
Google Security Engineering Technical Report
March 4, 2024

Secure by Design:
Google’s Perspective on Memory Safety
Alex Rebert
arebert@google.com

Christoph Kern
xtof@google.com

Executive Summary
2022 marked the 50th anniversary of memory safety vulnera-
bilities, first reported by Anderson [2]. Half a century later, we
are still dealing with memory safety bugs despite substantial
investments to improve memory unsafe languages.

Like others’, Google’s internal vulnerability data and re-
search show that memory safety bugs are widespread and one
of the leading causes of vulnerabilities in memory-unsafe code-
bases. Those vulnerabilities endanger end users, our industry,
and the broader society.

At Google, we have decades of experience addressing, at
scale, large classes of vulnerabilities that were once similarly
prevalent as memory safety issues. Based on this experience we
expect that high assurance memory safety can only be achieved
via a Secure-by-Design approach centered around comprehen-
sive adoption of languages with rigorous memory safety guaran-
tees. As a consequence, we are considering a gradual transition
towards memory-safe languages.

Over the past decades, Google has developed and accumu-
lated hundreds of millions of lines of C++ code that is in active
use and under active, ongoing development. This very large ex-
isting codebase results in significant challenges for a transition
to memory safety:

• On one hand, we see no realistic path for an evolution of
C++ into a language with rigorous memory safety guaran-
tees that include temporal safety.

• At the same time, a large-scale rewrite of existing C++
code into a different, memory-safe language appears very
difficult and will likely remain impractical.

This means that we will likely be operating a very substantial
C++ codebase for quite some time. We thus consider it impor-

tant to complement a transition to memory safe languages
for new code and particularly at-risk components with safety
improvements for existing C++ code, to the extent practica-
ble. We believe that substantial improvements can be achieved
through an incremental transition to a partially-memory-safe
C++ language subset, augmented with hardware security fea-
tures when available.

Defining Memory Safety Bugs
Memory safety bugs arise when a program allows statements
to execute that read or write memory, when the program is in a
state where the memory access constitutes undefined behavior.
When such a statement is reachable in a program state under
adversarial control (e.g., processing untrusted inputs), the bug
often represents an exploitable vulnerability (in the worst case,
permitting arbitrary code execution).

Defining Rigorous Memory Safety
In this context, we consider a language rigorously memory-
safe if it:

• Defaults to a well-delineated safe subset, and

• Ensures that arbitrary code written in the safe subset is
prevented from causing a spatial, temporal, type, or initial-
ization safety violation 1

This can be established through any combination of
compile-time restrictions and runtime protections pro-

1Under the assumption that all unsafe code that is part of the program is
sound.

mailto:arebert@google.com
mailto:xtof@google.com

vided the runtime mechanisms guarantee that safety viola-
tion cannot occur.

With very few, well-defined exceptions, all code should be
writable in the well-delineated safe subset.

In new development, potentially unsafe code should only
occur in components/modules that explicitly opt into use of un-
safe constructs outside of the safe language subset, and expose
a safe abstraction that is expert-reviewed for soundness. Unsafe
constructs should only be used when necessary, e.g. for critical
performance reasons or in code that interacts with low-level
components.

When working with existing code in a non-memory-safe
language, unsafe code should be restricted to uses including:

• Code written in a safe language that makes calls into a
library implemented by a legacy codebase written in an
unsafe language.

• Code additions/modifications to existing unsafe legacy
code bases, where code is too deeply intermingled to make
development in a safe language practical.

Impact of Memory Safety Vulnerabili-
ties

Memory safety bugs are responsible for the majority (~70%)
of severe vulnerabilities in large C/C++ code bases. Below
are the percentage of vulnerabilities due to memory unsafety:

• Chrome: 70% of high/critical vulnerabilities [6]
• Android: 70% of high/critical vulnerabilities2 [8]
• Google servers: 16-29% of vulnerabilities3

• Project Zero: 68% of in-the-wild zero days [11]
• Microsoft: 70% of vulnerabilities with CVEs [17]

Memory safety errors continue to appear at the top of “most
dangerous bugs” lists such as CWE Top 25 and CWE Top
10 of Known Exploited Vulnerabilities . Google’s inter-
nal vulnerability research repeatedly demonstrates that lack of
memory safety weakens important security boundaries.

