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Among software security practitioners and experts, it’s self-
evident that security must be considered an integral part of
the design of a software product, and attempts to “bolt on”
security after the fact are usually unsuccessful. An abundance
of material, including many books on the topic of “secure
software design,” is available for software teams interested in
learning how to build security into their product design.

Yet, a steady stream of vulnerability notifications shows
that software products continue to release with security de-
fects, indicating that there is a significant gap between theory
and practice. In recent years, more attention focused on this
gap, and new information security regulations and guidance by
governmental bodies increasingly highlight the importance of
secure-by-design as a concept.1

Applying this guidance in practice is often difficult: Espe-
cially for practitioners who are not software security experts,
it can be challenging to bridge the gap between high level
guidance like “apply least privilege principles” and how to
incorporate this principle in a concrete software product.

This paper provides an overview of how we incorporate
safety and security2 during software design, implementation,
and deployment at Google, and shares some key insights that
emerged from our experience applying secure software design
at Google scale over the years. Perhaps our most significant
observation is that the security posture of software products
substantially emerges from the underlying developer ecosystem,
including software libraries, application frameworks, the devel-
oper tooling, production platforms, and so on. It is essential to
design developer ecosystems such that they take responsibility
for ensuring key security properties of the resulting software,
rather than leaving this responsibility to individual software
engineers and development teams.

1For example, the Secure by Design initiative at CISA (US Cyber Defense
Agency), or the UK NCSC’s Secure Design Principles.

2In this paper, safety primarily refers to the prevention of mishaps and
accidents: A safe system mitigates relevant hazards, that is, the potential for
harm and adverse outcomes for its users and stakeholders. Security is about
protecting users and stakeholders in an adversarial context, where the system
might be under active attack as opposed to mere random chance of mishaps.
For brevity, we will often use “security” instead of “safety and security”.

Security as a design priority
Many safety and security hazards can only be mitigated when
product developers consider them during design of a product—
they must incorporate mitigations into its shape and basic struc-
ture.

As a simple example from the realm of physical hazards,
consider an electrical extension cord: Functionally, extension
cords would work just fine if they had plugs on both ends, just
like loudspeaker wires that often come with a banana plug on
each end. However, for a cable carrying line voltage, such a
design results in a dangerous shock hazard: If a user plugs such
a cable into a wall outlet before connecting the other end to
an appliance, there’d be exposed metal prongs carrying live
voltage. After a cable is designed and manufactured in this
fundamentally unsafe shape, there’s no meaningful way to miti-
gate the shock hazard. One might attempt a post-manufacturing
“patch”, like a cover for the plugs or attaching a tag with a
warning label (“always connect to appliance first”); however,
this is unlikely to be effective.

Making extension cords safe with respect to shock hazards
requires incorporating safety into the design from the start—
plug on one end, and socket on the other.

Safety and security by design is a foundational expectation
for physical systems—we expect our cars to be designed and
engineered with crumple zones, anti-lock brakes, anti-theft
systems, and so on.

Software security challenges
At Google, we believe that incorporating security considera-
tions into the design of software products and services is equally
essential.

However, when applying secure-by-design principles to soft-
ware design and development, we are faced with some unique
challenges: In contrast to mass-produced physical systems,
it’s common to modify and improve software products with
new features on an ongoing basis, especially for cloud-hosted
software services.

For a mass-produced physical product, after the design and
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manufacturing process are finalized and tuned, the risk of in-
troducing new manufacturing defects over time is quite low
(unless there is some change, such as a switch to a new parts or
materials supplier, or a new design revision of the product).

In contrast, when software is evolving on a continuing basis,
there are ongoing changes to the product design, and ongoing
updates in the form of rewriting and modifying code. This
results in an ongoing risk of introducing new design and imple-
mentation defects. In this paper, we discuss key practices and
techniques that we developed to manage this risk.

