
Resource

In Silico Labeling: Predicting Fluorescent Labels in

Unlabeled Images
Graphical Abstract
Pairs of transmitted light z-stacks
and fluorescence image sets

Untrained
neural network

Trained
neural network

New transmitted
light z-stack

Predicted
fluorescence

images
Highlights
d Fluorescence microscopy images can be predicted from

transmitted-light z stacks

d 7 fluorescent labels were validated across three labs,

modalities, and cell types

d New labels can be predicted using minimal additional

training data
Christiansen et al., 2018, Cell 173, 792–803
April 19, 2018 ª 2018 Elsevier Inc.
https://doi.org/10.1016/j.cell.2018.03.040
Authors

Eric M. Christiansen, Samuel J. Yang,

D. Michael Ando, ..., Lee L. Rubin,

Philip Nelson, Steven Finkbeiner

Correspondence
ericmc@google.com (E.M.C.),
pqnelson@google.com (P.N.),
sfinkbeiner@gladstone.ucsf.edu (S.F.)

In Brief

In silico labeling, a machine-learning

approach, reliably infers fluorescent

measurements from transmitted-light

images of unlabeled fixed or live

biological samples.

mailto:ericmc@google.com
mailto:pqnelson@google.com
mailto:sfinkbeiner@gladstone.ucsf.edu
https://doi.org/10.1016/j.cell.2018.03.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.03.040&domain=pdf

Resource
In Silico Labeling: Predicting
Fluorescent Labels in Unlabeled Images
Eric M. Christiansen,1,11,* Samuel J. Yang,1 D. Michael Ando,1,9 Ashkan Javaherian,2,9 Gaia Skibinski,2,9

Scott Lipnick,3,4,8,9 Elliot Mount,2,10 Alison O’Neil,3,10 Kevan Shah,2,10 Alicia K. Lee,2,10 Piyush Goyal,2,10

William Fedus,1,6,10 Ryan Poplin,1,10 Andre Esteva,1,7 Marc Berndl,1 Lee L. Rubin,3 Philip Nelson,1,*
and Steven Finkbeiner2,5,*
1Google, Inc., Mountain View, CA 94043, USA
2Taube/Koret Center for Neurodegenerative Disease Research and DaedalusBio, Gladstone Institutes, San Francisco, CA 94158, USA
3Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
4Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
5Departments of Neurology and Physiology, University of California, San Francisco, 94158, USA
6Montreal Institute of Learning Algorithms, University of Montreal, Montreal, QC, Canada
7Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
8Center for Assessment Technology and Continuous Health, Massachusetts General Hospital, Boston, MA 02114, USA
9These authors contributed equally
10These authors contributed equally
11Lead Contact
*Correspondence: ericmc@google.com (E.M.C.), pqnelson@google.com (P.N.), sfinkbeiner@gladstone.ucsf.edu (S.F.)

https://doi.org/10.1016/j.cell.2018.03.040
SUMMARY

Microscopy is a centralmethod in life sciences.Many
popular methods, such as antibody labeling, are
used to add physical fluorescent labels to specific
cellular constituents. However, these approaches
have significant drawbacks, including inconsistency;
limitations in the number of simultaneous labels
because of spectral overlap; and necessary pertur-
bations of the experiment, such as fixing the cells,
to generate the measurement. Here, we show that a
computational machine-learning approach, which
we call ‘‘in silico labeling’’ (ISL), reliably predicts
some fluorescent labels from transmitted-light im-
ages of unlabeled fixed or live biological samples.
ISL predicts a range of labels, such as those for
nuclei, cell type (e.g., neural), and cell state (e.g.,
cell death). Because prediction happens in silico,
the method is consistent, is not limited by spectral
overlap, and does not disturb the experiment. ISL
generates biological measurements that would
otherwise be problematic or impossible to acquire.

INTRODUCTION

Microscopy offers a uniquely powerful way to observe cells and

molecules across time and space. However, visualizing cellular

structure is challenging, as biological samples are mostly water

and are poorly refractile. Optical and electronic techniques

amplify contrast and make small signals visible to the human

eye, but resolving certain structural features or functional char-

acteristics requires different techniques. In particular, fluores-

cence labeling with dyes or dye-conjugated antibodies provides
792 Cell 173, 792–803, April 19, 2018 ª 2018 Elsevier Inc.
unprecedented opportunities to reveal macromolecular struc-

tures, metabolites, and other subcellular constituents.

Nevertheless, fluorescence labeling has limitations. Specificity

varies; labeling is time consuming; specialized reagents are

required; labeling protocols can kill cells; and even live cell pro-

tocols can be phototoxic. The reagents used for immunocyto-

chemistry commonly produce non-specific signals because of

antibody cross-reactivity, have significant batch-to-batch vari-

ability, and have limited time windows for image acquisition in

which they maintain signal. Lastly, measuring the label requires

an optical system that can reliably distinguish it from other sig-

nals in the sample while coping with fluorophore bleaching.

We hypothesized that microscopic images of unlabeled cells

contain more information than is readily apparent, information

that traditionally requires immunohistochemistry to reveal. To

test this, we leveraged major advances in deep learning (DL), a

type of machine learning that has resulted in deep neural net-

works capable of superhuman performance on specialized tasks

(Schroff et al., 2015; Silver et al., 2016; Szegedy et al., 2016). Prior

workusingdeep learning to analyzemicroscopy imageshasbeen

limited, often relying on known cell locations (Held et al., 2010;

Zhonget al., 2012) or the imposition of special andsomewhat arti-

ficial sample preparation procedures, such as the requirement for

low-plating density (Held et al., 2010; Van Valen et al., 2016;

Zhong et al., 2012). As such, it is unclear whether deep learning

approaches would provide a significant and broad-based

advance in image analysis and are capable of extracting useful,

not readily apparent, information from unlabeled images.

Here, we sought to determine if computers can find and pre-

dict features in unlabeled images that normally only become

visible with invasive labeling. We designed a deep neural

network and trained it on paired sets of unlabeled and labeled

images. Using additional unlabeled images of fixed or live cells

never seen by the network, we show it can accurately predict

the location and texture of cell nuclei, the health of a cell, the

mailto:ericmc@google.com
mailto:pqnelson@google.com
mailto:sfinkbeiner@gladstone.ucsf.edu
https://doi.org/10.1016/j.cell.2018.03.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.03.040&domain=pdf

A

B E

C

D

Figure 1. Overview of a System to Train a Deep Neural Network to Make Predictions of Fluorescent Labels from Unlabeled Images
(A) Dataset of training examples: pairs of transmitted-light images from z-stacks of a scene with pixel-registered sets of fluorescence images of the same scene.

The scenes contain varying numbers of cells; they are not crops of individual cells. The z-stacks of transmitted-light microscopy images were acquired with

different methods for enhancing contrast in unlabeled images. Several different fluorescent labels were used to generate fluorescence images and were varied

between training examples; the checkerboard images indicate fluorescent labels that were not acquired for a given example.

(B) An unfitted model comprising a deep neural network with untrained parameters.

(C) A fitted model was creating by fitting the parameters of the untrained network (B) to the data (A).

(D) To test whether the system could make accurate predictions from novel images, a z-stack of images from a novel scene was generated with one of the

transmitted-light microscopy methods used to produce the training dataset (A).

(E) The trained network, C, was used to predict fluorescence labels learned from (A) for each pixel in the novel images (D). The accuracy of the predictions was

then evaluated by comparing the predictions to the actual images of fluorescence labeling from (D) (data not shown).

See also Figure S6 and Table S1.
type of cell in a mixture, and the type of subcellular structure. We

also show that the trained network exhibits transfer learning:

once trained to predict a set of labels, it could learn new labels

with a small number of additional data, resulting in a highly

generalizable algorithm, adaptable across experiments.

RESULTS

Training and Testing Datasets for Supervised Machine
Learning
To train a deep neural network to predict fluorescence images

from transmitted-light images, we first created a dataset of
training examples, consisting of pairs of transmitted-light z-stack

images and fluorescence images that are pixel registered. The

training pairs come from numerous experiments across various

labs, samples, imaging modalities, and fluorescent labels. This

is a means to improve the network via multi-task learning: having

it learn across several tasks (Figure 1A). Multi-task learning can

improve networks when the tasks are similar, because common

features can be learned and refined across the tasks. We chose

deep neural networks (Figure 1B) as the statistical model to learn

from the dataset because they can express many patterns and

result in systems with substantially superhuman performance.

We trained the network to learn the correspondence rule
Cell 173, 792–803, April 19, 2018 793

(Figure 1C) - a functionmapping from the set of z-stacks of trans-

mitted-light images to the set of images of all fluorescent labels

in the training set. If our hypothesis is correct, the trained network

would examine an unseen z-stack of transmitted-light images

(Figure 1D) and generate images of corresponding fluorescent

signals (Figure 1E). Performance is measured by the similarity

of the predicted fluorescence images and the true images for

held-out examples.

The training datasets (Table 1) include different cell types with

different labels made by different laboratories. We used human

motor neurons from induced pluripotent stem cells (iPSCs), pri-

mary murine cortical cultures, and a breast cancer cell line.

Hoechst or DAPI was used to label cell nuclei; CellMask was

used to label plasma membrane; and propidium iodide was

used to label cells with compromised membranes. Some cells

were immunolabeled with antibodies against the neuron-specific

b-tubulin III (TuJ1) protein, the Islet1 protein for identifying motor

neurons, the dendrite-localized microtubule associated pro-

tein-2 (MAP2), or pan-axonal neurofilaments.

To improve the accuracy of the network, we collected multiple

transmitted-light images with varying focal planes. Monolayer

cultures are not strictly two dimensional, so any single image

plane contains limited information about each cell. Translating

the focal plane through the sample captures features that are

in sharp focus in some images while out of focus in others (Fig-

ure 1 in Data S1). Normally, out-of-focus features are undesir-

able, but we hypothesized the implicit three-dimensional infor-

mation in these blurred features could be an additional source

of information. We, thus, collected sets of images (z-stacks) of

the same microscope field from several planes at equidistant

intervals along the z axis and centered at the plane that was

most in-focus for the majority of the cell bodies.

During collection, the microscope stage was kept fixed in

x and y, while all images in a set were acquired, to preserve

(x, y) registration of pixels between the transmitted-light and fluo-

rescence images (Figure 2; Table 1).

Developing Predictive Algorithms with Machine
Learning
With these training sets, we used supervised machine learning

(ML) (Table S1) to determine if predictive relationships could be

found between transmitted-light and fluorescence images of

the same cells. We used the unprocessed z-stack as input for

machine-learning algorithm development. The images were

preprocessed to accommodate constraints imposed by the

samples, data acquisition, and the network. For example, we

normalized pixel values of the fluorescence images (STAR

Methods) as a way to make the pixel-prediction problem well

defined. In addition, we aimed to predict the maximum projec-

tion of the fluorescence images in the z axis. This was to account

for the fact that pairs of transmitted and fluorescence images

were not perfectly registered along the z axis and exhibited dif-

ferences in depth of field and optical sectioning.

Our deep neural network performs the task of non-linear pixel-

wise classification. It has a multi-scale input (Figure 3). This

endows it with five computational paths: a path for processing

fine detail that operates on a small length-scale near the center

of the network’s input, a path for processing coarse context
794 Cell 173, 792–803, April 19, 2018
that operates on a large length-scale in a broad region around

the center of the network’s input, and three paths in between.

Inspired by U-Net (Ronneberger et al., 2015) and shown in the

leftmost path of Figure 3 in Data S1, the computational path

with the finest detail stays at the original length scale of the input

so that local information can flow from the input to the output

without being blurred. Multi-scale architectures are common in

animal vision systems and have been reported to be useful in

vision networks (Farabet et al., 2013). We took a multi-scale

approach (Farabet et al., 2013), in which intermediate layers at

multiple scales are aligned by resizing, but used transposed con-

volutions (Zeiler et al., 2010) to learn the resizing function rather

than fixing it like in Farabet et al. (2013). This lets the network

learn the spatial interpolation rule that best fits its task.

The network is composed of repeated modules, as in the pop-

ular Inception network used in computer vision (Szegedy et al.,

2015a), but with the Inceptionmodule optimized for performance

(STAR Methods; Figure 2 in Data S1) using Google Hypertune

(Golovin et al., 2017). Hypertune is an automatic function opti-

mizer that tries to find a minimum of a function in a bounded

space. We expressed module design choices as parameters

and the prediction error as the function to be optimized, and

used Hypertune to select the design, optimizing over the training

dataset, with the test set withheld.

The learned part of the deep neural network is primarily made

up of convolutional kernels, small filters that convolve over prior

layers to compute the next layers. These kernels are restricted to

the interiors of the input layers (i.e., the convolutions are valid or

not zero-padded) (Table S1) (Dumoulin and Visin, 2016), making

the network approximately translation invariant. As such, each

predicted pixel of the network’s final output is computed by

approximately the same function, but using different input

data, improving the scalability and accuracy while minimizing

boundary effects.

We implemented the network in TensorFlow (Abadi et al.,

2015), a popular open-source library for deep learning. It was

trained using the Adam optimizer (Kingma and Ba, 2014), a

commonly used gradient-based function optimizer included in

TensorFlow.