2The fraction of memory safety vulnerabilities has gone down over the last
few years thanks to memory safety improvements .

3The range reflects uncertainty around automated severity assessment of
memory safety issues found by our automation, e.g. by fuzzing. Also note that
this is across all workloads, including those written in memory-safe languages
such as Go and Java/Kotlin.

Understanding Memory Safety Bugs

Classes of Memory Safety Bugs
It can be helpful to distinguish a number of subclasses of mem-
ory safety bugs that differ in their possible solutions and the
impact on performance and developer experience thereof:

• Spatial Safety bugs (e.g. “buffer overflow”, “out of
bounds access”) occur when a memory access refers to
memory outside of the accessed object’s allocated region.

• Temporal Safety bugs arise when a memory access to an
object occurs outside of the object’s lifetime. An example
is when a function returns a pointer to a value in its stack
frame (“use-after-return”), or due to a pointer to heap-
allocated memory that has since been freed, and possibly
re-allocated for a different object (“use-after-free”).

It is common in concurrent programs for these bugs to
occur due to improper thread synchronization, but when
the initial safety violation is outside of the lifetime of the
object, we classify it as a temporal safety violation.

• Type Safety bugs arise when a value of a given type is
read from memory that does not contain a member of this
type. An example of this is when memory is read after an
invalid pointer cast.

• Initialization Safety bugs arise when memory is read
before being initialized. This can lead to information
disclosures and type/temporal safety bugs.

• Data-Race Safety bugs arise from unsynchronized reads
and writes by different threads, which may access an ob-
ject in an inconsistent state. It is possible for other forms
of safety bugs to also arise from improper or missing
synchronization, however we do not classify these as data-
race safety bugs and they are handled above. Only when
the reads and writes are otherwise correct except for being
unsynchronized are they considered data-race safety bugs.

Once a data-race safety violation has occurred, subsequent
execution may cause further safety bugs. We classify these
as data-race safety bugs as the initial violation is strictly a
data-race issue without any other bugs evident.

The classification used here roughly aligns with Apple’s
memory safety taxonomy [4].

In unsafe languages such as C/C++, it is the programmer’s
responsibility to ensure the safety preconditions are met to
avoid accessing invalid memory. For instance, for spatial safety,
when accessing elements of an array via index (e.g., a[i] =
x), it is the programmer’s responsibility to ensure the safety
precondition that the index is within the bounds of validly-
allocated memory.

Secure by Design:
Google’s Perspective on Memory Safety

2

https://www.memorysafety.org/docs/memory-safety/#how-common-are-memory-safety-vulnerabilities
https://www.memorysafety.org/docs/memory-safety/#how-common-are-memory-safety-vulnerabilities
https://www.sans.org/top25-software-errors/
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

We currently exclude data-race safety from consideration
under rigorous memory safety for the following reasons:

• Data-race safety is a bug class of its own, and only partially
overlaps with memory safety. For example, Java does
not provide data-race-safety guarantees, but data races in
Java cannot cause violation of low-level heap integrity
invariants (memory corruption).

• We currently do not have the same level of evidence for
data-race unsafety leading to systemic security and relia-
bility issues for software written in otherwise rigorously
memory safe languages (e.g. Go).

Why are Memory Safety Bugs so Intractable?
Memory safety bugs are quite common in large C++ code bases.
The intuition behind the prevalence of memory safety bugs is
as follows:

First, in unsafe languages, programmers are responsible for
ensuring that each statements’ memory safety precondition
holds just before it is executed, in any program state that could
be possibly reached, potentially under the influence of adver-
sarial inputs to the program.

Secondly, unsafe statements that potentially result in mem-
ory safety bugs are very common in C/C++ programs – there
are many array accesses, pointer dereferences, and heap alloca-
tions.