Secure default configurations
For many physical products, customer expectations (and in
some cases formal standards and regulations) call for the prod-
uct to mitigate common hazards. Furthermore, fundamental
safety mechanisms should be included in every variant of the
product sold, and if the user can turn off the safety mecha-
nism, it should be on by default. For example, the shapes of
electrical connectors and cables, insulation materials and so
on are governed by electrical codes and standards. All trim
variants of a car model will have crumple zones built in, and
anti-lock brakes are automatically enabled every time the car
starts. Some features, like traction control systems, can be
turned off, but automatically re-enable when the car restarts.

At Google, we think that software systems should be offered
with a similar mindset, with basic safety and security features
included in every version of the product, and enabled by default.

Which default safety and security elements should be pro-
vided by a product depends on risk-cost tradeoffs (How much
does it cost the vendor to include the feature? What risks are
users exposed to if the feature is not included?). These trade-
offs tend to change over time as technologies and customer
expectations evolve. For example, a few decades ago, a backup
camera was an innovative and fairly expensive premium safety
option for a car, and safety features like lane assist and collision
avoidance did not even exist. Technology evolved to the point
where the necessary components (digital cameras, sensors, con-
trol systems, screens, etc) are readily available and inexpensive,
and in the US, backup cameras are now mandatory.

Similar considerations should apply to software security fea-
tures. For example, the Google Chrome browser and productiv-
ity services like GMail and Google Docs include many security
features by default, such as those to protect users from mal-
ware and account theft. At the same time, the Google Cloud
Platform provides premium offerings for innovative, advanced
security features aimed at enterprise use cases.

Software security at scale
As noted above, software security engineers face the challenge
that unlike physical products, software tends to be continuously

modified, leading to an elevated risk of repeatedly introducing
implementation defects in the form of bugs and security vul-
nerabilities in software code. This risk is indeed borne out in
practice: Most of the items in the SANS TOP 25 Most Dan-
gerous Software Errors and the OWASP Top Ten relate to
implementation defects. These classes of bugs (like Use after
free, Cross-site Scripting or SQL injection) tend to be well un-
derstood and straightforward when viewed in isolation. Yet it
turns out to be very difficult to prevent accidentally introducing
these common types of bugs when large teams of developers
concurrently work on a large, complex codebase.

A similar consideration applies to the deployment of soft-
ware services: Production environments constantly change;
new versions of software are regularly deployed, and data cen-
ters and clusters are regularly reconfigured or brought on- and
offline, such as for maintenance. Every change to a produc-
tion environment brings with it the risk of configuration errors
resulting in a security vulnerability or an outage.

Over the past decades, security and reliability engineers at
Google arrived at the key insight that the risk of such imple-
mentation and configuration defects being introduced during
development and deployment is an emergent property of the
design of development and deployment environments.

Every stage of the software development lifecycle, from
design and implementation, to testing, continuous integration,
and deployment has the potential to reduce (or, undesirably,
elevate) the risk of defects in the resulting software product.
Thus, to achieve software security at scale, the design of the
developer ecosystem itself must prioritize both safety against
accidental introduction of defects and the emergent security
posture of the software produced. We cover this topic in more
detail in Safe developer ecosystems.

Principles of Secure Design
How to design and implement information systems so that they
are safe and secure is a complex topic. On one hand, this field is
well established and well understood, at least in theory—for ex-
ample, Saltzer and Schroeder’s seminal overview of principles
of secure design was published almost 50 years ago [6]. At the
same time, the proliferation of security weaknesses observed
in many present-day systems suggests that these principles are
difficult to comprehensively and effectively apply in practice.

With this in mind, in this paper we will not provide another
presentation of technical principles of secure design, such as
“least privilege”; we refer readers to existing material such as
Saltzer & Schroeder [6]; Anderson [2]; as well Part II (Design-
ing Systems) of our Secure and Reliable Systems book [1].

Instead, we will touch on a number of higher level
principles—informed by Google’s experience delivering se-
cure and reliable applications to billions of users—around the
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process of applying secure-by-design thinking to software de-
sign, development, and deployment.

User-centric design

Perhaps the most important observation related to security en-
gineering is that most incidents resulting in some adverse out-
come ultimately start with an action or choice made by a human.
In many cases, this happens because the person taking the ac-
tion simply does not have the training or expertise necessary
to realize that their choice could result in an adverse outcome
to themselves or another user. In other cases, they do have the
relevant training or expertise but make a mistake in applying
their knowledge—which is bound to happen occasionally.