The final network (STAR Methods) produces a discrete prob-

ability distribution over 256 intensity values (corresponding to

8-bit pixels) for each pixel of the output image. It reads z-stacks

of transmitted-light images collected with bright field, phase

contrast, or differential interference contrast methods and out-

puts simultaneous predictions for every label kind that appeared

in the training datasets. It achieves a lower loss on our data than

other popular models while using fewer parameters (Figure S4B;

STAR Methods).

Network Predictions of Cell Nuclei
We asked whether we could train a network to predict the label-

ing of cell nuclei with Hoechst or DAPI in transmitted-light

images of fixed and live cells. With our trained network, we

made predictions of nuclear labels (Figures 4 and S1) on the

test images (Table 1) (i.e., images withheld during network devel-

opment and training). Qualitatively, the true and predicted

nuclear labels looked nearly identical, and the network’s few

mistakes appeared to be special cases (e.g., cell-like debris

Table 1. Training Data Types and Configurations

Condition

Designation Cell Type Fixed

Transmitted

Light

Fluorescent

Label #1 and

Imaging

Modality

Fluorescent

Label #2 and

Imaging

Modality

Fluorescent

Label #3 and

Imaging

Modality

Training

Data

(Wells)

Testing

Data

(Wells)

Microscope

Field per

Well (mm)

Stitched

Image per

Well (Pixels)b

Pixel Width

before/after

Image

Processing (nm) Laboratory

A (red) human motor

neuronsa
yes bright field Hoechst

(nuclei)

wide field

anti-TuJ1

(neurons)

wide field

anti-Islet1

(motor neurons)

wide field

22 3 940 3 1,300 1,900 3 2,600 250/500 Rubin

B (yellow) human motor

neuronsa
yes phase

contrast

DAPI (nuclei)

confocal

anti-MAP2

(dendrites)

confocal

anti-neurofilament

(axons) confocal

21 4 1,400 3 1,400 4,600 3 4,600 150/300 Finkbeiner

C (green) primary rat

cortical cultures

no phase

contrast

Hoechst

(nuclei)

confocal

propidium

iodide (dead

cells) confocal

– 72 8 720 3 720 2,400 3 2,400 150/300 Finkbeiner

D (blue) primary rat

cortical cultures

yes phase

contrast

DAPI (nuclei)

confocal

anti-MAP2

(dendrites)

confocal

anti-neurofilament

(axons) confocal

2 1 1,400 3 1,400 4,600 3 4,600 150/300 Finkbeiner

E (violet) human breast

cancer line

yes DIC DAPI (nuclei)

confocal

CellMask

(membrane)

confocal

– 1c 1 1,100 3 1,100 3,500 3 3,500 160/320 Google

Color code, which is denoted in parentheses in the first column, refers to the border color in the figures that was added to enhance readability.aDifferentiated from induced pluripotent stem cells.
bApproximate size after preprocessing.
cThis condition purposely contains only a single well of training data to demonstrate that the model can learn new tasks from very little data through multi-task learning.C

e
ll1

7
3
,
7
9
2
–
8
0
3
,
A
p
ril1

9
,
2
0
1
8

7
9
5

Figure 2. Example Images of Unlabeled and Labeled Cells Used to Train the Deep Neural Network

Each row is a typical example of labeled and unlabeled images from the datasets described in Table 1. The first column is the center image from the z-stack of

unlabeled transmitted-light images fromwhich the network makes its predictions. Subsequent columns show fluorescence images of labels that the network will

use to learn correspondences with the unlabeled images and eventually try to predict from unlabeled images. The numbered outsets show magnified views of

subregions of images within a row. The training data are diverse: sourced from two independent laboratories using two different cell types, six fluorescent labels,

and both bright-field and phase-contrast methods to acquire transmitted-light images of unlabeled cells. Scale bars, 40 mm.

796 Cell 173, 792–803, April 19, 2018

A B

C

Figure 3. Machine-Learning Workflow for Network Development

(A) Example z-stack of transmitted-light images with five colored squares showing the network’s multi-scale input. The squares range in size, increasing from 72

3 72 pixels to 250 3 250 pixels, and they are all centered on the same fixation point. Each square is cropped out of the transmitted-light image from the z-stack

and input to the network component of the same color in (B).

(B) Simplified network architecture. The network composes six serial sub-networks (towers) and one or more pixel-distribution-valued predictors (heads). The

first five towers process information at one of five spatial scales and then, if needed, rescale to the native spatial scale. The sixth and last tower processes the

information from these towers.

(C) Predicted images at an intermediate stage of image prediction. The network has already predicted pixels to the upper left of its fixation point, but hasn’t yet

predicted pixels for the lower right part of the image. The input and output fixation points are kept in lockstep and are scanned in raster in order to produce the full

predicted images.

See also Figure S6.
lacking DNA). We created heatmaps of true versus predicted

pixel intensities and quantified the correlation. Pearson correla-

tion (r) values of 0.87 or higher indicated that the network accu-

rately predicted the extent and level of labeling and that the

predicted pixel intensities reflect the true intensities on a per-

pixel basis. The network learned features that could be general-

ized, given that these predictions were made using different cell

types and image acquisition methods.

To assess the utility of the per-pixel predictions, we gave a

team of biologists real and predicted nuclear label images and

asked them to annotate the images with the locations of the

cell centers. With annotations on real images as ground truth,

we used the methodology of Coelho et al. (2009) to classify the

network’s errors into four categories (Figures 4B and S2A).

Under conditions where the amount of cellular debris was high

(e.g., condition B) or distortions in image quality evident (e.g.,

condition C), the network’s precision and recall drops to the

mid-90%. In other cases, the network was nearly perfect, even

with dense cell clumps (e.g., condition D).

Network Predictions of Cell Viability
To determinewhether transmitted-light images contain sufficient

information to predict whether a cell is alive or dead, we trained

the network with images of live cells treated with propidium

iodide (PI), a dye that preferentially labels dead cells. We then

made predictions on withheld images of live cells (Figures 5A

and S1). The network was remarkably accurate, though not as

much as it was for nuclear prediction. For example, it correctly

guessed that an entity (Figure 5A, second magnified outset) is

actually DNA-free cell debris and not a proper cell and picked

out a single dead cell in a mass of live cells (third outset). To
obtain a quantitative grasp of the network’s behavior, we created

heatmaps and calculated linear fits (Figure 5B). The Pearson

r value of 0.85 for propidium iodide indicated a strong linear rela-

tionship between the true and predicted labels.

To understand the network’s ability to recognize cell death and

how it compared to a trained biologist, we had the real and pre-

dicted propidium iodide-labeled images annotated, following the

same method as for the nuclear labels (Figure 5C). A subset of

the discrepancies between the two annotations in which a biol-

ogist inspecting the phase contrast images determined that an

‘‘added’’ error is a correct prediction of DNA-free cell debris

was reclassified into a new category (Figure S2; STARMethods).

The network has an empirical precision and recall of 98% at

97%, with a 1% chance that two dead cells will be predicted

to be one dead cell.

To further evaluate the utility and biological significance of the

quantitative pixel-wise predictions of the network, we wondered

whether network predictions of DAPI/Hoechst labeling could be

used to perform morphological analysis of nuclei and accurately

detect and distinguish live cells from dead ones. We showed

previously that neurons in vitro tend to die by apoptosis, a pro-

grammed cell death process that causes nuclei to shrink and

round up (Arrasate et al., 2004). To perform the analysis, we

used the transmitted-light images above to make predictions

of nuclear labels and then used those collections of pixel predic-

tions to define nuclear objects and measured their dimensions.

We then compared the dimensions of nuclei among cells deter-

mined to be dead or alive based on propidium iodide labeling.

We found that the mean size of nuclei of live cells quantified

from morphological analysis of pixel-wise predictions was very

similar to that measured from actual labels (6.8± 1.3 mm vs.
Cell 173, 792–803, April 19, 2018 797

A

B

(legend on next page)

798 Cell 173, 792–803, April 19, 2018

7.0± 1.4 mm) (Figure S3). Likewise, the nuclear sizes of dead cells

from predicted labels was very similar to actual measurements

(4.7± 1.1 mm versus 4.9± 1.0 mm). Importantly, quantitative anal-

ysis of nuclearmorphology based on pixel predictions sensitively

and accurately identified and distinguished a subset of dead

cells from neighboring live cells based on a change in the size

of their nucleus. The result corroborates the predictions based

on propidium iodide staining and demonstrates the utility of

the network to make biologically meaningful quantitative

morphological measurements based on pixel predictions.

Network Predictions of Cell Type and Subcellular
Process Type
We tested the network’s ability to predict which cells were neu-

rons in mixed cultures of cells containing neurons, astrocytes,

and immature dividing cells (Figures 6 and S1). Four biologists

independently annotated real and predicted TuJ1 labeling, an

indication that the cell is a neuron.We compared the annotations

of each biologist (Figure 6) and assessed variability among biol-

ogists by conducting pairwise comparisons of their annotations

on the real labels only.

With TuJ1 labels for the condition A culture, the performance

of biologists annotating whether an object is a neuron was highly

variable, consistent with the prevailing view that determining cell

type based on human judgment is difficult. We found humans

disagree on whether an object is a neuron �10% of the time,

and �2% of the time they disagree on whether an object is

one cell or several cells. When a biologist was presented with

true and predicted labels of the same sample, 11%–15% of

the time the type of cell is scored differently from one occasion

to the next, and 2%–3% of the time the number of cells is scored

differently. Thus, the frequency of inconsistency introduced by

using the predicted labels instead of the true labels is compara-

ble to the frequency of inconsistency between biologists evalu-

ating the same true labels.

Given the success of the network in predicting whether a cell is

a neuron, we wondered whether it also could accurately predict

whether a neurite extending from a cell was an axon or a

dendrite. The task suffers from a global coherence problem

(STAR Methods), and it was also unclear to us a priori whether

transmitted-light images contained enough information to distin-

guish dendrites from axons. Surprisingly, the final network could

predict independent dendrite and axon labels (Figures S1 and

S4). It doeswell in predicting dendrites in conditions of low- (con-

dition B) and high- (condition D) plating densities, whereas the
Figure 4. Predictions of Nuclear Labels (DAPI or Hoechst) from Unlabe

(A) Upper-left corner crops of test images from datasets in Table 1; please note t

crops were not cherry-picked. The first column is the center transmitted image

prediction. The second and third columns are the true and predicted fluorescen

magenta and those too dim (false negatives) are shown in teal. Condition A, outse

condition D, outset 1, show false positives. Condition B, outsets 3 and 4, and co

nuclear label is predicted imprecisely. Other outsets show correct predictions, th

(B) The heatmaps compare the true fluorescence pixel intensity to the network’s p

one (STAR Methods). The numbers in the bins are frequency counts per 1,000.

centage of time they occurred. Split is when the network mistakes one cell as two

Added is when the network predicts a cell when there is none (i.e., a false positive

false negative).

See also Figures S1, S2, S4, S5, and S7.
axon predictions aremuch better under conditions of low-plating

densities (condition B).

Adapting the Generic Learned Network to New
Datasets: Transfer Learning
Does the network require large training datasets to learn to pre-

dict new things? Or does the generic model represented by a

trained network enable it to learn new relationships in different

datasetsmore quickly or with less training data than an untrained

network? To address these questions, we used transfer learning

to learn a label from a single well, demonstrating that the network

can share learned features across tasks. To further emulate the

experience of a new practitioner adapting this technique to their

research, we chose data using a new label from a different cell

type, imaged with a different transmitted-light technology, pro-

duced by a laboratory other than those that provided the previ-

ous training data. In condition E, differential interference contrast

imaging was used to collect transmitted-light data from unla-

beled cancer cells, and CellMask, a membrane label, was used

to collect foreground data (Table 1). With only the 1,100 3

1,100 mm center of the one training well, regularized by simulta-

neously training on conditions A, B, C, and D, the network

learned to predict cell foreground with a Pearson r score of

0.95 (Figures S1 and S5). Though that metric was computed

on a single test well, the test images of the well contain 12 million

pixels each and hundreds of cells. This suggests that the generic

model represented by the trained network could continue to

improve its performance with additional training examples, and

increase the ability and speed with which it learns to perform

new tasks.

DISCUSSION

Here, we report a new approach: in silico labeling (ISL). This deep

learning system can predict fluorescent labels from transmitted-

light images. The deep neural network we developed could be

trained on unlabeled images to make accurate per pixel predic-

tions of the location and intensity of nuclear labeling with DAPI or

Hoechst dye and to indicate if cells were dead or alive by predict-

ing propidium iodide labeling. We further show that the network

could be trained to accurately distinguish neurons from other

cells in mixed cultures and to predict whether a neurite is an

axon or dendrite. These predictions showed a high correlation

between the location and intensity of the actual and predicted

pixels. They were accurate for live cells, enabling longitudinal
led Images

hat images in all figures are small crops from much larger images and that the

of the z-stack of images of unlabeled cells used by the network to make its

t labels, respectively. Predicted pixels that are too bright (false positives) are

t 4, and condition B, outset 2, shows false negatives. Condition C, outset 3, and

ndition C, outset 2, show a common source of error, where the extent of the

ough exact intensity is rarely predicted perfectly. Scale bars, 40 mm.

redictions, with inset Pearson r values. The bin width is 0.1 on a scale of zero to

Under each heatmap plot is a further categorization of the errors and the per-

or more cells.Merged is when the network mistakes two or more cells as one.