Finally, reasoning about safety preconditions and whether
the program ensures them in every possible program state is
difficult, even with tool assistance. For example:

• Reasoning about the in-bounds-ness of a pointer/index
involves wrapping integer arithmetic, which is quite non-
intuitive to humans.

• Reasoning about the lifetime of heap objects often involves
complicated and subtle whole-program invariants. Even
local scoping and lifetime can be subtle and surprising.

“Many potential bugs” combined with “difficult reasoning
about safety preconditions” and “humans make mistakes” re-
sults in a relatively significant number of actual bugs.

Attempts to mitigate the risk of memory safety vulnerabilities
through developer education and reactive approaches (including
static/dynamic analysis to find and fix bugs, and various exploit
mitigations) have failed to lower the incidence of these bugs to
a tolerable level. As a result, severe vulnerabilities continue to
be caused by this class of vulnerabilities as discussed above.

Tackling Memory Safety Bugs
Tackling memory safety requires a multi-pronged approach
consisting of:

• Preventing memory safety bugs through Safe Coding.
• Mitigating memory safety bugs by making exploitation

more expensive.
• Detecting memory safety bugs, as early as possible in the

development lifecycle.

We believe that all three are necessary for solving memory
safety at Google’s scale. Based on our experience, a strong
emphasis on prevention through safe coding is necessary to
sustainably achieve high assurance.

Preventing Memory Safety Bugs through Safe
Coding
Our experience at Google shows that we can engineer away
classes of problems at scale by eliminating the use of
vulnerability-prone coding constructs. In this context, we con-
sider a construct unsafe if it can potentially manifest a bug (e.g.
memory corruption) unless a safety precondition is satisfied
at its time of use. Unsafe constructs place the onus on the
developer to ensure the precondition. Our approach, which we
call “Safe Coding”, treats unsafe coding constructs themselves
as hazards (i.e., independently of and in addition to the vul-
nerability they might cause), and is centered around ensuring
that developers do not encounter such hazards during regular
coding practice [13].

In essence, Safe Coding calls for unsafe constructs to be
disallowed by default, and their use to be replaced by safe
abstractions in most code, with carefully-reviewed exceptions.
In the domain of memory safety, safe abstractions may be
provided using:

• Statically- or dynamically-ensured safety invariants,
preventing the introduction of bugs. Compile-time checks
and compiler-emitted or runtime-provided mechanisms
guarantee that particular classes of bugs cannot occur. For
instance:

– At compile-time, lifetime analysis prevents a subset
of temporal safety bugs.

– At runtime, automated object initialization guaran-
tees the absence of uninitialized reads.

• Runtime error detection, enforcing memory safety in-
variants by raising an error when a memory safety vi-
olation is detected instead of continuing execution with
corrupted memory. The underlying bugs still exist and will
need to be fixed4, but the vulnerabilities are eliminated
(modulo denial-of-service attacks5). For instance:

4Runtime error detection helps root-cause crashes by precisely pinpointing
the underlying memory safety bug.

5Runtime errors can typically be caught and recovered from; e.g. an out-
of-bounds access in Go raises a recoverable run-time panic . This allows

Secure by Design:
Google’s Perspective on Memory Safety

3

https://go.dev/blog/defer-panic-and-recover
https://go.dev/ref/spec#Run_time_panics

– An array lookup may offer spatial safety error de-
tection by verifying the given index is in-bounds.
Checks may be elided where safety is proven stati-
cally.

– A type cast may offer type safety error detection
by checking that the casted object is an instance of
the resulting type (e.g. ClassCastException in
Java or CastGuard for C++).

In the memory safety domain, the Safe Coding approach is
embodied by safe languages, which replace unsafe constructs
with safe abstractions such as runtime bounds checks, garbage-
collected references, or references adorned with statically-
checked lifetime annotations.

Experience shows that memory safety issues are indeed rare
in safe, garbage-collected languages such as Go and Java. How-
ever, garbage collection typically comes with significant run-
time overhead. More recently, Rust has emerged as a language
that embodies the Safe Coding approach based primarily on
compile-time checked type discipline, resulting in minimal
runtime overheads.