Thus, as designers and implementers of information systems,
we need to consider our products in the context of their use, and
how user actions and choices could lead to adverse outcomes.
It is our responsibility to design and implement products and
services to keep our users safe and secure, even when they
make erroneous choices when using them.3

Developers are users, too

Many incidents start with a software development or site relia-
bility engineering (SRE) error when developing and deploying
systems: A software engineer might fail to consider a security
threat during the design of a system or might introduce a coding
error during development that results in a security vulnerability;
similarly, an SRE might make a configuration change to a de-
ployed system that exposes it to attack by external adversaries.

We view these kinds of design, implementation and deploy-
ment errors through the lens of the systems, tools, and processes
that developers and SREs use to accomplish their daily work
(collectively, the developer ecosystem). Often, the potential for
a mistake leading to an incident is ultimately due to the design
or implementation of these tools and processes [5].

As noted above, we find the security posture of a software
product or service (and conversely, the potential for defects) is
an emergent property of the developer ecosystem in which it
was produced.

Consequently, we view it as the responsibility of the de-
signers and implementers of developer ecosystem tools and
processes to mitigate the potential for user mistakes that could
lead to security defects and incidents.4

3In practice, it’s often necessary to scope protection to broadly reasonable
usage of the product. For example, an electrical cord’s insulation should be
heat-resistant, but is not expected to withstand excessive force and cuts by
sharp objects.

4While not the focus of this paper, the principles discussed here can be
equally valuable when considering reliability incidents such as outages.

Thinking in terms of invariants
We find it helpful to ground security design in the statement
of invariants, that is, properties of a system that we expect to
always hold, no matter what.5 It’s the system’s responsibility
(and by implication, its designers and developers), to ensure
that the property holds, even if a user takes a suboptimal action,
and even when the system is under active attack.

In our electrical cord example, a desired safety invariant
might be stated as “no matter in which order the cable is con-
nected to appliances and wall outlets, there is never an exposed
metal part carrying live voltage.”

The following are some examples of security invariants that
might apply to a software product:

• (I1) All network traffic traversing untrusted networks is
protected using an approved, secure protocol such as TLS
or ALTS.

• (I2) Every request to all methods of a web services API is
mediated by a well-defined authentication and authoriza-
tion policy.

• (I3) For all call sites of a SQL query API within an ap-
plication’s code base, for all possibly reachable program
states, for all possible external API requests/inputs, the
SQL query string is solely composed of trustworthy query
snippets, and all untrustworthy parameters are supplied to
the query as values bound to query parameters.

• (I4) For all code locations that dereference a pointer or
reference, for all possibly reachable program states, for all
possible external requests/inputs, the pointer/reference is
valid at the time of dereference (points to a valid, allocated
object of the correct type).

Failure of the system to ensure each of these invariants could
result in a security (or reliability) incident: Violation of (I1)
could allow an external network-level attacker to read or change
sensitive data; violation of (I2) could result in an authentication
or authorization bypass vulnerability; violation of (I3) could
result in a SQL injection vulnerability, and violation of (I4)
could result in a use after free memory safety vulnerability.

Stating invariants in this fashion focuses our attention on
the need to design development and deployment ecosystems to
actively ensure that they hold, and clarifies when common prac-
tice is insufficient. For example, common practice to mitigate
the risk of SQL injection vulnerabilities consists of giving de-
velopers guidance like “use prepared statements,” and having
a security code reviewer or pentester look for instances of the
vulnerability. The statement of invariant (I3) in terms of “for
all [. . . ]” makes it clear that this is insufficient, especially in

5We use the term invariant somewhat loosely. Some of the properties
discussed here concern sequences of states; in a more formal treatment a
property that holds for all possible sequences of states of a system would be
referred to as a safety property.
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large development projects: Developers sometimes neglect to
follow guidance, and security reviewers/pentesters miss bugs
in large, complex development projects. If we want to be confi-
dent that invariant (I3) holds, we need to think about ways to
automatically ensure it for every call site of the query API.