), andmissed is when the network fails to predict a cell when there is one (i.e., a

Cell 173, 792–803, April 19, 2018 799

A

B C

Figure 5. Predictions of Cell Viability from Unlabeled Live Images

(A–C) The trained network was tested for its ability to predict cell death, indicated by labeling with propidium iodide staining shown in green.

(A) Upper-left corner crops of cell death predictions on the datasets from condition C (Table 1). Similarly to Figure 4, the first column is the center phase contrast

image of the z-stack of images of unlabeled cells used by the network tomake its prediction. The second and third columns are the true and predicted fluorescent

labels, respectively, shown in green. Predicted pixels that are too bright (false positives) are magenta and those too dim (false negatives) are shown in teal. The

true (Hoechst) and predicted nuclear labels have been added in blue to the true and predicted images for visual context. Outset 1 in (A) shows a misprediction of

the extent of a dead cell, and outset 3 in (A) shows a true positive adjacent to a false positive. The other outsets show correct predictions, though exact intensity is

rarely predicted perfectly. Scale bars, 40 mm.

(B) The heatmap compares the true fluorescence pixel intensity to the network’s predictions, with an inset Pearson r value, on the full condition C test set. The bin

width is 0.1 on a scale of zero to one (STAR Methods). The numbers in the bins are frequency counts per 1,000.

(C) A further categorization of the errors and the percentage of time they occurred. Split is when the network mistakes one cell as two or more cells. Merged is

when the network mistakes two or more cells as one. Added is when the network predicts a cell when there is none (i.e., a false positive), andmissed is when the

network fails to predict a cell when there is one (i.e., a false negative).

See also Figures S1–S5 and S7.
fluorescence-like imaging with no additional sample preparation

and minimal impact to cells. Thus, we conclude that unlabeled

images contain substantial information that can be used to train

deep neural networks to predict labels in both live and fixed cells

that normally require invasive approaches to reveal, or which

cannot be revealed using current methods.

Deep learning has been applied to achieve useful advances in

basic segmentation of microscopy images, an initial step in im-

age analysis to distinguish foreground from background (Chen

and Chefd’hotel, 2014; Dong et al., 2015; Mao et al., 2015; Ron-

neberger et al., 2015; Van Valen et al., 2016; Xu et al., 2016), and

on segmented images of morphologically simple cells to classify

cell shape (Zhong et al., 2012) and predict mitotic state (Held

et al., 2010) and cell lineage (Buggenthin et al., 2017). (Long

et al., 2010) applied deep learning methods to unlabeled and

unsegmented images of low-density cultures with mixtures of

three cell types and trained a network to classify cell types. (Sa-

danandan et al., 2017) used deep learning to segment cells from

bright field z-stacks, and also showed that cell nuclei can be
800 Cell 173, 792–803, April 19, 2018
segmented from non-nuclei fluorescent markers. Unfortunately,

the task of predicting fluorescence images from transmitted-

light images is not well served by typical classification models

such as Inception (Szegedy et al., 2015a) because they typically

contain spatial reductions that destroy fine detail. In response,

researchers developed specializedmodels for predicting images

from images, including DeepLab (Chen et al., 2015) and U-Net

(Ronneberger et al., 2015). However, we had limited success

with these networks (Figure S6; STAR Methods) and, thus,

created a new one.

Our deep neural network comprises repeated modules, such

as the reported Inception network, but the modules differ in

important ways (STARMethods). Inspired byU-Net (Ronneberger

et al., 2015), it is constructed so that fine-grain information can

flow from the input to the output without being degraded by local-

ity destroying transformations. It is multi-scale to provide context,

and it preserves approximate translation invariance by avoiding

zero-padding in the convolutions (STAR Methods), which mini-

mizes boundary effects in the predicted images. Finally, it is

A

B C

Figure 6. Predictions of Cell Type from Unlabeled Images

(A–C) The network was tested for its ability to predict from unlabeled images which cells are neurons. The neurons come from cultures of induced pluripotent stem

cells differentiated toward the motor neuron lineage but which contain mixtures of neurons, astrocytes, and immature dividing cells.

(A) Upper-left corner crops of neuron label (TuJ1) predictions, shown in green, on the condition A data (Table 1). The unlabeled image that is the basis for the

prediction and the images of the true and predicted fluorescent labels are organized similarly to Figure 4. Predicted pixels that are too bright (false positives) are

magenta and those too dim (false negatives) are shown in teal. The true and predicted nuclear (Hoechst) labels have been added in blue to the true and predicted

images for visual context. Outset 3 in (A) shows a false positive: a cell with a neuronal morphology that was not TuJ1 positive. The other outsets show correct

predictions, though exact intensity is rarely predicted perfectly. Scale bars, 40 mm.

(B) The heatmap compares the true fluorescence pixel intensity to the network’s predictions, with inset Pearson r values, on the full condition A test set. The bin

width is 0.1 on a scale of zero to one (STAR Methods). The numbers in the bins are frequency counts per 1,000.

(C) A further categorization of the errors and the percentage of time they occurred. The error categories of split, merged, added, and missed are the same as in

Figure 4. An additional ‘‘human vs. human’’ column shows the expected disagreement between expert humans predicting which cells were neurons from the true

fluorescence image, treating a random expert’s annotations as ground truth.

See also Figures S1, S4, S5, and S7.
specified as the repeated application of a single parameterized

module, which simplifies the design space and makes it tractable

to automatically search over network architectures.

We also gained insights into the strengths, limitations, and

potential applications of deep learning for biologists. The accu-

rate predictions at a per-pixel level indicate that direct corre-

spondences exist between unlabeled images and at least

some fluorescent labels. The high correlation coefficients for

several labels indicate that the unlabeled images contain the

information for a deep neural network to accurately predict the

location and intensity of the fluorescent label. Importantly, we

were able to show, in at least one case (Figure S3), that the pre-

dicted label could be used to accurately quantify the dimensions

of the cellular structure it represented and thereby correctly clas-

sify the biological state of the cell, which we validated with inde-

pendent direct measurements. This shows that labels predicted

from a deep learning network may be useful for accurately

inferring measurements of the underlying biological structures,
concentrations, etc, . . . that they are trained to represent. Lastly,

the fact that successful predictions were made under differing

conditions suggests that the approach is robust and may have

wide applications.

ISL may offer, at negligible additional cost, a computational

approach to reliably predict more labels than would be feasible

to collect otherwise from an unlabeled image of a single sample.

Also, because ISL works on unlabeled images of live cells,

repeated predictions can be made for the same cell over time

without invasive labeling or other perturbations. Many-label

(multi-plexed) methods exist that partially overcome the barrier

imposed by spectral overlap, notably via iterative labeling or hy-

perspectral imaging. However, the iterative methods are lethal to

cells, and the hyperspectral methods require a specialized setup

and are limited by the distinctiveness of the fluorophores’

spectra.

That successful predictions could be made by a singly trained

network on data from three laboratories suggests that the
Cell 173, 792–803, April 19, 2018 801

learned features are robust and generalizable. We showed that

the trained network could learn a new fluorescent label from a

very limited set of labeled data collected with a different

microscopy method. This suggests that the trained network

exhibited transfer learning. In transfer learning, the more amodel

has learned, the less data it needs to learn a new similar task. It

applies previous lessons to new tasks. Thus, this network could

improve with additional training data and might make accurate

predictions on a broader set of data than we measured.

Nevertheless, we encountered clear limitations of the current

network’s predictive ability. With supervised ML, the quality of

predictions is limited by the information contained in the input

data. For example, the network was less successful in identifying

axons in high-density cultures. Although the network identified

neurons in mixed cultures well, it was unsuccessful in predicting

the motor neuron subtype (Figure S7). The accuracy will be

limited if there is little or no correspondence between pixels in

the unlabeled image and those in the fluorescently labeled

one, if the quality of labeling is severely affected due to contribu-

tions from non-specific binding or variability, or if the data are

insufficient. We found from error analysis that the performance

of the network depended on the amount of information in the un-

labeled images, as measured by the number of images in the z-

stack (Figure S6), though we suspect transfer learning and better

imaging protocols may reduce the need for a z-stack. One chal-

lenge is the empirical quality of deep learning approaches.

Network architecture and training approaches can be optimized

to perform at impressive levels, but it can be difficult to determine

general principles of how the network made or failed to make

predictions that might guide future improvements. This will be

an important area for future research.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
802
B Cell preparation

d METHOD DETAILS

B Fluorescent labeling

B Imaging

B Data preparation

B Machine learning

B Performance dependence on z stack size

B Limitations

B Global coherence

B Comparison to other deep neural networks

B A note on 3D prediction

B Image processing in figures

d QUANTIFICATION AND STATISTICAL ANALYSES

B Statistical calculations

B Manual identification of network errors

B Noise and predictions near the noise floor

B Live versus dead cell nuclear size

d DATA AND SOFTWARE AVAILABILITY
Cell 173, 792–803, April 19, 2018
SUPPLEMENTAL INFORMATION

Supplemental Information includessevenfigures,one table, andonedatafile and

can be foundwith this article online at https://doi.org/10.1016/j.cell.2018.03.040.

ACKNOWLEDGMENTS

We thank Lance Davidow for technical assistance; Mariya Barch for advice and

helpful discussions about themanuscript;Marija Pavlovic for preparing the con-

dition E samples; Francesca Rapino and Max Friesen for providing additional

cell types not used in this manuscript; Michelle Dimon for helpful advice;

Charina Choi, Amy Chou, Youness Bennani-Smires, Gary Howard, and Kelley

Nelson for editorial assistance; and Michael Frumkin and Kevin P. Murphy for

supporting the project. Financial support to do this work came from Google,

NIH U54 HG008105 (S.F.), R01 NS091046 (S.F.), R01 NS083390 (S.F.), R37

NS101995 (S.F.), RF1 AG065151 (S.F.), RF1 AG058476 (S.F.), the Taube/Koret

Center for Neurodegenerative Disease Research (S.F.), the ALS Association

NeuroCollaborative (S.F.), and the Michael J Fox Foundation Head Start

Program (S.F.). We thank Dr. Marg Sutherland and the National Institutes of

Neurological Disorders and Stroke for their longstanding commitment to these

imaging and computational approaches. The Gladstone Institutes received

support from a National Center for Research Resources Grant RR18928.

AUTHOR CONTRIBUTIONS

Conceptualization, E.M.C., S.J.Y., D.M.A., A.J., G.S., S.L., M.B., L.L.R., P.N.,

and S.F.; Methodology, E.M.C., S.J.Y., D.M.A., A.J., G.S., S.L., E.M., K.S.,

A.E., M.B., and S.F.; Software, E.M.C., S.J.Y., W.F., R.P., and A.E.; Validation,

E.M.C., S.J.Y., W.F., and A.E.; Formal Analysis, E.M.C., S.J.Y., A.J., G.S., S.L.,

W.F., R.P., and A.E.; Investigation, E.M.C., S.J.Y., D.M.A., E.M., A.O., K.S.,

A.K.L., P.G., and W.F.; Resources, E.M.C., A.J., G.S., S.L., A.K.L., L.L.R.,

P.N., and S.F.; Data Curation, E.M.C., S.J.Y., D.M.A., A.J., G.S., S.L., and

E.M.; Writing – Original Draft, E.M.C., S.J.Y., A.O., W.F., R.P., and S.F.;

Writing – Review & Editing, E.M.C., S.J.Y., D.M.A., A.J., G.S., S.L., W.F.,

A.E., L.L.R., P.N., and S.F.; Visualization, E.M.C. and S.J.Y.; Supervision,

A.J., G.S., M.B., L.L.R., P.N., and S.F.; Project Administration, E.M.C., P.N.,

and S.F.; and Funding Acquisition, S.L., P.N., and S.F.

DECLARATION OF INTERESTS

Eric Christiansen, Samuel J. Yang, D. Michael Ando, Ryan Poplin, Marc

Berndl, and Philip Nelson are employees of Google, which may benefit finan-

cially from increased scientific use of cloud computing. All other authors

declare no competing interests.

Received: August 14, 2017

Revised: December 13, 2017

Accepted: March 15, 2018

Published: April 12, 2018

SUPPORTING CITATIONS

The following reference appears in the Supplemental Information: Goodfellow

et al. (2016).

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: large-scale

machine learning on heterogeneous distributed systems. arXiv, ar-

Xiv:1603.04467v2, https://arxiv.org/abs/1603.04467.

Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., and Finkbeiner, S.

(2004). Inclusion body formation reduces levels of mutant huntingtin and the

risk of neuronal death. Nature 431, 805–810.

Buggenthin, F., Buettner, F., Hoppe, P.S., Endele, M., Kroiss, M., Strasser, M.,

Schwarzfischer, M., Loeffler, D., Kokkaliaris, K.D., Hilsenbeck, O., et al. (2017).

https://doi.org/10.1016/j.cell.2018.03.040
https://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref2
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref2
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref2
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref3
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref3

Prospective identification of hematopoietic lineage choice by deep learning.

Nat. Methods 14, 403–406.