Data shows that safe coding works for memory safety, even
in performance sensitive environments. For instance, Android
13 introduced 1.5M lines of Rust with zero memory safety
vulnerabilities. This prevented an estimated hundreds of mem-
ory safety vulnerabilities : “As the amount of new memory
unsafe code entering Android has decreased, so too has the num-
ber of memory safety vulnerabilities. [...] 2022 was the first
year where memory safety vulnerabilities did not represent a
majority of Android’s vulnerabilities. While correlation doesn’t
necessarily mean causation, [...] the shift is a major departure
from industry-wide trends listed above that have persisted for
more than a decade”.

As another example, Cloudflare reports that their Rust HTTP
proxy outperforms NGINX, and has “served a few hundred
trillion requests and [has] yet to crash due to our service code.”

By applying a subset of preventative memory safety mech-
anisms to an unsafe language such as C++, we can partially
prevent classes of memory safety issues. For instance:

• A buffer hardening RFC may eliminate a subset of spa-
tial safety issues in C++.

• Similarly, a bounds safety RFC may eliminate a subset
of spatial safety issues in C.

• Lifetime annotations in C++ may eliminate a subset of
temporal safety issues.

servers to safely recover from runtime errors raised during processing of a
request, without crashing the entire process. Runtime errors raised in server
frameworks code itself may not be recoverable.

Exploit Mitigations

Exploit mitigations complicate exploitation of memory safety
vulnerabilities, rather than fixing the root cause of these vulnera-
bilities. For instance, mitigations include sandboxing of unsafe
libraries, control-flow integrity, and data execution prevention.

While safe abstractions prevent memory corruption, denying
exploitation primitives to attackers, exploit mitigations assume
that memory can be corrupted. Exploit mitigations aim to
make it difficult for attackers to escalate from some exploitation
primitives to unrestricted code execution.

Attackers regularly bypass these mitigations, raising the ques-
tion of their security value. To be useful, mitigations should
require attackers to chain additional vulnerabilities, or invent a
novel bypass technique. Over time, bypass techniques become
more valuable to attackers than any single vulnerabilities . The
security benefit of a well-designed mitigation lies in the fact
that bypass techniques should be far rarer than vulnerabilities.

Exploit mitigations rarely come for free; they tend to incur a
runtime overhead that is generally a low single-digit percent-
age. They provide a tradeoff between security and performance,
which we can adjust based on each workloads’ needs. Runtime
overheads can be reduced by building mitigations directly in
the silicon, as was done for pointer authentication , shadow
call stack , landing pads , and protection keys . Due to their
overhead and opportunity costs of hardware features, consider-
ations around adoption of, and investment in, those techniques
are nuanced.

In our experience, sandboxing is an effective mitigation for
memory safety vulnerabilities and is commonly used at Google
to isolate brittle libraries with a history of vulnerabilities. How-
ever, there are several challenges to the adoption of sandboxing:

• Sandboxing can incur significant overheads in latency
and bandwidth, as well as costs for the required code
refactoring. This sometimes necessitates reuse of sandbox
instances across requests, which weakens the mitigation.

• Creating a sandbox policy that is sufficiently restrictive to
be an effective mitigation can be challenging for develop-
ers, especially when sandbox polices are expressed at a
low level of abstraction, such as system calls filters.

• Sandboxing can cause reliability risks, when unusual (but
benign) code paths are exercised in production and trigger
sandbox policy violations.

Overall, exploit mitigations are an essential tool in improving
the security of a large pre-existing C++ code base, and will
also benefit residual use of unsafe constructs in memory-safe
languages.