Design for understandability and assurance
The benefit of stating desired security properties as “must be
ensured by the system, no matter what” invariants especially
comes to light when we think about assurance: By itself, just
stating the invariant does not make the system secure. What we
really care about is the ability to convince ourselves that the
system does indeed ensure the invariant (even in an adversarial
context), and that this will remain the case as the system evolves
over time as the software development team adds new features
to the code and deploys new versions.

Viewing invariants in this way focuses our attention on the
robustness and understandability of the processes and mecha-
nisms intended to uphold the invariant. The design and imple-
mentation of this mechanism can very substantially impact how
brittle or robust enforcement of the invariant turns out to be,
and how strongly we can convince ourselves that the invariant
in fact holds.

For example, one might attempt to uphold invariant I2
through developer documentation and code review (“in each
web service API endpoint implementation, make sure you add
checks that the request is authenticated and authorized”). This
is sufficient in theory, but is brittle in practice—all it takes to
break the invariant is a single mistake, such as a forgotten au-
thorization check during the implementation of one of many
API endpoints. Furthermore, this design has poor understand-
ability, making it difficult to achieve robust assurance: To verify
whether the invariant holds, one must read and understand all
implementations of all service methods and all ad-hoc authenti-
cation and authorization checks they implement; and this review
effort must be repeated for every release of the service.

A more robust design places responsibility for authentica-
tion and authorization onto an application framework in which
the web service is implemented. The framework can enforce
authentication and authorization based on a declaratively spec-
ified policy, and ensure that policy is applied to all incoming
requests before they are handed off to application-specific logic.
This design is much more understandable and provides stronger
assurance: To verify that all requests are subject to policy, one
only has to inspect the code of the application framework, not
every API request handler in the application itself. This work is
amortized across all applications built on top of the framework,
and ongoing review effort is limited to changes to the frame-
work, which tend to be much smaller in volume than changes
to applications themselves. Furthermore, the policy itself is
specified in a common, declarative domain-specific language,

which is much easier to understand and review than ad-hoc
checks dispersed across a large code base.

Similar considerations apply to invariants I3 and I4, which
we’ll discuss in more detail in section Safe developer ecosys-
tems. For a more detailed discussion of this topic, see chapter
6, Design for Understandability in the Secure and Reliable
Systems book [1].

Secure by design: A user-centric view
Software and systems are ultimately designed, built, operated,
and used by humans. Mishaps and security incidents generally
arise from a user mistake somewhere along the way. This
applies to both end users of software products and services,
and users of tools, systems, and processes used to develop and
deploy those products and services.

Here are some examples of systems, their users, and potential
mishaps that can lead to security incidents:

• Non-technical end user of software products

This user, with no particular technology background, re-
ceives an email message with an embedded link; they view
the message using the GMail app on their phone, or using
the GMail web application in their browser.

There are a myriad of things that could go wrong in this
scenario: In one variant, the email message might be legit-
imate (such as a notification from their bank), but the user
might be on a public Wi-Fi network with a compromised
router; the (now malicious) router is attempting to view
or tamper with the network traffic. In another scenario,
the email message might come from a malicious source6,
and the link might point to a phishing site, or a site that
attempts to compromise the browser, or trick the user into
downloading an executable file that will install malware
on their computer. And so forth.

We can’t expect end users in the general public to know
under what circumstances clicking a link could pose secu-
rity risks, or what to do to evaluate whether a given link
is “safe”. Doing so would require in-depth understanding
of threat models applicable to the Web at a very technical
level (What happens when your browser fetches a URL?
What is TLS and what threats does it address/not address?
What are HTTP redirects and how do they affect your
ability to tell where a URL leads? How is the anchor
text of a link in an HTML document related to the URL
where the link will go?), and the large space of possible
attacks (What happens during a phishing attack? What
can go wrong when browsing with an unpatched browser?

6GMail’s spam and malware filters are very good, but like any heuristic
they cannot be 100% accurate, especially when faced with targeted attacks.
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What’s a zero-day? What happens when the URL fetches
an executable? Should I double click that?).