Burkhardt, M.F., Martinez, F.J., Wright, S., Ramos, C., Volfson, D., Mason, M.,

Garnes, J., Dang, V., Lievers, J., Shoukat-Mumtaz, U., et al. (2013). A cellular

model for sporadic ALS using patient-derived induced pluripotent stem cells.

Mol. Cell. Neurosci. 56, 355–364.

Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman,

O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al. (2006).

CellProfiler: image analysis software for identifying and quantifying cell pheno-

types. Genome Biol. 7, R100.

Chen, T., and Chefd’hotel, C. (2014). Deep learning based automatic immune

cell detection for immunohistochemistry images. In Machine Learning in

Medical Imaging, G. Wu, D. Zhang, and L. Zhou, eds. (Springer International

Publishing), pp. 17–24.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A.L. (2015).

Semantic image segmentation with deep convolutional nets and fully

connected CRFs. arXiv:1412.7062v4, https://arxiv.org/abs/1412.7062 .

Coelho, L.P., Shariff, A., and Murphy, R.F. (2009). Nuclear segmentation in

microscope cell images: a hand-segmented dataset and comparison of algo-

rithms. Proc. IEEE Int. Symp. Biomed. Imaging 5193098, 518–521.

Dong, B., Shao, L., Costa, M.D., Bandmann, O., and Frangi, A.F. (2015). Deep

learning for automatic cell detection in wide-field microscopy zebrafish

images. In 2015 IEEE 12th International Symposium on Biomedical Imaging

(ISBI), 772–776.

Du, Z.-W., Chen, H., Liu, H., Lu, J., Qian, K., Huang, C.-L., Zhong, X., Fan, F.,

and Zhang, S.-C. (2015). Generation and expansion of highly pure motor

neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. J. Mach. Learn. Res. 12,

2121–2159.

Dumoulin, V., and Visin, F. (2016). A guide to convolution arithmetic for deep

learning. arXiv:1603.07285v2, https://arxiv.org/abs/1603.07285.

Farabet, C., Couprie, C., Najman, L., and Lecun, Y. (2013). Learning hierarchi-

cal features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35,

1915–1929.

Finkbeiner, S., Frumkin, M., and Kassner, P.D. (2015). Cell-based screening:

extracting meaning from complex data. Neuron 86, 160–174.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D.

(2017). Google Vizier: a service for black-box optimization. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (ACM), pp. 1487–1495.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. ar-

Xiv:1406.2661v1, https://arxiv.org/abs/1406.2661.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (MIT Press).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep resid-

ual networks. arXiv:1603.05027v3, https://arxiv.org/abs/1603.05027.

Held, M., Schmitz, M.H.A., Fischer, B., Walter, T., Neumann, B., Olma, M.H.,

Peter, M., Ellenberg, J., and Gerlich, D.W. (2010). CellCognition: time-resolved

phenotype annotation in high-throughput live cell imaging. Nat. Methods 7,

747–754.

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: open source scientific

tools for Python.

Kingma, D., and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv:1412.6980v9, https://arxiv.org/abs/1412.6980.

Long, X., Cleveland, W.L., and Yao, Y.L. (2010). Multiclass detection of cells in

multicontrast composite images. Comput. Biol. Med. 40, 168–178.

Mao, Y., Yin, Z., and Schober, J.M. (2015). Iteratively training classifiers for

circulating tumor cell detection. In 2015 IEEE 12th International Symposium

on Biomedical Imaging (ISBI) (IEEE), pp. 190–194.
Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H.,

Peterson, Q.P., Greiner, D., and Melton, D.A. (2014). Generation of functional

human pancreatic b cells in vitro. Cell 159, 428–439.

Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., and Pande,

V. (2015). Massively multitask networks for drug discovery. ar-

Xiv:1502.02072v1, https://arxiv.org/abs/1502.02072.

Rigamonti, A., Repetti, G.G., Sun, C., Price, F.D., Reny, D.C., Rapino, F., Wei-

singer, K., Benkler, C., Peterson, Q.P., Davidow, L.S., et al. (2016). Large-scale

production of mature neurons from human pluripotent stem cells in a three-

dimensional suspension culture system. Stem Cell Reports 6, 993–1008.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional

networks for biomedical image segmentation. In International Conference on

Medical Image Computing and Computer-Assisted Intervention, N. Navab,

J. Hornegger, W.M. Wells, and A.F. Frangi, eds. (Springer), pp. 234–241.

Sadanandan, S.K., Ranefall, P., Le Guyader, S., and Wählby, C. (2017). Auto-

mated training of deep convolutional neural networks for cell segmentation.

Sci. Rep. 7, 7860.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embed-

ding for face recognition and clustering.arXiv:1503.03832v3, https://arxiv.org/

abs/1503.03832.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van denDriessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. Nature

529, 484–489.

Snoek, J., Larochelle, H., and Adams, R.P. (2012). P. In Advances in Neural

Information Processing Systems 25, Pereira., C.J.C. Burges, L. Bottou, and

K.Q. Weinberger, eds. (Curran Associates), pp. 2951–2959.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., and Rabinovich, A. (2015a). Going deeper with convolutions.

arXiv:1409.4842v1, https://arxiv.org/abs/1409.4842.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015b).

Rethinking the inception architecture for computer vision. arXiv:

1512.00567v3, https://arxiv.org/abs/1512.00567.

Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, Inception-

ResNet and the impact of residual connections on learning. arXiv:

1602.07261v2, https://arxiv.org/abs/1602.07261.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recur-

rent neural networks. arXiv:1601.06759v3, https://arxiv.org/abs/1601.06759.

van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The NumPy array: a

structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice,

M.M., Maayan, I., Tanouchi, Y., Ashley, E.A., and Covert, M.W. (2016). Deep

learning automates the quantitative analysis of individual cells in live-cell imag-

ing experiments. PLoS Comput. Biol. 12, e1005177.

Waskom, M., Botvinnik, O., Drewokane, Hobson, P., Halchenko, Y., Lukaus-

kas, S., Warmenhoven, J., Cole, J.B., Hoyer, S., Vanderplas, J., et al. (2016).

seaborn: v0.7.0.

Wikipedia (2017a). Softmax function. https://en.wikipedia.org/w/index.php?

title=Softmax_function&oldid=829752166.

Wikipedia (2017b). Unbiased estimation of standard deviation. https://en.

wikipedia.org/w/index.php?

title=Unbiased_estimation_of_standard_deviation&oldid=823365997.

Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., and I.-Chao Chang, E. (2016). Gland

instance segmentation by deep multichannel side supervision. arXiv:

1607.03222v2, https://arxiv.org/abs/1607.03222.

Zeiler, M.D., Krishnan, D., Taylor, G.W., and Fergus, R. (2010). Deconvolutional

networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on (IEEE), pp. 2528–2535.

Zhong, Q., Busetto, A.G., Fededa, J.P., Buhmann, J.M., and Gerlich, D.W.

(2012). Unsupervised modeling of cell morphology dynamics for time-lapse

microscopy. Nat. Methods 9, 711–713.
Cell 173, 792–803, April 19, 2018 803

http://refhub.elsevier.com/S0092-8674(18)30364-7/sref3
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref3
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref4
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref4
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref4
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref4
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref5
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref5
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref5
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref5
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref6
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref6
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref6
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref6
https://arxiv.org/abs/1412.7062
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref10
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref10
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref10
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref11
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref11
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref11
https://arxiv.org/abs/1603.07285
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref13
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref13
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref13
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref14
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref14
https://arxiv.org/abs/1406.2661
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref17
https://arxiv.org/abs/1603.05027
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref19
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref19
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref19
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref19
https://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref22
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref22
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref24
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref24
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref24
https://arxiv.org/abs/1502.02072
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref26
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref26
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref26
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref26
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref27
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref27
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref27
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref27
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref28
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref28
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref28
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref30
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref30
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref30
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref30
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref31
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref31
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref31
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1601.06759
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref36
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref36
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref37
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref37
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref37
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref37
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=829752166
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=829752166
https://en.wikipedia.org/w/index.php?title=Unbiased_estimation_of_standard_deviation&oldid=823365997
https://en.wikipedia.org/w/index.php?title=Unbiased_estimation_of_standard_deviation&oldid=823365997
https://en.wikipedia.org/w/index.php?title=Unbiased_estimation_of_standard_deviation&oldid=823365997
https://arxiv.org/abs/1607.03222
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref43
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref43
http://refhub.elsevier.com/S0092-8674(18)30364-7/sref43

STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit a-Islet Abcam 109517

mouse a-Tuj Biolegend 801202

chicken a-MAP2 Abcam 5392

rabbit a-NF-H Encor RPCA-NF-H

Goat anti rabbit IgG Alexa 488 Invitrogen A-11034

Goat anti mouse IgG Alexa 546 Invitrogen A-11003

Biological Samples

Long-Evans outbred rats Charles River Strain Code # 006

Chemicals, Peptides, and Recombinant Proteins

DMEM-F12 Life Technologies 11330057

Neurobasal Life Technologies 21103049

Knockout Serum Replacement Life Technologies 10828028

NEAA EMD Millipore TMS-001-C

Pen-Strep Life Technologies 15140-163

Glutamax Life Technologies 35050-061

D-Glucose Solution Sigma G8270

N2 Supplement Life Technologies 17502-048

B27 Supplement Life Technologies 17504-044

Ascorbic Acid Sigma A4403

DNase Worthington LK003172

EBSS Life Technologies 24010043

BDNF R&D Systems 248-BD-01M

GDNF R&D Systems 512-gf-010

CTNF R&D Systems 557-NT

Poly-Ornithine Sigma P3655

Laminin Sigma L2020

DPBS Life Technologies 14190-235

Neurobasal Life Technologies 21103049

2-Mercaptoethanol Life Technologies 21985023

mTESR1 StemCell Technologies 5850

Accutase StemCell Technologies 7920

Smoothened Agonist 1.3 EMD Biosciences 566660

LDN StemGent 04-0074-02

SB431542 R&D Systems 1614

Retinoic Acid Sigma R2625

Paraformaldehyde Electron Microscopy Sciences 15710

Bovine Serum Albumin (BSA) VWR RLBSA

Fetal Bovine Serum (FBS) Sigma F2442

Hoescht 33342 Sigma B2261

Modified Eagle Medium Dulbecco n/a

Fetal bovine sera n/a n/a

CellMask Deep Red membrane stain Life Technologies C10046

PBS Life Technologies 28906

(Continued on next page)

e1 Cell 173, 792–803.e1–e11, April 19, 2018

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Prolong Diamond with DAPI Thermo Fisher P36962

ReadyProbes Cell Viability (Blue/Green) Thermo Fisher Scientific R37609

Na2SO4 Sigma 239313-500

K2SO4 Sigma P9458-1kg

MgCl2 Sigma M2393-500G

CaCl2 Sigma C5080-500G

HEPES Calbiochem 391338

Glucose Macron fine chemicals 4912-12

Phenol red Sigma P-0290

NaOH Sigma S588-500G

Kynurenic acid (1 mM final) Sigma K3375-5G

Papain (100 U) Worthington Biochemical LS003126

Trypsin inhibitor Sigma T9253-5G

Opti-MEM (Thermo Fisher Scientific Thermo Fisher Scientific 31985070

100X GlutaMAX Thermo Fisher Scientific 35050061

Pen/Strep Thermo Fisher Scientific 15140122

B27 supplement Thermo Fisher Scientific 17504044

Experimental Models: Cell Lines

1016A-WT iPSC Pagliuca et al., 2014 hiPSC-2

MDA-MB-231 ATCC HTB-26

Healthy iPSC line differentiated into motor neurons Yamanaka lab KW4

Software and Algorithms

Google Cloud Dataflow Google https://cloud.google.com/dataflow

TensorFlow Abadi et al., 2015 https://www.tensorflow.org

Google Hypertune Golovin et al., 2017 https://cloud.google.com/ml-engine/

docs/hyperparameter-tuning-overview

SciPy Jones et al., 2001 https://www.scipy.org

seaborn Waskom et al., 2016 https://seaborn.pydata.org

CellProfiler Carpenter et al., 2006 http://cellprofiler.org/

Code and data for this paper This paper https://github.com/google/in-silico-labeling

Other

40 mM Cell Strainer Corning (Falcon) 352340

15 mL Tubes Corning/Falcon 352096

50 mL Tubes Corning/Falcon 352070

96 well mClear Plate CELLSTAR Greiner Bio-One 82050-748
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Eric

Christiansen (ericmc@google.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell preparation
Condition A

The human iPSC line 1016A was differentiated as described in (Rigamonti et al., 2016). Briefly, iPSCs were grown to near confluency

in adherent culture in mTesr media (StemCell Technologies) before being dissociated to single cells using Accutase (cat# 07920,

StemCell Technologies). Single cells were seeded into a spinning bioreactor (Corning, 55 rpm) at 1x106 cells/mL in mTesr with

Rock Inhibitor (10 mM) and kept in 3D suspension culture for the duration of differentiation. The next day (day 1), dual SMAD inhibitors
Cell 173, 792–803.e1–e11, April 19, 2018 e2

mailto:ericmc@google.com
https://cloud.google.com/dataflow
https://www.tensorflow.org
https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview
https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview
https://www.scipy.org
https://seaborn.pydata.org
http://cellprofiler.org/
https://github.com/google/in-silico-labeling

SB431542 (10 mM) and LDN 193189 (1 mM) were added. On day 2, the medium was switched to KSR media (15% knockout serum

replacement, DMEM-F12, 1x Glutamax, 1x non-essential amino acids, 1x pen/strep, 1x beta-mercaptoethanol; all from Life

Technologies) with SB and LDN. On day 3, the KSR medium was supplemented with SB, LDN, retinoic acid (Sigma, 1 mM), and

BDNF (R&D, 10 ng/mL). Beginning on day 5 and ending on day 10, the culture was transitioned to NIM medium (DMEM-F12,

1x B-27, 1x N2, 1x Glutamax, 1x non-essential amino acids, 1x Pen/Strep, 0.2 mM ascorbic acid, 0.16% D-glucose; all from Life

Technologies). On day 6, dual SMAD inhibition was removed, and Smoothen Agonist was added (1 mM). On day 10, DAPTwas added

(2.5 mM).