Secure by Design:
Google’s Perspective on Memory Safety

4

https://developer.android.com/reference/java/lang/ClassCastException
https://i.blackhat.com/USA-22/Thursday/US-22-Bialek-CastGuard.pdf
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html#:~:text=There%20are%20approximately%201.5%20million%20total%20lines%20of%20Rust%20code
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html#:~:text=Rust%20has%20already%20prevented%20hundreds%20of%20vulnerabilities%20from%20reaching%20production
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html#:~:text=Rust%20has%20already%20prevented%20hundreds%20of%20vulnerabilities%20from%20reaching%20production
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/#:~:text=Pingora%20is%20faster%20in%20production
https://discourse.llvm.org/t/rfc-c-buffer-hardening/65734
https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety/70854
https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377
https://twitter.com/qwertyoruiopz/status/1582426359854690304
https://twitter.com/qwertyoruiopz/status/1582426359854690304
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/indirect-branch-tracking/
https://www.kernel.org/doc/html/next/core-api/protection-keys.html

Finding Memory Safety Bugs
Static analysis and fuzzing are effective tools for detecting
memory safety bugs. They reduce the volume of memory safety
bugs in our code base as developers fix the detected issues.

However, in our experience, bug finding alone does not
achieve an acceptable level of assurance for memory-unsafe lan-
guages. As an example, the recent webp high severity 0-day
(CVE-2023-4863) affected extensively fuzzed code. The vul-
nerability was missed despite high fuzzing coverage (97.55%
in the relevant file). In practice, we miss many memory safety
bugs, as demonstrated by the steady stream of memory safety
vulnerabilities in well-tested memory-unsafe code.

In addition, finding bugs does not in itself improve security.
The bugs must be fixed and the patches deployed. There is
evidence suggesting that bug finding capabilities are outpacing
bug fixing capacity. For instance, syzkaller, our kernel fuzzer,
has found 5k+ bugs in the upstream Linux kernel , such that
at any given time there are hundreds of open bugs (a large
fraction of which are likely security-relevant), a number that is
been steadily growing since 2017.

We nevertheless believe that bug finding is an essential part
of tackling memory unsafety. Bug finding techniques that put
less strain on bug fixing capacity are particularly valuable:

• “Shifting-left”, such as fuzzing in presubmit, reduces the
rate of new bugs shipped to production. Bugs found earlier
in the SDLC (software development life cycle) are cheaper
to fix6, consequently increasing our bug fixing capacity.

• Bug finding techniques, like static analysis, may also sug-
gest fixes, which can be provided through the IDE or pull
requests, or applied automatically to proactively change
existing code.

• Bug finding tools like sanitizers , which identify root
causes and generate actionable bug reports, help develop-
ers fix issues faster, also increasing our bug fixing capacity.

Additionally, bug finding tools find bug classes beyond mem-
ory safety, which broadens the impact of investing into those
tools. They can find reliability, correctness and other safety
issues, for instance:

• Property-based fuzzing finds inputs violating application-
level invariants, such as correctness properties encoded by
developers. For instance, cryptofuzz has found 150+
bugs in crypto libraries.

• Fuzzing finds resource-usage bugs (e.g. infinite recur-
sions), and plain crashes affecting availability. In particu-
lar, runtime error detection (e.g. bounds checking) trans-

6“The average cost of finding and fixing a bug increases about 10 times with
every step of the development process”, [12]

forms memory safety vulnerabilities into runtime errors,
which remain a reliability and DoS concern.

• Advances in detecting vulnerabilities beyond memory
safety are showing promise .

Deep Dive: Safe Coding Applied to
Memory Safety
Google has developed Safe Coding , a scalable approach to
drastically reduce the incidence of common classes of vul-
nerabilities, and to achieve a high degree of assurance that
vulnerabilities are absent.

Over the past decade, we have applied this approach very
successfully at Google’s scale, primarily to so-called Injection
Vulnerabilities , including SQL injection and XSS. While at a
technical level very different from memory safety bugs, there
are relevant parallels:

• Like memory safety bugs, injection bugs occur when a
developer uses a potentially-unsafe code construct, and
fails to ensure its safety precondition.