General “common sense” simply does not equip users to
make these kinds of security decisions.

• Software developer using a C++ coding environment
A software developer is making a change to a large C++
codebase, maintained by a team of dozens of developers.
C++ is not a memory-safe language: Developers have
full responsibility for memory allocation and deallocation,
and for ensuring that all memory access in the entire pro-
gram takes place through valid pointers and references
and within the bounds of valid memory regions—that is,
for writing code so that it upholds invariant (I4).

A large program typically contains many thousands of
code statements that access memory. And it’s common
for developers to write or modify code whose correctness
depends on assumptions about the validity of memory
regions that are allocated and deallocated by code written
and maintained by a different developer, perhaps in a
different team. This makes it very difficult to consistently
avoid mistakes that result in accidentally introducing a
memory safety vulnerability.7

When that happens it’s tempting to blame the developer
for the mistake, such as writing code that accesses memory
through a pointer that is no longer valid. However, it’s
unreasonable to expect any human to have a complete
and accurate mental model of all memory allocations and
deallocations in a large program.

• SRE using a production environment’s deployment
and configuration tools
An SRE is setting up a new production environment.
The production environment includes devices (routers,
firewalls, load balancers, database servers, applications
servers, and more) made by several different vendors, each
with their own configuration UIs and config languages.
The engineer has a playbook document that outlines the
changes that must be made, but setting up the environment
is essentially a manual process.

This is very error-prone—the engineer might accidentally
make a change to the wrong device, or make a change with
unintended consequences, due to subtle discrepancies in
configuration semantics across different vendor devices.
This could result in a misconfiguration with security im-
pact, such as exposing an internal network service to the
public internet.

It’s ultimately an unreasonable expectation that any human
could have a perfectly accurate mental model of a produc-

7Indeed, memory safety defects occupy some of the top ranks of the Stub-
born Weaknesses in the CWE Top 25.

tion network with hundreds of devices and thousands of
configuration settings expressed in several different con-
figuration models.

All these examples have in common that there’s an expec-
tation on humans to understand a complex system and make
correct decisions based on this understanding, and they can’t
effectively meet this expectation.

In some examples, it’s simply unreasonable to expect that the
person has the necessary background, expertise, or time: An
end user should not have to know how HTTP and TLS work,
what happens when you click a link, the difference between
opening a web page and downloading an executable, and so on.

In other cases, the person in question does have the expertise
in principle, but the system is too complex to fully understand
for any single person. It’s impossible, even for an experienced
C++ programmer, to reason with perfect accuracy about heap
memory allocations in a large program. And it’s impossible for
an SRE to keep the entire production deployment topology in
their head.

The problem here is not with the user—it’s with the system
itself . The system’s design is making it too easy for its users
to accidentally encounter a hazard that results in an adverse
outcome.

Secure by design: Software products
Keeping our non-technical end user safe from attacks while
using our cloud services (like GMail) and end-user software
and devices (like Chrome, Android, and Chrome OS) is a very
multifaceted problem, and the details go well beyond the scope
of this paper. Here are just a few examples of how our products
and services take responsibility for keeping their users safe,
even under the assumption that a user has no particular technical
background, and is potentially targeted by adversaries on the
internet:

• Defending the user from malicious servers: The user
might click a link that leads to an attacker-controlled
server. The user’s client-side software (browser, email app,
and device operating system) should be resilient against
attacks by this server, such as attempts to install malware,
extract authentication credentials, or generally make inap-
propriate state changes to the device.

This requires careful design and implementation of the
browser to, for instance, segregate contexts between differ-
ent sites the user is interacting with, such as to isolate their
GMail tab from the tab in which they opened the malicious
site, or defense-in-depth measures to ensure isolation even
if a software component might have a vulnerability [3].

• Defending the user against network-level adversaries:
Even an attacker with full control over the network (ability
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to view, modify, delete or replay packets) should not be
able to compromise the confidentiality or integrity of user
email. This requires the user’s browser and email apps to
ensure that all network traffic uses secure protocols such
as TLS in a secure configuration, to safely handle attempts
to spoof TLS certificates, tamper with TLS traffic, and so
forth.