On day 15, themotor neuron sphereswere dissociated using Accutase andDNase. To dissociate the spheres, theywere allowed to

settle in a 15-mL tube, the medium was removed, they were washed with PBS and then approximately 2 mL of warmed Accutase

(with 100 mL DNase) was added to the settled pellet. Next, the tube containing the cells and Accutase was swirled by hand in a

37�C water bath for 5 minutes. Then, the cells were gently pipetted up and down using a 5-mL serological pipette. To quench

and wash, 5 mL of NIM was added, and the cells were centrifuged at 800 rpm for 5 minutes. The pellet was then re-suspended in

NB medium (Neurobasal, 1x B-27, 1x N2, 1x Glutamax, 1x non-essential amino acids, 1x pen/strep, 0.2 mM ascorbic acid,

0.16% D-glucose, 10 ng/mL BDNF, 10 ng/mL GDNF, 10 ng/mL CTNF) and passed through a 40-mm filter. The filter was washed

with an additional 3 mL of NB medium, and the cells were counted using a BioRad automated cell counter.

For plating, the Greiner mclear 96-well plate was coated overnight at 37�C with 2.5 mg/mL laminin and 25 mg/mL poly-ornithine in

water. The next day, the plate was washed with DPBS twice. The dissociated motor neurons were plated at 65,000 cells per well in

200 mL of NB medium and grown at 37�C with 5% CO2 for 48 hours to allow processes to form.

Condition B

The human iPSC line KW-4, graciously provided by the Yamanaka lab, was differentiated to motor neurons via a modified version of

the protocol in Burkhardt et al. (2013). Briefly, iPSCs were grown to confluency on Matrigel, followed by neural induction via dual

SMAD inhibition (1.5 mMDorsomorphine + 10 mMSB431542) andWNT activation (3 mMCHIR99021) for 3 days (Du et al., 2015). Motor

neuron specification began at day 4 by addition of 1.5 mM retinoic acid and sonic hedgehog activation (200 nM smoothened agonist

and 1 mM purmorphamine). At day 22, cells were dissociated, split 1:2 and plated in the same medium supplemented with neurotro-

phic factors (2 ng/mL BDNF & GDNF). At day 27, neurons were dissociated to single cells using 0.05% Trypsin and plated into a

96-well plate at various cell densities (3.7K – 100K/well) for fixation and immunocytochemistry.

Conditions C and D

Rat primary cultures of cortical neuronswere dissected from rat pup cortices at embryonic days 20-21. Brain cortices were dissected

in dissociation medium (DM) with kynurenic acid (1 mM final) (DM/KY). DMwas made from 81.8 mM Na2SO4, 30 mM K2SO4, 5.8 mM

MgCl2, 0.25 mMCaCl2, 1 mMHEPES, 20 mM glucose, 0.001%phenol red and 0.16mMNaOH. The 10x KY solution, wasmade from

10 mM KY, 0.0025% phenol red, 5 mM HEPES and 100 mM MgCl2. The cortices were treated with papain (100 U, Worthington

Biochemical) for 10 minutes, followed by treatment with trypsin inhibitor solution (15 mg/mL trypsin inhibitor, Sigma) for 10 minutes.

Both solutions were made up in DM/KY, sterile filtered and kept in a 37�C water bath. The cortices were then gently triturated to

dissociate single neurons in Opti-MEM (Thermo Fisher Scientific) and glucose medium (20 mM). Primary rodent cortical neurons

were plated into 96-well plates at a density of 25,000 cells/mL. Two hours after plating, the plating medium was replaced with

Neurobasal growth medium with 100X GlutaMAX, pen/strep and B27 supplement (NB medium).

Condition E

The human breast cancer cell line MDA-MB-231 was obtained from ATCC (Catalog # HTB-26) and grown in Dulbecco’s modified

Eagle medium (DMEM), supplemented with 10% fetal bovine sera (FBS). 15,000 cells in 150 mL of medium were used to seed

each well of a 96-well plate. Cells were grown at 37�C for 2 days prior to labeling.

METHOD DETAILS

Fluorescent labeling
Condition A

96 well plates were first fixed with a final concentration of 4% PFA by adding an equal volume as already present in each well of 8%

PFA to eachwell. The plate was fixed for 15minutes at room temperature. Next, the plate waswashedwith 200 mL/well of DPBS three

times for 5 minutes each. To permeabilize the cells, they were incubated in 0.1% Triton in DPBS for 15 minutes. Again, the cells were

washed with 200 mL/well of DPBS three times for 5 minutes each. The cells were then blocked with 1% BSA, 5% FBS in DPBS for 1

hour at room temperature. Primary antibodies were then added in blocking solution overnight at 4�C at the following concentrations:

rbaIslet 1:1000 (Abcam cat#109517), msaTuj1 1:1000 (Biolegend cat# 801202). The next day, cells were washed with blocking

solution three times for 5minutes each. Secondary antibodies, gtarb Alexa 488 and gtamsAlexa 546, were used at 1:1000 in blocking

buffer and incubated for 45 minutes at room temperature protected from light. Next, Hoechst was added at 1:5000 in DPBS for

15minutes at room temperature protected from light. The cells were thenwashedwith 200 mL/well of DPBS, three times for 5minutes

each protected from light. The cells were imaged in at least 200 mL/well of clean DPBS to avoid evaporation during long scan times.

Condition B

Day 27 iPSC-derived motor neurons were fixed in 4% Paraformaldehyde for 15 minutes and washed 3x in DPBS. Neurons were

blocked and permeabilized using 0.1% Triton-X, 2% FBS and 4% BSA for 1 hour at room temperature, and then stained with
e3 Cell 173, 792–803.e1–e11, April 19, 2018

MAP2 (Abcam ab5392, 1:10000) and NFH (Encor RPCA-NF-H, 1:1000) at 4�C overnight. Cells were then washed 3x with DPBS, and

labeled with Alexa Fluor secondary antibodies (each 1:1000) for 1 hour at room temperature. Neurons were again washed 3x with

DPBS, followed by nuclear labeling with 0.5 mg/mL DAPI.

Condition C

Four-day in vitro primary rat cortical neurons were treated with a cell viability fluorescent reagent (ReadyProbes Cell Viability

(Blue/Green), Thermo Fisher Scientific). During treatment with the viability reagent, DMSO (1 in 1400) was added to a subset of

the neurons to increase their risk of death. NucBlue Live reagent (dilution of 1 in 72) and NucGreen Dead (dilution of 1 in 144)

were added to the neuronal media. The NucBlue Live reagent stained the nuclei of all cells, and the NucGreen Dead reagent stained

the nuclei of only dead cells. The cells were then imaged.

Condition D

Primary rat neurons were fixed in 96-well plates by adding 50 mL of 4% paraformaldehyde (PFA) with 4% sucrose to each well for

10 minutes at room temperature. PFA was removed and cells were washed three times with 200 mL of PBS. Blocking solution

(0.1% Triton-x-100, 2% FBS, 4% BSA, in PBS) was added for 1 hour at room temperature. Blocking solution was removed and pri-

mary antibodies MAP2 (Abcam ab5392, 1:10000) and Anti-Neurofilament SMI-312 (BioLegend 837901, 1:500) were then added in

blocking solution overnight at 4�C. The next day, cells were washed with 100 mL of PBS three times. Cells were then treated with

Alexa Fluor secondary antibodies at 1:1000 in blocking solution for 1 hour at room temperature. Neurons were again washed three

times with PBS, followed by nuclear labeling with 0.5 mg/mL DAPI.

Condition E

Adherent MDA-MB-231 cells in wells of a 96-well plate were gently washed three times by aspirating and adding 150 mL of fresh

medium to remove loosely attached cells. 150 mL ofmediumwith 33 (0.5 mL) CellMask DeepRedmembrane stain (Life Technologies,

Catalog #: C10046) were added to each well for a final 1.53 final concentration and incubated for 7 minutes. Samples were washed

twice with fresh medium. Then, samples were fixed by aspirating media and adding 100 mL of 4% PFA to each well, prepared

previously from 16% PFA in PBS (Life Technologies, Catalog #: 28906). Samples were incubated for 15 minutes more and washed

twice with PBS. PBSwas aspirated and the wells were allowed to evaporate somemoisture for a few of minutes. One drop of Prolong

Diamond with DAPI mounting medium (Thermo Fisher, Catalog #: P36962) was added to each of the fixed wells, and the plate was

gently agitated to allow the mounting medium to spread evenly. Samples were placed in the refrigerator and allowed to incubate

for R 30 minutes before imaging.

Imaging
Acquisition

The Rubin lab (Condition A) acquired images with 40 3 high numerical aperture (0.95) objectives using the Operetta high-content

imaging microscope (Perkin Elmer) running Harmony software version 3.5.2. The illumination system for fluorescence was a Cermax

Xenon fiberoptic light source. The microscope acquires images with 14-bit precision CCD cameras then automatically scales the

images to 16-bit. The plate used was a 96-well Greiner mclear plate. A total of 36 wells were acquired with 36 fields representing

an enclosed 63 6 square region. For each field, 15 planes with a distance of 0.5 mm between each were acquired. Each field over-

lapped with adjacent fields by 34%. Four independent channels were acquired: Bright field (50-ms exposure), Hoechst (300-ms

exposure, 360–400 excitation; 410–480 emission), TuJ1 (200-ms exposure, 560–580 excitation; 590–640 emission), and Islet1

(80-ms exposure, 460–490 excitation; 500–550 emission). A total of 77,760 images were collected.

The Finkbeiner lab (Conditions B, C, D) used a Nikon Ti-E with automated ASI MS-2500 stage equipped with a spinning disc

confocal microscope (Yokogawa CSU-W1), phase contrast optics (Finkbeiner et al., 2015) (Nikon S Plan Fluor 40X 0.6NA) and

controlled by a custom plugin for Micro-Manager 1.4.18. An Andor Zyla4.2 camera with 20483 2048 pixels, each 6.5 mm in size,

was used to generate images. For each microscope field, 13–26 stacks of images were collected at equidistant intervals along

the z-axis and centered in the middle plane of most of cell bodies in the field. Depending on the plate conditions, the planes

in the stack were 0.3–1.53 mm apart, and the stack of images encompassed a total span of a 3.6–19.8 mm along the z-axis and

centered around the midpoint of the sample. 96-well plates were used (PerkinElmer CCB). Each well was imaged with 9 to 36 tiles

(33 3 to 63 6 patterns, respectively) with overlap of approximately 350 pixels. A total of 120,159 images were collected.

Google (Condition E) used a Nikon Ti-E microscope equipped with Physik Instrumente automated stage controlled by

Micro-Manager 1.4.21. Images were acquired using a confocal microscope with 1-mm z-steps with a Plan Apo 40 3 NA 0.95 dry

objective. In this condition, 26 z-steps were collected for each tile, but every other one was discarded to form 13-step z-stacks.

An Andor Zyla sCMOS camera with 6.5-mmpixel size was used, generating images with 20483 2048 pixels. Two wells were imaged,

with 16 tiles each in a 43 4 pattern with approximately 300 pixel overlap. A total of 2,496 images were collected.

Tiling overlap

All the microscopes we used have a robotic stage for translation in the x and y dimensions, and a field of view substantially smaller

than the size of the well, which provided unsatisfying spatial context. Thus, we acquired images in sets of tiles in square tiling

patterns, using the microscope’s stage to translate in x and/or y between successive shots in the same well. The patterns ranged

from 33 3 tiles up to 63 6. In all cases, the tiles overlapped each other to enable robust visual features based stitching into larger

images. The typical overlap was about 300 pixels.
Cell 173, 792–803.e1–e11, April 19, 2018 e4

The ability to stitch together a montage of tiled images depended on a variety of factors, including sample sparsity, imaging

modality, number of z-depths and channels, and the overlap between adjacent tiles. On the data we worked with, we determined

that a 300-pixel overlap was sufficient to get robust stitching across most datasets. This was determined empirically by cropping

the tiles smaller and applying the stitching algorithm until it could no longer successfully stitch together a test set of images.