• Whether the precondition holds depends on complex rea-
soning about whole-program, or whole-system, data flow
invariants. For example, the potentially-unsafe construct
occurs in browser-side code, but the data might arrive via
several microservices and a server-side datastore. This
makes it hard to reason about where data really came
from, and whether necessary validation has been correctly
applied somewhere along the way.

• Potentially-unsafe constructs are common in typical code
bases.

As with memory safety bugs, “many 1000’s of potential
bugs” led to 100’s of actual bugs. Reactive approaches (code
review, pen testing, fuzzing) were largely unsuccessful.

To address this issue at scale and with high assurance, Google
applied Safe Coding to the domain of injection vulnerabilities.
This was unequivocally successful and resulted in a very sig-
nificant reduction, and in some cases complete elimination of
XSS vulnerabilities. For example, before 2012, web frontends
like GMail often had a few dozen XSS per year; after refactor-
ing code to conform to Safe Coding requirements, defect rates
have dropped to near zero. The Google Photos web frontend
(which has been developed from the start on a web application
framework that comprehensively applies Safe Coding) has had
zero reported XSS vulnerabilities in its entire history.

In the following sections, we discuss in more detail how
the Safe Coding approach applies to memory safety, and draw
parallels to its successful use in eliminating classes of vulnera-
bilities in the web security domain.

Secure by Design:
Google’s Perspective on Memory Safety

5

https://blog.isosceles.com/the-webp-0day/
https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://blog.isosceles.com/the-webp-0day/#:~:text=lossless%20support%20for%20WebP%20was%20being%20fuzzed%20extensively
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/sanitizers
https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz#bugs-found-by-cryptofuzz
https://security.googleblog.com/2022/09/fuzzing-beyond-memory-corruption.html
https://github.com/google/safe-html-types/blob/main/doc/index.md#introduction-to-safe-coding
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/74.html

Safe abstractions

In our experience, the key to eliminating classes of bugs is
to identify programming constructs (APIs or language-native
constructs) that cause these bugs, and then to eliminate the use
of such constructs in common programming practice. This
requires the introduction of safe constructs with equivalent
functionality, which often take the form of safe abstractions
around the underlying unsafe constructs.

For example, XSS are caused by the use of Web Platform
APIs that are unsafe to call with partially attacker-controlled
strings. To eliminate the use of these XSS-prone APIs in
our code, we introduced a number of equivalent safe abstrac-
tions, designed to collectively ensure that safety preconditions
hold when the underlying unsafe constructs (APIs) are invoked.
This includes type-safe API wrappers, vocabulary types with
safety contracts , and safe HTML templating systems .

Safe abstractions to ensure memory safety preconditions
might take the form of wrapper APIs in an existing language
(e.g. Smart Pointers to be used in place of raw pointers,
including MiraclePtr which protects 50% of use-after-free
issues against exploitation in Chrome’s browser process), or
constructs closely tied to language semantics (for example,
garbage collection in Go/Java; statically-checked lifetimes in
Rust).

The design of safe constructs needs to navigate a 3-way
tradeoff between runtime costs (CPU, memory, binary size,
etc), development-time costs (developer friction, cognitive load,
build times), and expressiveness. For example, garbage collec-
tion provides a general solution for temporal safety, but can
cause problematic variability in performance [7]. Rust lifetimes
combined with the borrow checker ensure safety entirely at
compile time (at no runtime cost) for large classes of code7;
however require more upfront effort by the programmer to
demonstrate that the code is in fact safe. This is similar to how
static typing requires more upfront effort compared to dynamic
typing, but prevents a large swath of type errors at compile
time.

Sometimes, developers need to choose alternative idioms
to avoid runtime overhead. For example, the overhead of a
runtime bounds check for indexed traversal of a vector can be
avoided by using a range-for loop.

To successfully reduce the incidence of bugs, a collection of
safe abstractions needs to be sufficiently expressive to allow
most code to be written without resorting to unsafe constructs
(nor convoluted, non-idiomatic code that is technically safe, but
difficult to understand and maintain).