• Defending the user from attacks through downloaded
files: For example, even if a malicious site tricks the
user into downloading and then opening a file, the user’s
device should not be compromised. This requires image
and document viewers that are designed and implemented
to be robust when presented with arbitrary adversarial
inputs; and it requires the system to prevent downloaded
files from executing as code in a context that could allow
this code to further compromise the device.

For example, Chrome OS does not permit downloaded
files to execute as code in an unconstrained context, and
Chrome’s image and document viewers rely on the se-
cure design and defense-in-depths approaches mentioned
above. Similarly, by default, Android does not allow instal-
lation of applications downloaded from arbitrary sources
on the internet.

• Defending the user from phishing attacks: GMail spam
and abuse filters detect and isolate many phishing and
spam emails. Furthermore, passwordless authentication
(such as Passkeys ) and multi-factor authentication (such
as 2-step verification for Google Accounts) can miti-
gate phishing attacks, especially when used with a second
factor that is resistant to phishing, such as cryptographic
security keys.

• Helping the user carry out actions as intended: For
example, Gmail auto-completes email addresses as the
user enters them. This helps prevent against accidentally
sending an email to an unintended recipient because of a
typo.

Designing a product’s user experience to protect users from
security threats often involves a tradeoff between the desire to
prevent users from taking actions that put them at risk, and the
desire to avoid excessive restrictions for advanced users.

For example, in the past, browsers tended to respond to
TLS server certificate spoofing attacks by displaying a warn-
ing dialog to users. However, non-technical users were often
not equipped to evaluate the implications of dismissing the
warning; if they did so in an actual attack their session with
a sensitive application (such as their bank, or the GMail web
app) could be compromised. To mitigate this risk, the browser
could completely block connections when an invalid TLS cer-
tificate is presented. However, there are situations where users

have a legitimate need to interact with TLS servers without
a valid certificate, for example when web developers interact
with a development instance of a server. As a compromise,
Chrome “hides” the ability to bypass certificate warnings be-
hind somewhat obscure UI elements. This allows technical
users to bypass the warning when needed, but makes it less
likely that a non-technical user can be tricked by an adversary
into doing so.

For certain user segments this risk tradeoff is different than
for the general public. For example, compromise of a corpo-
rate user (especially someone with elevated access to sensitive
resources) could have a much larger impact than for an aver-
age user in the general public. To account for this elevated
risk, Chrome and Google Workspace allow enterprise admin-
istrators to impose stricter controls on user segments. For
example, administrators can require 2-step verification (which
is optional by default), prevent users from ignoring Safe Brows-
ing warnings, prevent users from changing CA certificate
trust settings, and many more.

Safe developer ecosystems
In the previous section, we discussed how software and services
can take responsibility for keeping end users safe and secure—
both from mishaps (such as inadvertently sending a sensitive
email message to the wrong recipient because of a typo) and
from attacks by active adversaries.

Similarly, developer ecosystems can take responsibility for
creating a safe software development experience for their
users—software developers and systems engineers. In this
context, the connection to security is indirect: the immediate
concern is to prevent human errors that can lead to defects
(preventing mishaps—a safety concern); however some defects
can result in exploitable vulnerabilities in the resulting product
(a security concern).8

At a high level, there are three major phases of an end-to-end
software development and deployment life cycle (SDLC) where
we can attempt to reduce the rate of defects and vulnerabilities:

• Phase 1: While the software is designed and code is writ-
ten, but before code is committed to the source repository.

• Phase 2: After code is committed, but before releasing to
end users or deploying into production environments.

• Phase 3: After code is in production.

It’s a widely accepted principle, often referred to as “shift
left”, that it’s preferable to eliminate defects as early in the

8The security of development environments is of course very important as
well, such as protecting against compromise of developer workstations, source
code repositories, build systems, and so on. This is a complex topic in itself and
beyond the scope of this paper; approaches include BeyondCorp to protect
corporate IT resources and SLSA for software supply chain security.
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SDLC as possible. Shifting left is generally desirable for its
cost-effectiveness, but is especially important for security de-
fects: When a vulnerability is only discovered in phase 3, after
code is deployed, adversaries might discover and exploit it
before code owners develop and deploy a patch, turning the
vulnerability into a “zero day” and potentially putting users
and customers at risk. In addition, deploying patches can be
operationally risky and toilsome for users and customers.