High dynamic range

To increase the range of luminance in the image beyond the bit depth of the camera, we collected images in bursts of four 20-ms

exposures in the fluorescence images from the Finkbeiner lab. We then summed the group of four images on a per pixel basis to

resolve features closer to the noise floor. Summing allows simple creation of images with 20-, 40-, 60-, and 80-ms exposures. These

group-summed images provide a higher dynamic range and can then be used to reconstruct the image plane with all features more

clearly visible than could be seen with any one exposure. If a direct sum of all images is used, it is possible to generate an image of the

acquired plane that exceeds the bit-depth of the camera. This increases the accessible information per image plane by achieving

better dynamic range and adds flexibility to the analysis, allowing rescaling in bit-depth as needed.

Data preparation
Preprocessing pipeline

The image datasets must be cleaned and canonized before they can be used to train or evaluate a ML system. To that end, they are

fed through a preprocessing pipeline composed of the following stages:

1. Salt-and-pepper noise reduction in the fluorescence images bymeans of amedian filter. Themedian filter is of size 53 5 and is

applied successively until convergence, which occurs within 32 iterations.

2. Only needed for training. Dust artifact removal from fluorescence images, in which dust artifacts are estimated and then

removed from the fluorescence images.

3. Downscaling, in which images are bilinearly downscaled by a factor of two in each dimension to reduce shot noise.

4. Flat field correction, in which the spatially varying sensitivity of the microscope is estimated and removed.

5. Dust artifact removal from transmitted light images.

6. Stitching, in which tiles with overlapping borders are montaged into a larger image, further reducing noise at the intersections

while making it possible to see large parts of the well in one image.

7. Only needed for training. z-axis maximum projection, in which the target (fluorescence) images are projected along the z-axis

by taking the 90th percentile intensity as a robust estimate of the maximum. This step is necessary to make the prediction task

well-defined, because some of our confocal images had insufficient voxel z size, and because we lack a mechanism for regis-

tering voxels in the z direction across all our datasets. If we had such a system we could attempt 3D (voxel) prediction, and

indeed we’ve had some promising results, not reported here, on a small, z-registered, dataset.

8. Global intensity normalization, in which the per-image pixel intensity distributions are constrained to have a fixed mean and

standard deviation. This step, which is aided by the previous stitching step, is necessary to make the ML task well defined,

because our pixel intensities are not measured in comparable absolute units. Note this would not be necessary if our samples

had been instrumented with standard candles (point sources of known brightness); we would like to see in-sample calibration

objects become a standard part of in vitro biology.

9. Only needed for training.Quality control, in which low quality images are removed from the dataset. This makes MLmore trac-

table, as otherwise the learning system would devote resources attempting to learn the unlearnable.

Dust artifact removal from fluorescence images

A subset of the fluorescence images from the Finkbeiner Lab datasets contained the same additive intensity artifact likely due to

excitation light scattering from dust. The artifact was located at the same location in each image, and appeared as a sparse pattern

(< 10% of the pixels) of overlaid gray disks around 50 microns wide. The following procedure was used to estimate the shape and

intensity of this artifact, and then to subtract it from all of the images, thereby removing the artifact. Given a collection of images all

containing the artifact, the mean and minimum projections were taken across the images (i.e., for each (x, y) pixel coordinate, the

mean and minimum across all images was evaluated). The sensor offset, an image sensor property, was then subtracted from the

mean image, and an edge-preserving smoothing, followed by a thresholding operation, was used to produce a binary mask of

the artifact location. The mask is used to replace artifact pixels in the mean image with the mean value of the non-artifact pixels, after

which a Gaussian blur is applied to produce an estimate of the average background. Subtracting this average background from the

average image yields the final estimate of the artifact, which is then subtracted from each of the images.

Flat field correction

Flat field miscalibration can manifest as spatially varying image brightness consistent from image to image. We assume the effect is

multiplicative and slowly spatially varying. To estimate the flat field, we take a per-pixel median across a set of images assumed to

have the same bright field and then blur the result using a Gaussian kernel. The kernel standard deviation in pixels is 1/16th the image

height for fluorescence images, and 1/32nd the height for transmitted light images. To flat field correct a new image, we pixelwise

divide it by the flat field image and then clip the result to capture most of the intensity variation.
e5 Cell 173, 792–803.e1–e11, April 19, 2018

Dust artifact removal from transmitted light images

We treat dust in transmitted light images as a quickly spatially varying multiplicative artifact. To estimate the dust field, we take a per-

pixel median across a set of images assumed to have the same dust pattern. We do not blur the images. To dust correct a new image,

we pixelwise divide it by the dust field image and then clip the result to capture most of the intensity variation.

Image stitching

To stitch a set of images, we first calculate approximate (x, y) offsets between neighboring tiles using normalized cross correlation.

At this point, the set of offsets may not be internally consistent; there are many paths between any two images, and the accumulated

offsets along two such paths may disagree. To make the offsets internally consistent and thus refine the solution, we use a spring

system formulation and find the minimum energy configuration. In other words, for measured offsets oij˛<2 we find the tile locations

li˛<2which minimize
P

i;jkli � lj � oij k 2

2
. With the set of refined (x, y) offsets, we then alpha composite the tiles into a shared canvas.

Global intensity normalization

We globally affine normalize transmitted light pixel intensities to have mean 0.5 and standard deviation 0.125. We globally affine

normalize fluorescence pixel intensities to have mean 0.25 and standard deviation 0.125. All pixels are clipped to fall within

[0.0, 1.0]. These parameters capture most of the dynamic range. Previous versions of the system had used local normalization,

but it wasn’t found to make much of a difference in the final images, and it contained one more knob to tune (the size of the local

neighborhood).

Quality control

Of the five datasets considered in this paper, eleven wells were removed from Condition A for quality concerns due to an issue with

the motorized stage. This yielded the 25 remaining wells listed in Table 1.

Machine learning
Inputs and outputs

Our machine learning model is a deep neural network which takes, as input, sets of transmitted light images across 13 z-depths, and

outputs fluorescence images. For each fluorescence image, the network outputs a discrete probability distribution (over 256 intensity

values, corresponding to 8 bits of information) for each pixel. Note, this is in contrast to the more common foreground / background

models which output a Bernoulli distribution for each pixel.

The input to the network is a z-stack of 13 2503 250 images, where we treat the z-dimension as the feature dimension and we use

a batch size of 16 for training. Thus, the input is a tensor of shape 163 2503 2503 13 of type float32 where the axes represent

batch3 row3 column3 feature. For the four towers with inputs smaller than 2503 250, their inputs are center cropped from this

tensor.

The outputs of the network (colloquially termed heads) are nine tensors: eight fluorescence tensors and an autoencoding

tensor. The eight fluorescence tensors have shape 163 83 83 256 of type float32 where the axes are batch3 row3 column3

pixel_intensity. The eight predicted labels are nuclear (DAPI or Hoechst) imaged in confocal, nuclear (DAPI or Hoechst) imaged in

widefield, CellMask imaged in confocal, TuJ1 imaged inwidefield, neurofilament imaged in confocal, MAP2 imaged in confocal, Islet1

imaged in widefield, and propidium iodide imaged in confocal. DAPI and Hoechst both label DNA and never co-occur in the same

condition, so we treat them as one label. Nuclear widefield looks different from nuclear confocal, and they were treated as separate

labels. Training on Islet1 resulted in unreliable predictions; see the Limitations section in STAR Methods. Finally, note that no well in

the data had more than three fluorescent labels, so at most three such heads would be updated for any given training example.

Autoencoding refers to training a model to predict the input from the input (i.e., learning the identity function). Our network has an

autoencoding output in addition to the fluorescence outputs because it helps debug certain training pathologies. The autoencoding

output tensor has shape 163 83 83 133 256 of type float32 where the axes are batch3 row3 column3 z3 pixel_intensity. The

model loss from this output is minimized when all the probability weight is assigned to the intensity values of the center crop of the

input tensor.

The repeated module

Inspired by Inception (Szegedy et al., 2015a), the full network comprises a number of repeated sub-networks (colloquially called

modules). Data S1 Figure 2 gives the architecture of the module. In the path on the right, information flows from the input, through

a learned convolution that expands the feature dimension and then through a learned convolution that reduces the feature dimension.

On the left, feature values are copied from the input, forming a residual connection (He et al., 2016). The features resulting from the

two paths are added together, forming the input to the next module.

The convolutions are not zero-padded (i.e., the convolution kernels are restricted to the interiors of the layers where their supports

are fully defined). This kind of convolution is colloquially called valid (e.g., by NumPy) (van der Walt et al., 2011). (Dumoulin and Visin,

2016) describes how convolutions are used in deep learning and what is meant by kernel size and stride in convolutions.

There are three possible configurations of the module: in-scale, down-scale, and up-scale. In the in-scale configuration, k = 3 and

s = 1, meaning the convolution kernel size in the expand layer is 33 3 and the stride is one. This configuration does not change the

length-scale of the features: translating the input in the row or column dimension would translate the output by the same amount. In

the down-scale configuration, k = 4 and s = 2, meaning the expand convolution kernel is 43 4 and the stride is two. This configuration

doubles the length scale of the features: translating the input in the row or column dimension would translate the output by half the

amount. In the up-scale configuration, k = 4 and s = 2, the max pool is removed from the network, and the expand convolution is
Cell 173, 792–803.e1–e11, April 19, 2018 e6

replaced with a convolution transpose (Zeiler et al., 2010), followed by a crop of all the features within two rows or columns of the

border. This configuration halves the length scale of the features: translating the input in the row or column dimension would translate

the output by double the amount.

Because the three configurations have different effects on the length-scales of the features, the residual connections must vary

between the configurations. For the in-scale configuration, we trim off a size 1 border in the row and column dimensions, correspond-

ing to a valid (non zero-padded) convolution with a kernel size of 3 and a stride of 1 (Dumoulin and Visin, 2016). For the down-scale

configuration, we do the same trim, then downscale by a factor of 2 using average pooling with a kernel size of 2 and a stride of 2. For

the up-scale configuration, we upscale by a factor of 2 using nearest neighbor interpolation.

Macro-level architecture

The full network is composed of six sub-networks where computation proceeds serially (colloquially towers). There are five towers

that take image pixels as input and operate on the pixels at different length-scales. The outputs of these five towers are concatenated

in the feature dimension and input to a final tower which outputs predictions (Figure 3).

Data S1 Figure 3 is a more detailed view of the network, showing the sub-sub-networks (colloquiallymodules) that compose each

tower. The modules were described in the previous section. The module is a function of its configuration (in-scale, down-scale, or

up-scale), the number of features in its expand layer, the number of features in its reduce layer, and the shape of the input. These

parameters are indicated by the shapes of and inset numbers in the boxes in Data S1 Figure 3.

Each network output (colloquially head) is a linear function of the final layer in the network followed by a softmax nonlinearity

(Wikipedia, 2017a) to make the predictions probability distributions over pixel intensities. The softmax function s : <K/<K is a stan-

dard tool for transforming vectors into discrete probability distributions: sðzÞj = ezj=
PK

k =1e
zk for j = 1; 2; :::;K.

The in-scale and down-scale configurations of the module are translation invariant (i.e., they compute the same function for every

value in the output); the only thing that changes is the input to the function as it translates in (x, y) over the network’s support. The

up-scale configuration computes the same function for every 23 2 block in the output, so we say it is approximately translation

invariant. The composition of translation invariant functions is translation invariant, so we say each tower, individually, is approxi-

mately translation invariant. The five lower towers are constructed so their outputs have the same numbers of rows and

columns. These outputs are concatenated in the feature dimension at the midpoint of the network: the layer labeled ‘‘FEATURE

CONCATENATION’’ in Data S1 Figure 3. Because the concatenation (direct product) of translation invariant functions is translation

invariant, we say the network is approximately translation invariant up to themidpoint of the network. Because the final tower is trans-

lation invariant, the full network is approximately translation invariant.

Approximate translational invariance is useful because it minimizes edge effects in predicted images. An edge effect is something

which lets the viewer predict the location of a pixel in a model output from a neighborhood of the pixel, and often appears as a block

structure in the resulting image. Because the edge effects are minimized, we can produce network predictions independently and in

parallel.

The numbers of features in the modules were set such that each module would take roughly the same number of operations to

evaluate, which means that modules get more features as their row and column size decreases. This also implies that every tower

in the lower network takes roughly the same amount of time to evaluate, which is desirable for avoiding stragglers in environments

that are not CPU limited. In other words, we assume each tower will be evaluated in parallel, and so to maximize the parameter count

given a fixed latency, the towers should be designed to take the same time to evaluate.

Though absolute pixel sizes were available for all the data, they were not provided to the network. The network simply maps from

pixels to pixels.

Training loss

For each pixel in each predicted label, the network emits a discrete probability distribution over 256 discretized pixel intensity values.

The model losses are calculated as the cross-entropy errors between the predicted distributions and the true discretized pixel inten-

sity. These cross-entropy losses are scaled such that a uniform predictor will have an error of 1.0. Each loss is gated by a pixelwise

mask associated with each output channel, where the mask indicates on a per-training-datum basis whether a particular label is

provided. By gating the losses in this way, we can build a multihead network on a dataset created by aggregating all our datasets.

The network takes any label-free modality as input and predicts all labels ever seen. The total loss is the weighted average of the

gated losses.

