who just sits in his trash can, sighing very miserably due to his hatred for Christmas).
. . .

d2 Title Music of Sesame Street
Content . . . He wrote "I Love Trash" for Oscar the Grouch, which was included on the first

album of "Sesame Street" songs. . . .
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Table A.10: Example of a Rocchio session with grammar G4 (all terms).

Query and Search Results Score

q0 who were the judges on the x factor 0.043

d1 Title The X Factor (Australian TV series)
Content . . . After "The X Factor" was revived for a second season in 2010, Natalie Garonzi

became the new host of "The Xtra Factor" on . . .
d2 Title X Factor (Icelandic TV series)

Content . . . The judges were the talent agent and businessman Einar Bárðarson, rock
musician Elínborg Halldórsdóttir and pop singer Paul Oscar . . .

q1 who were the judges on the x factor (contents:“confirmed”∧4) 0.551

d1 Title The X Factor (U.S. season 2)
Content . . .Simon Cowell and L.A. Reid returned as judges, while Paula Abdul and Nicole

Scherzinger were replaced . . .
d2 Title The X Factor (New Zealand series 1)

Content . . . "The X Factor" was created by Simon Cowell in the United Kingdom and the
New Zealand version is based on . . .

q2 who were the judges on the x factor (contents:“confirmed”∧4) (title:“2”∧8) 0.678

d4 Title The X Factor (U.S. season 2)
Content . . . It was also reported that Cowell was in talks with Britney Spears for her to

join the show, . . .
d5 Title H.F.M. 2 (The Hunger for More 2)

Content . . . Confirmed guests include Eminem, Kanye West, Lloyd, Juelz Santana, 50
Cent, Styles P, . . .

q3 who were the judges on the x factor (contents:“confirmed”∧4) (title:“2”∧8) +(con-
tents:“britney”)

0.804

d3 Title The X Factor (U.S. TV series)
Content . . . Reid, former "The X Factor" judge Cheryl Cole, and Cowell’s former "American

Idol" colleague Paula Abdul were confirmed to join Cowell in the judging panel
. . .

d5 Title The X Factor (U.S. season 2)
Content . . . It was also reported that Cowell was in talks with Britney Spears for her to

join the show, . . .

q4 who were the judges on the x factor (contents:“confirmed”∧4) (title:“2”∧8) +(con-
tents:“britney”) (contents:“cowell”∧4)

0.926

d1 Title The X Factor (U.S. season 2) (BM25 Rank: 15)
Content . . .Simon Cowell and L.A. Reid returned as judges, while Paula Abdul and Nicole

Scherzinger were replaced . . .
d2 Title The X Factor (New Zealand series 1) (BM25 Rank: 195)

Content . . . "The X Factor" was created by Simon Cowell in the United Kingdom and the
New Zealand version is based on . . .

d3 Title Louis Walsh (BM25 Rank: >1000)
Content . . . He joined the other season two judges: L.A. Reid, Demi Lovato and Britney

Spears, and was introduced with the line, . . .
d4 Title The X Factor (U.S. TV series) (BM25 Rank: 206)

Content . . . Reid, former "The X Factor" judge Cheryl Cole, and Cowell’s former "American
Idol" colleague Paula Abdul were confirmed to join Cowell in the judging panel
. . .

d5 Title Simon Cowell (BM25 Rank: >1000)
Content . . . Cowell and Reid returned for season 2, while Demi Lovato and Britney Spears

joined the judging panel as replacements for Abdul and Scherzinger . . .
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Table A.11: Example of a MuZero agent search session.

Query and Search Results Score

q0 who won the wwe money in the bank 0.071

d1 Title Money in the Bank (2017)
Contents . . . In the main event, Baron Corbin won the men’s ladder match, earning a contract

for a WWE Championship match, while Carmella controversially won the first
women’s ladder match to earn a SmackDown Women’s Championship match
contract . . .

q1 who won the wwe money in the bank (contents:“jinder”∧2) 0.130

d1 Title Money in the Bank ladder match
Contents . . . For the traditional ladder match, which had a contract for a match for Smack-

Down’s WWE Championship, SmackDown Commissioner Shane McMahon an-
nounced AJ Styles, Shinsuke Nakamura, Dolph Ziggler, Sami Zayn, and Baron
Corbin as the original five participants . . .

q4 who won the wwe money in the bank (contents:“jinder”∧2) (contents:“dolph”∧2)
(contents:“won”∧2) (contents:“zayn”∧2)

0.414

d1 Title Money in the Bank (2018)
Contents . . . At Backlash, Lashley and Braun Strowman defeated Kevin Owens and Sami

Zayn. During an interview on the May 7 episode, Lashley spoke . . .

q5 who won the wwe money in the bank (contents:“jinder”∧2) (contents:“dolph”∧2)
(contents:“won”∧2) (contents:“zayn”∧2) (contents:“strowman”∧2)

0.587

d2 Title Kevin Owens
Contents . . . Later that night, Owens teaming up with Zayn, The Miz, Curtis Axel and Bo

Dallas and lost to Finn Bálor, Seth Rollins, Braun Strowman, Bobby Lashley
and Bobby Roode in a 10-man tag team match . . .

q7 who won the wwe money in the bank (contents:“jinder”∧2) (contents:“dolph”∧2)
(contents:“won”∧2) (contents:“zayn”∧2) (contents:“strowman”∧2) (contents:“first”∧2)
(contents:“roode”∧2)

0.848

d1 Title Bobby Lashley (BM25 Rank: >1000)
Contents . . . Lashley participated in the Greatest Royal Rumble at the namesake event,

entering at #44 and scoring two eliminations, but was eliminated by Braun
Strowman. The first month of Lashley’s return would see him in a number of
tag-team matches, . . .

d2 Title Kevin Owens and Sami Zayn (BM25 Rank: >1000)
Contents . . . Later that night, Owens teaming up with Zayn, The Miz, Curtis Axel and Bo

Dallas and lost to Finn Bálor, Seth Rollins, Braun Strowman, Bobby Lashley
and Bobby Roode in a 10-man tag team match . . .

d3 Title Money in the Bank (2018) (BM25 Rank: 282)
Contents . . . At Backlash, Lashley and Braun Strowman defeated Kevin Owens and Sami

Zayn. During an interview on the May 7 episode, Lashley spoke . . .
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