In phase 2, there is unfortunately no practical way to find
most, let alone all, defects and vulnerabilities that are present
in a codebase before it is released. Expert code reviews and
automated tools like static analyzers and fuzzers will usually
find some of those bugs, but they’re inherently limited in their
ability to find all (or even most) bugs in a large and complex
codebase.

The “shift-left” principle suggests that we should focus on
phase 1, and reduce, as close as possible to zero, the rate at
which new defects are introduced during development: A bug
that’s never committed into the repository doesn’t need to be
discovered later on, and can’t make it into a production release.

Established practice for secure software design and devel-
opment expects individual development teams and software
developers to be aware of, and adhere to, wide-ranging col-
lections of secure design and secure coding guidelines.9 This
framing places responsibility squarely on developers: They’re
expected to know all the applicable guidance, and never, ever
make a subtle mistake in applying it—which could result in a
security defect or vulnerability.

For many types of defects such as memory safety or injection
vulnerabilities, their potential is pervasive—during develop-
ment of a typical software application, developers encounter
many hundreds if not thousands of situations where they could
potentially make such a mistake and introduce a vulnerability.
For other types of defects, their potential is less common, but
avoiding them requires deep domain knowledge and expertise
(such as in applied cryptography) that is typically not avail-
able in development teams. With these odds, never making a
mistake is an impossible task for any human.

In our experience at Google, coding guidelines and developer
training, combined with partially-effective post-development
vulnerability discovery, are insufficient to substantially reduce
the residual rate of common types of security defects like mem-
ory safety and injection vulnerabilities. This is reflected in
industry vulnerability rankings, where these types of weak-
nesses appear in top ranks year after year.10

9For example, the Secure Software Development Framework (NIST SP 800-
218 ) stipulates guidance like “Create Source Code by Adhering to Secure
Coding Practices (PW.5)”; “PW.5.1: Follow all secure coding practices that are
appropriate to the development languages and environment [. . . ]”; “Example 1:
Validate all inputs, and validate and properly encode all outputs.”

10See Stubborn Weaknesses in the CWE Top 25, a ranking of software
weaknesses that have consistently appeared in the CWE Top 25 Most Danger-
ous Software Weaknesses over five years.

With this in mind, we find it instrumental to shift our mindset
and view the resulting high likelihood of vulnerabilities as an
emergent property of a developer ecosystem that presents far
too many opportunities for mistakes. That is, the root cause
for an elevated likelihood of vulnerabilities is not in humans
making an occasional mistake or omission in applying secure
coding guidance, but rather in an insufficiently safe developer
ecosystem.

In this new mindset, the responsibility for ensuring security
invariants, and for preventing defects that invalidate these in-
variants, shifts from developers to the design of the end-to-end
developer ecosystem: We expect the components of the devel-
oper ecosystem—programming languages, software libraries,
application frameworks, build and deployment tooling, and the
production platform and its configuration surfaces—to shield
developers from relevant development and deployment hazards.

Putting this principle into practice and designing a developer
ecosystem that is both practical, cost-effective and easy to use,
and at the same time sufficiently safe, is not at all straightfor-
ward. But when implemented and applied successfully, the im-
pact on product security can be very substantial, and at Google
we found it to be the only approach that can prevent common
types of design and implementation defects at scale. For ex-
ample, memory safety bugs (including #1, #4, #7 of the CWE
Stubborn Weaknesses ) are effectively prevented by memory-
safe languages such as Java, Go, and Rust. At Google, we
have all but eliminated the risk of Cross-Site Scripting (XSS)
and SQL injection (CWE Stubborn Weaknesses #2 and #3)
in web applications built on our premier internal application
frameworks.