We weighted the losses so 50% of the loss was attributed to error in predicting the fluorescence labels and 50%was attributed to

error in autoencoding, in which we asked the network to predict its own inputs.We found it useful to additionally task the network with

autoencoding because it can help in diagnosing training pathologies.

Training

Training examples were generated by randomly selecting patches of size 2503 250, the network input size, from the set of all the

training images. The network is multi-task and was trained on all tasks simultaneously; no individual example contained labels for

all the fluorescent channels, so gradient updates were only applied to the outputs for the existing channels.

The network was implemented in TensorFlow (Abadi et al., 2015) and trained using 64worker replicas and eight parameter servers.

Each worker replica had access to 32 virtual CPUs and about 20 GB of RAM. Note, GPUs would have been more efficient, but we

lacked easy access to a large GPU cluster. We used the Adam (Kingma and Ba, 2014) optimizer with a batch size of 16 and a learning

rate of 10�4 for 1 week, then reduced the learning rate to 10�5 for the second and final week. This would have cost about $7000 if
e7 Cell 173, 792–803.e1–e11, April 19, 2018

trained from scratch in a public cloud, assuming a rate of $0.01 per CPU hour. Though training for 2 weeks (about 10 million steps)

was necessary to get the full performance reported here, the network converges to good predictions within the first day.

Hyperparameter optimization

Deep learning is somewhat notorious as an empirical endeavor, because of the importance of various design choices (colloquially

hyperparameters), such as network architecture and optimization method, and the paucity of theory describing how these choices

should bemade (i.e., how the hyperparameters should be optimized over). A commonway to deal with this uncertainty is to pose it as

another learning problem, typically using a second learning system that is better understood than the original.

In designing our network, we used such a system: an early version of Google Hypertune (Golovin et al., 2017). Hypertune has two

components: a learning component models the effect on network performance of various hyperparameters, and an optimization

component suggests new hyperparameter settings to evaluate in an attempt to find the best setting. The two components take turns

to advance the state of the design search: first, the learner builds a predictive model of how good new hyperparameter settings are

likely to be given all the designs evaluated thus far; second, the optimizer evaluates designs that seem promising under the predictive

model; third, the learner updates its model given the newly evaluated designs, etc.

For the learning component, Hypertune uses Gaussian process regression, a kind of regression that admits complex nonlinear

models and that provides confidence bounds with its predictions. For the optimization component, Hypertune uses an algorithm

that seeks to balance between refining existing good designs and searching for novel designs. Spearmint (Snoek et al., 2012) is a

similar, open-source, system.

The network is comprised of repeated applications of the samemodule (Data S1 Figure 2), and we used Hypertune to optimize the

design that module. To evaluate a design, we trained and evaluated four instances of the design via four fold cross validation. For

efficiency, these instances were only trained for 12 hours, using 64 32-CPU machines as described in the previous section. We

believe even 12 hours was enough to separate the terrible designs from the promising ones. In total, several hundred designs

were evaluated.

Specifically, we optimized:

1. CEXPAND, the ratio in the feature count between the EXPAND andREDUCE layers in themodule (Data S1 Figure 2).We searched

ratios between 0.1 and 10.0, and the best network had a ratio near 5.0. This is consistent with Ramsundar et al. (2015) but

appears to contradict the advice of Szegedy et al. (2015b), in which it is argued the number of features in a layer should change

gradually and monotonically.

2. The subset of activation functions (also called nonlinearities) to use. We searched all subsets of {RELU, TANH, MIRROR_

RELU}. These are all scalar functions, where RELU is given by fðxÞ = maxð0; xÞ, TANH is given by fðxÞ = tanhðxÞ, and
MIRROR_RELU is given by fðxÞ = minð0; xÞ. The best network used RELU and TANH but not MIRROR_RELU.

3. The minibatch size. We searched between 4 and 64, and the best network used a minibatch size of 16.

4. The optimizer. We tried Adam (Kingma and Ba, 2014) with the default TensorFlow parameters, Adagrad (Duchi et al., 2011) with

the default TensorFlow parameters, and learning with momentum (where we also searched over the momentum values in

[0.0, 1.0)), and the best network used Adam.

5. The learning rate. We tried learning rates between 10�3 to 10�6. However, because of the difference in training times between

hyperparameter optimization (12 hours) and final training (2 weeks), this search was only useful to ensure the other hyperpara-

meters were being fairly evaluated.

In this optimization, we attempted to keep the total number of network parameters constant, because we were interested in the

best allocation of a fixed parameter budget, not whether more parameters would produce better performance.

Prediction

The network is applied in a sliding-window fashion. So to predict (infer) a full image, the input images are broken into patches of size

2503 250 with a stride of 8, the patches are fed to the network producing outputs of size 83 8, and the outputs are stitched together

into the final image. Inferring all labels on a 10243 1024 image takes about 256 s using 32 CPUs, or about eight thousand CPU

seconds, which currently costs about $0.02 in a public cloud. The process is parallelizable, so the inference latency can be very

low, in the range of seconds. We do our own inference in parallel using Flume, a Google-internal system similar to Cloud Dataflow

(https://cloud.google.com/dataflow/).

The network predicts a probability distribution for each output pixel, which is useful for analyzing uncertainty. To construct images

we take the median of the predicted distribution for each pixel. We’ve also looked at the mode (too extreme) and mean (too blurry).

The predicted images do not a priori have the same average brightness as the true images, so we run them through an additional

global normalization step before declaring them final.

Performance dependence on z stack size
In this work, we used the full set of 13 transmitted light images in each z-stack (Data S1 Figure 1). However, it wasn’t clear a priori

whether the network needs all 13 z-depths. To test this, for each Nz in 1, 2, ., 13, we trained independent networks with Nz input

z-depths. To specify which z-depths to provide the network, we used a fixed ordering of the z-stack images starting at the center
Cell 173, 792–803.e1–e11, April 19, 2018 e8

https://cloud.google.com/dataflow/

plane where most of the cells should be in focus (z = 6 in a 0-indexed count) and expanding outward along the z axis in steps of two

z-depths. For instance, with this strategy, to select three of the available 13 z-stacks, we would select z-depths 4, 6, and 8.

Tomeasure the performance on a subset ofNz z-depths, we extractedNz z-depths according to our fixed z-stack ordering and then

trained an independent network on this image subset for four million steps. We then measured cross entropy loss for fluorescence

image prediction on a validation set (Figure S6).

These experiments suggest that performance improves with the number of input z-depths, but that each additional image provides

less benefit than the last. We do not find this surprising; each additional image provides additional information the network can learn

to use, but eventually performance will saturate.

Limitations
Regardless of the power of the machine learning system, in silico labeling (ISL) will not work when the transmitted light z-stack lacks

the information needed to predict the labels:

1. Neurites are hard to discern in Condition D, so the axon prediction was not very accurate (Figure S4).

2. Nuclei are nearly invisible in Condition E, so the nuclear prediction was not very localized (Figure S5).

3. Motor neurons look like regular neurons, so the predicted motor neuron label (Islet1) was not very specific to motor neurons

(Figure S7).

Thus, all applications of ISL should be validated on a characteristic sample before being trusted on a new dataset.

Global coherence
The current network uses an inexpensive approximation to the correct loss function, not the correct loss itself. The final output of ISL

is an image, but the loss we use is over pixels, not images. Thus, the network will attempt to predict the most likely pixels, and will

make each of those predictions independently. This means that predicted imagesmay lack global coherence; instead of getting clear

structures in images, predictionsmay produce erroneous averages over several structures. Practically speaking, the problem ismost

noticeable for long thin structures like neurites and explains why they’re not always predicted as continuous shapes (Figure S4). The

problem could be addressed with existing techniques frommachine learning, e.g., sampling techniques (van denOord et al., 2016) or

adversarial models (Goodfellow et al., 2014).

Comparison to other deep neural networks
The proposed network outperformed the DeepLab network (Chen et al., 2015) and a modified U-Net network (Ronneberger et al.,

2015) on these data. To determine this, we trained those networks and our proposed network on our training data. Our proposed

network achieved a lower loss than the modified U-Net, which achieved a lower loss than DeepLab (Figure S6). Early comparisons

of the same kind were what drove us to develop a new architecture, rather than rely on existing architectures.

For each learning rate in [1e-4, 3e-5, 1e-5, 3e-6], each network was trained for at least 10million steps using Adam (Kingma andBa,

2014), which took around 2 weeks each on a cluster of 64 machines. The proposed network and DeepLab were trained with a batch

size of 16, and due to high memory usage the modified U-Net was trained with a batch size of 1. For each network, we selected the

trained instance with the best error out of the four learning rates. For the proposed network, it was 3e-6. For DeepLab and U-Net it

was 1e-5. These three trained instances had been continuously evaluated on the training and validation datasets, producing the

training curves shown in the figure.

U-Net and DeepLab typically take 1 or 3 channel images as input (RGB), but our input has 13 channels from the 13 z-depths. To

make these networks accept our data, we modified the input layers to have a feature depth of 13. To generate the fluorescence and

autoencoding predictions, we similarly replaced the outputs (heads) of U-Net and DeepLab with the heads used by our network.

The DeepLab and U-Net implementations we used were provided by Kevin Murphy’s VALE team at Google, which maintains

internal implementations of common networks, and which created DeepLab. No hyperparameter optimization was performed for

DeepLab or U-Net, as we considered the DeepLab and U-Net designs to be fixed. However, we did shrink the input size of U-Net

from 5723 572 to 3213 321 while keeping all the operations the same, because the 5723 572 version used too much memory

in our code. The proposed network had 27 million trainable parameters, DeepLab had 80 million, and the modified U-Net had

88 million.

A note on 3D prediction
The approach we describe can in principle be applied to predicting 3D confocal voxel grids, and an early version of this work did

incorporate a 3D prediction task with modest results.

There are at least three problems which must be overcome to make 3D prediction work:

1. Representation of the z-dimension in the network (low difficulty): In this paper, we simply merged the z and feature dimensions,

which works when the number of possible z values is small but doesn’t scale for a large number of possible z values. In that

case, one would probably want to use 3D convolutions rather than 2D convolutions in the neural network.
e9 Cell 173, 792–803.e1–e11, April 19, 2018

2. Registration in z (higher difficulty): Independent pixel losses, such as the one we use, fail when input and target tensors are

misaligned in an unpredictable manner. While we show it is possible to ensure registration in x and y across transmitted light

and fluorescence images, we have not attempted to register in z.

3. Information (unknown difficulty): We suspect depth from blur in transmitted light will not be enough to recover 3D shape in

multilayer cell cultures. It will take creative thinking to extract the information needed to reconstruct the 3D structure.
Image processing in figures
Images in this paper were transformed to make them easier to view. Transmitted light images were normalized to have a pixel

intensity mean of 0.5 with standard deviation 0.125, where possible brightness values are in the range [0.0, 1.0]. Values falling outside

[0.0, 1.0] were clipped. True and predicted fluorescence images were normalized to have a pixel intensity mean of 0.25 with standard

deviation 0.125. These imageswere then affine rescaled and clipped so that 0.2 and below became 0.0 and 0.8 became 1.0, using the

function fðxÞ = maxð0; minð1:0; ðx� 0:2Þ = 0:6ÞÞ. We sent 0.2 to zero because it is the apparent noise floor for much of our data, and

we sent 0.8 to 1.0 to brighten the fluorescence images and make them easier to see in print. Error images were derived from

fluorescence images normalized to have mean 0.25 and standard deviation 0.125. There were brightened in the same manner as

the fluorescence images but were not clipped at the noise floor; the function was fðxÞ = minð1:0; x = 0:8Þ. This means that errors

predicting intensities below the noise floor can appear in the error images without appearing in the true or predicted fluorescence

images. Figure S1 shows a larger dynamic range and color bars for calibration. Links to raw images can be found on GitHub at

https://github.com/google/in-silico-labeling.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical calculations
Pearson r values were computed via the pearsonr function in Python’s scipy.stats (Jones et al., 2001) from one million randomly

selected pixel locations. The unbiased sample standard deviation was computed according to the definition onWikipedia (Wikipedia,

2017b).

Manual identification of network errors
As a human interpretable metric of similarity between a pair of predicted and true nuclear label images, we compared manual anno-

tations of cell positions on each label. First, a panel of three biologists viewed the true nuclear label and identified regions to be

excluded where the cell density was too high to accurately determine the cell centers in the true fluorescence images, meaning

we could not score predictions in those areas. This was only done for human assessment of nuclear predictions, only a small fraction

of cells were excluded (Figure S2), and the networkmade plausible (though unscorable) predictions in those regions. Next, cell center

coordinates were manually annotated in the remaining regions on each of the true and predicted nuclear labels. For each coordinate,

a disc shape of fixed diameter approximately the size of a cell was assigned to each annotated cell center coordinate. We took the

annotations on the true label to be the ground truth reference. Following Coelho et al. (2009), one-directional correspondences

between objects (disc shapes) in the true and predicted labels were determined by using maximum area of overlap and the errors

were classified into four types: split, merged, added, and missing. Cells at the edges of the field of view were excluded from these

metrics. We then take the accuracy to be the total number of objects in the true label, less the sum of the four types of errors, divided

by the total number of objects in the true label (Figure S2).