We describe in more detail what we learned about how to
design and build safe developer ecosystems in [4]. Here we
provide a short overview of the key elements:

• Safe Coding is an approach to developing software that
is secure by design, based on structuring the developer
ecosystem to impose security invariants on software devel-
oped in the ecosystem. Security invariants are expressed
through the design of programming languages, library
and component APIs, and application frameworks, or
through domain-specific code and configuration confor-
mance checks. For example, compilers and run-times of
memory safe languages including Java, Go, and Rust en-
sure memory safety invariants such as (I4), which implies
absence of memory safety violations and vulnerabilities.
As another example, at Google we developed a safe coding
practice to prevent XSS and SQL injection vulnerabilities.
It is based on data types whose type contracts capture the
safety preconditions of APIs at risk of injection vulnera-
bilities, such as database APIs that accept a SQL query in
string form. This approach to safe coding leverages the
programming language’s type system to ensure invariant
(I3).
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Safe coding provides a high degree of confidence that any
program that compiles and runs upholds security invari-
ants and is free of relevant vulnerabilities. It prevents
vulnerabilities from ever being introduced into the code-
base, because in this model, if code isn’t secure it won’t
even compile!

In our experience at Google, maintaining a Safe Cod-
ing discipline is typically highly cost-effective and can
even provide a net-benefit, because developers need no
longer be concerned with the underlying class of defects.
Bringing an existing codebase into conformance with Safe
Coding invariants requires an initial investment that can
range from modest (such as when migration is substan-
tially automatable) to very significant.

• Safe Deployment environments actively ensure that all
applications and services deployed into the production
environment adhere to security best practices. This in-
cludes Cloud Platforms that ensure security invariants in
their control plane. Additionally, Safe Deployment envi-
ronments can incorporate Config-as-Code combined with
configuration conformance checks that impose security
invariants and best practices on all configurations; and
Zero Touch Prod, a set of principles and tools to ensure
that every change to a production environment must be
either made by trusted automation (not directly by a hu-
man), prevalidated by trusted software, or made through
an audited break-glass mechanism.

• Well-lit paths for application archetypes: Many aspects
of threat models and respective design and implementation
security best practices, for example related to authentica-
tion and authorization, protecting data in transit and at rest,
or web application security considerations, are common
to all applications of an archetype, such as any web appli-
cation with microservices backends and a SQL database.
These common considerations, such as which vetted im-
plementation of which authentication scheme or transport
protocol to use, can be incorporated into opinionated ap-
plication frameworks that assemble vetted components in
vetted configurations ensured by domain-specific confor-
mance checks. Such frameworks provide well-lit paths for
application developers, and scalably impose secure design
practices on all applications of the archetype(s) supported
by the framework.

In combination, safe developer ecosystems can provide a
high degree of confidence that every release of every applica-
tion of supported archetypes satisfies security invariants and
thus provide continuous assurance at scale.

Conclusion
In this paper, we discussed a number of high-level principles
and patterns used at Google to guide the design, development,
and deployment of secure products and services.

It’s helpful to state safety and security objectives in terms of
invariants—properties that a system should ensure will always
hold, no matter what, even when under attack.

Security mishaps are often the result of user mistakes or
risky actions. Recurring mishaps tend to result from recurring
or pervasive potential for user error. It is often unreasonable
to expect users to known how to avoid a hazard, and to never
make a mistake. Systems and applications should be designed
with a user-centric view and uphold security invariants even
when users take risky actions or make mistakes.

The security posture of software products and services is an
emergent property of the developer ecosystem in which they
are designed, implemented and deployed. Software develop-
ers and deployers are users of the components of the developer
ecosystem—software libraries, developer tools, production plat-
forms. In this context, mistakes and omissions by human users
can result in the introduction of defects into a product. Care-
ful design of developer ecosystems can drastically lower the
incidence of certain kinds of defects and vulnerabilities, and in
some cases practically eliminate them.

Developer ecosystems should be designed to ensure that the
resulting products and services uphold security invariants. A
developer ecosystem provides continuous assurance at scale
when it does so not only at a point in time for one specific ver-
sion, but for every code change and for every released version
across a class of applications.
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