The dead-cell-specific label (propidium iodide) was analyzed in a similar fashion as the nuclear labels, but as stated above we did

not exclude high cell density regions nor annotations at the edges. We noted that the predicted dead-cell-specific label often

included false positives that were not in the true label, but after closer inspection of the phase contrast images, many of these false

positives were determined to be true cellular debris that perhaps did not have DNA to be marked by the true label. Hence, after the

annotations on the true and predicted dead-cell-specific label were completed, a different biologist viewed the input phase contrast

images and attempted to determine whether each added error (false positive) was a correct cellular debris prediction (Figure S2).

Finally, the TuJ1 label was analyzed in a similar fashion as the nuclear labels, but as stated above we did not exclude high cell

density regions nor annotations at the edges. Here, not only did we repeat the within-person predicted and true label comparison

across four independent biologists, but we also analyzed the consistency of their annotations on the true label to establish a baseline

for human agreement. Their four annotations on the true labels yielded 12 unique pairwise comparisons for evaluating human

consistency (for any two annotations, taking each to be the ground truth in turn yielded two comparisons). We report the mean error

rates across both these 12 comparisons and the four predicted-versus-true comparisons, as well as the unbiased sample standard

deviation (Figure 6).

Noise and predictions near the noise floor
The proposed network cannot predict sensor noise, and so instead, it predicts a probability distribution that accounts for the typical

variation in brightness caused by the noise it observed. Because we generate images by taking the median of that distribution for

each pixel, the predicted images are typically less noisy than the ground truth images. For example, the predicted MAP2 image in
Cell 173, 792–803.e1–e11, April 19, 2018 e10

https://github.com/google/in-silico-labeling

Condition B of Figure S1 is less noisy than the ground truth. It also doesn’t contain the stitching artifact or disk-shaped dust artifact

found in the ground truth, because the network could not predict from the transmitted light images that those artifacts would appear

in the processed fluorescence image. The noise reduction is less clear in the other images because the ground truth images are less

noisy to begin with. In regions without cells, the proposed network predicts a brightness approximately equal to the noise floor.

Live versus dead cell nuclear size
Dead neuronal nuclei in culture are often smaller than live nuclei, as one of the effects of apoptosis. We wondered if this holds true

with our true fluorescent labels, and if so, whether it also holds true for the predicted labels. We considered the true and predicted

DAPI images from the single test well in Condition C in which experts annotated dead cells. Using CellProfiler (Carpenter et al., 2006)

to automatically segment the nuclei in these images, we measured the radius of each nucleus and partitioned the measurements via

the live / dead annotations.

As expected, dead cell nuclei were smaller than live cell nuclei in the true DAPI image (Figure S3). This was also the case for the

predicted DAPI image (Figure S3). The mean radii for live and dead cells were only slightly changed between the true and predicted

images. Thus, ISL may be able to detect biologically relevant changes in nuclear size.

To segment nuclei, we used CellProfiler 2.2.0’s IdentifyPrimaryObjects routine with the Otsu thresholding method and default

parameters. We labeled an auto-detected cell center as dead if it fell within 4.5 mm of a point marked as a dead cell by the expert

annotators. Statistical distinctiveness was measured using the ks_2samp function in Python’s scipy.stats (Jones et al., 2001), which

implements the two sample Kolmogorov-Smirnov test. All distributions were distinct, with the highest p values still less than 0.001.

DATA AND SOFTWARE AVAILABILITY

Code for running training and prediction (inference) is on GitHub at https://github.com/google/in-silico-labeling. It includes links to

pre-trained network parameters, and all data, including training, test, and the predictions of our network. Users with basic Python

skills can follow the README to run training and prediction on a single machine.
e11 Cell 173, 792–803.e1–e11, April 19, 2018

https://github.com/google/in-silico-labeling

Supplemental Figures

Figure S1. Example of Predicted Images Showing the Noise Floor, Related to Figures 4–6

Unlike the images in all other figures, pixel intensities here were not cropped at the approximate noise floor; this is why background regions are not black. Each of

the two blocks shows ground truth, predicted, and error images in the style of Figure 4. The color bars in the fluorescence images indicate the color of zero

brightness at the bottom and color of full brightness at the top. The color bars in the error images indicate the color of a full false negative (true intensity 1.0,

predicted 0.0) at the bottom and of a full false positive (true intensity 0.0, predicted 1.0) at the top. The inset text indicates the fluorescent labels, and the condition

names at the sides indicate the source conditions. Unlike in Figures 5 and 6, nuclear labels are not provided as context for the predictions. In Condition B, the

predicted MAP2 image lacks the stitching artifact (vertical boundary in the lower right) and the disk-shaped dust artifact present in the ground truth. It also

contains dim neurites which are not visible above the noise in the ground truth. The scale bars are 40 mm.

Figure S2. Sample Manual Error Annotations on the Condition C Data, Related to Figures 4 and 5

(A) Sample manual error annotations for the nuclear label (DAPI) prediction task on the Condition C data. The unlabeled image that is the basis for the prediction

and the images of the true and predicted fluorescent labels are organized similarly to Figure 4, but the fourth column instead displays manual annotations.Merge

errors are shown as red dots, add errors are shown as light blue dots, and miss errors are shown as pink dots. There are no split errors. All other dots indicate

agreement between the true and predicted labels. Outset 1 shows an add error in the upper left, amiss error in the center, and six correct predictions. Outset 2

shows a merge error. Outset 4 shows an add error and four correct predictions. Outset 3 shows one correct prediction, and a cell clump excluded from

consideration because the human annotators could not determine where the cells are in the true label image. The scale bars are 40 mm.

(B) Sample manual error annotations for the cell death label (propidium iodide) prediction task on the Condition C data. The unlabeled image that is the basis for

the prediction and the images of the true and predicted fluorescent labels are organized similarly to Figures 4 and 5, but the fourth column instead displaysmanual

annotations, and the true and predicted nuclear (DAPI) labels have been added for visual context.Merge errors are shown as red dots, add errors are shown as

light blue dots,miss errors are shown as pink dots, and add errors which were reclassified as correct debris predictions are shown as yellow dots. There are no

split errors. Outset 2 shows an add error at the bottom and a reclassified add error shown at top. The top error was reclassified because of the visible debris in the

phase contrast image. Outset 5 shows an add error at the top and a reclassified add error at the left. Outset 7 shows a reclassified add error. Outset 8 shows a

merge error at the top and a reclassified add error at the bottom. All other dots in the outsets show correct predictions. Note, the dead cell on the left in Outset 3 is

slightly positive for the true death label, though it is very dim. The scale bars are 40 mm.

Figure S3. Histograms of Nuclear Radii of Living versus Dead Cells in Condition C, Related to Figure 5

(A) Radii measured from the true DAPI label. The samplemean and standard deviation of the living and dead cells were 6.8± 1.3 mmand 4.7± 1.1 mm, respectively.

(B) Radii measured from the predicted DAPI label. The sample mean and standard deviation of the living and dead cells were 7.0± 1.4 mm and 4.9± 1.0 mm,

respectively. For both true and predicted labels, dead cell nuclei are on average smaller than live cell nuclei. Cell debris was not excluded from these histograms,

so the very small radii might be overcounted. All distributions are statistically distinct from one another; though the predicted distributions may be similar to their

true counterparts, they are distinguishable using the two sample Kolmogorov-Smirnov test.

(legend on next page)

Figure S4. Predictions of Neurite Type from Unlabeled Images, Related to Figures 4–6

(A) Upper-left-corner crops of dendrite (MAP2) and axon (neurofilament) label predictions on the Conditions B and D datasets. The unlabeled image that is the

basis for the prediction and the images of the true and predicted fluorescent labels are organized similarly to Figure 4. Predicted pixels that are too bright (false

positives) are magenta and those too dim (false negatives) are shown in teal. The true and predicted nuclear (DAPI) labels have been added to the true and

predicted images in blue for visual context. Outset 4 for the axon label prediction task in Condition B shows a false positive, where an axon label was predicted to

be brighter than it actually was. Outset 1 for the dendrite label prediction task in Condition D shows a false negative, where a dendrite was predicted to be an axon.

Outset 4 in the same row shows an error in which the network underestimates the extent and brightness of the dendrite label. Outsets 1,2 for the axon label

prediction task in Condition D are false negatives, where the network underestimated the brightness of the axon labels. All outsets in this row show the network

does a poor job predicting fine axonal structures in Condition D. All other outsets show basically correct predictions. Scale bars are 40 mm.

(B) Pixel intensity heatmaps and the calculated Pearson coefficients for the correlation between the intensity of the actual label for each pixel and the pre-

dicted label.

Figure S5. An Evaluation of the Ability of the Trained Network to Exhibit Transfer Learning, Related to Figures 4–6

(A) Upper-left-corner crops of nuclear (DAPI) and foreground (CellMask) label predictions on the Condition E dataset, representing 9% of the full image. The

unlabeled image used for the prediction and the images of the true and predicted fluorescent labels are organized similarly to Figure 4. Predicted pixels that are

too bright (false positives) are magenta and those too dim (false negatives) are shown in teal. In the second row, the true and predicted nuclear labels have been

added to the true and predicted images in blue for visual context. Outset 2 for the nuclear label task shows a false negative in which the network entirely misses a

nucleus below a false positive in which it overestimates the size of the nucleus. Outset 3 for the same row shows the network overestimate the sizes of nuclei.

Outsets 3,4 for the foreground label task show prediction artifacts; Outset 3 is a false positive in a field that contains no cells, and Outset 4 is a false negative at a

point that is clearly within a cell. All other outsets show correct predictions. The scale bars are 40 mm.

(B) Pixel intensity heatmaps and the calculated Pearson r coefficient for the correlation between the pixel intensities of the actual and predicted label. Although

very good, the predictions have visual artifacts such as clusters of very dark or very bright pixels (e.g., boxes 3 and 4, second row). These may be a product of a

paucity of training data.

Figure S6. Dependence of Network Performance on Z-Stack Size with Comparison to Other Models, Related to Figures 1 and 3

(A) Dependence of network performance on the number of images in the transmitted light z stack. The x axis is the number of images in the network input. The

y axis is the cross entropy loss on fluorescence label prediction on a validation set. Each dot is the loss of a single network after training for 4 million steps with the

optimal learning rate of 3e-6. Two networks were trained for each configuration, yielding 26 dots. The curve is the degree 5 polynomial which best fits the data

under the least-squares loss. Themore distinct z-depths provided to the network, the better it performs. (B) Comparison of the proposed network to DeepLab and

modified U-Net. The curves show combined cross entropy loss for prediction and auto-encoding on the training and validation data, as a function of the number of

training steps. The proposed network achieved a lower loss than the modified U-Net, which achieved a lower loss than DeepLab. All networks were trained for at

least 10 million steps, which took around 2 weeks per network training on a cluster of 64 machines. Note, (A) shows losses for prediction only, while (B) shows

losses for the combined prediction of fluorescence labels and auto-encoding, which tends to be lower.

Figure S7. Predictions of Neuron Subtype from Unlabeled Images, Related to Figures 4–6

(A) Upper-left-corner crops of motor neuron label (Islet1) predictions for Condition A dataset. The unlabeled image that is the basis for the prediction and the

images of the true and predicted fluorescent labels are organized similarly to Figure 4, but in the first row the true and predicted nuclear (DAPI) labels have been

added to the true and predicted images in blue for visual context, and in the second row the true and predicted neuron (TuJ1) labels were added. Outset 1 shows a

false positive, in which a neuron was wrongly predicted to be amotor neuron. Outset 4 shows a false negative above a false positive. The false negative is amotor

neuron that was predicted to be a non-motor neuron, and the false positive is a non-motor neuron that was predicted to be amotor neuron. The two other outsets

show correct predictions. The scale bars are 40 mm. (B) Pixel intensity heatmap and the calculated Pearson coefficient for the correlation between the intensity of

the actual label for each pixel and the predicted label.

	In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images
	Introduction
	Results
	Training and Testing Datasets for Supervised Machine Learning
	Developing Predictive Algorithms with Machine Learning
	Network Predictions of Cell Nuclei
	Network Predictions of Cell Viability
	Network Predictions of Cell Type and Subcellular Process Type
	Adapting the Generic Learned Network to New Datasets: Transfer Learning

	Discussion
	Supplemental Information
	Acknowledgments
	Supporting Citations
	References
	STAR★Methods
	Key Resources Table
	Contact for reagent and resource sharing
	Experimental model and subject details
	Cell preparation
	Condition A
	Condition B
	Conditions C and D
	Condition E

	Method details
	Fluorescent labeling
	Condition A
	Condition B
	Condition C
	Condition D
	Condition E

	Imaging
	Acquisition
	Tiling overlap
	High dynamic range

	Data preparation
	Preprocessing pipeline
	Dust artifact removal from fluorescence images
	Flat field correction
	Dust artifact removal from transmitted light images
	Image stitching
	Global intensity normalization
	Quality control

	Machine learning
	Inputs and outputs
	The repeated module
	Macro-level architecture
	Training loss
	Training
	Hyperparameter optimization
	Prediction

	Performance dependence on z stack size
	Limitations
	Global coherence
	Comparison to other deep neural networks
	A note on 3D prediction
	Image processing in figures

	Quantification and statistical analyses
	Statistical calculations
	Manual identification of network errors
	Noise and predictions near the noise floor
	Live versus dead cell nuclear size

	Data and software availability