7Exceptions include cyclical data structures, which can be implemented
using runtime-checked interior mutability

Safe-by-default, unsafe-by-exception

In our experience, it is not sufficient to merely make safe ab-
stractions available to developers on an optional basis (e.g.
suggested by a style guide) as too many unsafe constructs, and
hence too much risk of bugs, tend to remain. Rather, to achieve
a high degree of assurance that a codebase is free of vulner-
abilities, we have found it necessary to adopt a model where
unsafe constructs are used only by exception, enforced by the
compiler.

This model consists of the following key elements:

1. It is possible to decide at build time whether a program
(or part of a program, e.g. a module) contains unsafe
constructs.

2. A program consisting only of safe code is guaranteed to
maintain safety invariants at runtime.

3. Unsafe constructs are not permitted unless explicitly al-
lowed/opted-into, i.e. code is safe by default.

In our work on injection vulnerabilities, we achieved safety
at scale by restricting access to unsafe APIs through language-
level and build-time visibility, and in some cases through
custom static checks.

In the context of memory safety, achieving safety at scale re-
quires the language8 to prohibit the use of unsafe constructs (e.g.
unchecked indexing into arrays/buffers) by default. Unsafe
constructs should cause a compile-time error unless a portion
of code is explicitly opted into the unsafe subset as discussed
in the next section. For example, Rust allows unsafe constructs
only inside clearly-delineated unsafe blocks.

Soundness: Safely-encapsulated unsafe code

As noted above, we assume that available safe abstractions
are sufficiently expressive to allow most code to be written
using safe constructs only. In practice however, we expect
most larger programs to require use of unsafe constructs in
some cases. In addition, the safe abstractions themselves will
often be wrapper APIs for underlying unsafe constructs. For
example, the implementation of safe abstractions around heap
memory allocation/deallocation ultimately needs to deal with
raw memory, e.g. mmap(2).

When developers introduce (even small amounts) of unsafe
code, it is important to do so without negating the benefits of
having written most of a program using only safe code.

To that end, developers should adhere to the following prin-
ciple: Uses of unsafe constructs should be encapsulated in
demonstrably-safe APIs.

8In this broader context, this could mean a memory-safe language, or a safe
subset of an otherwise unsafe language.

Secure by Design:
Google’s Perspective on Memory Safety

6

https://github.com/google/safe-html-types/blob/main/doc/safehtml-types.md
https://github.com/google/safe-html-types/blob/main/doc/safehtml-contracts.md
https://github.com/google/safe-html-types/blob/main/doc/security_reviewers_guide_safehtml.md#strictly-contextually-autoescaping-template-systems
https://en.cppreference.com/book/intro/smart_pointers
https://chromium.googlesource.com/chromium/src/+/ddc017f9569973a731a574be4199d8400616f5a5/base/memory/raw_ptr.md
https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html#:~:text=We%20anticipate%20that%20MiraclePtr%20meaningfully%20reduces%20the%20browser%20process%20attack%20surface%20of%20Chrome%20by%20protecting%20~50%25%20of%20use%2Dafter%2Dfree%20issues%20against%20exploitation
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://bazel.build/concepts/visibility
https://discourse.llvm.org/t/rfc-c-buffer-hardening/65734

That is, unsafe code should be encapsulated behind an API
that is sound for any arbitrary (but well-typed) code calling this
API. It should be possible to demonstrate, and review/verify,
that the module exposes a safe API surface without making
any assumptions about the calling code (other than its well-
typedness).

For example, suppose the implementation of a type uses a
potentially-unsafe construct. Then it is the type’s implemen-
tation’s responsibility to independently ensure that the unsafe
construct’s precondition holds when it is invoked. The imple-
mentation must not make any assumptions about the behavior
of its callers (besides well-typedness), for example that its
methods are called in a certain order.

In our work on injection vulnerabilities, this principle is
embodied in guidelines for the use of so-called Unchecked
Conversions (which represent unsafe code in our vocabulary-
type discipline). In the Rust community, this property is called
Soundness [14]: a module with unsafe blocks is sound if
a program consisting of that module, combined with arbitrary
well-typed safe Rust, cannot exhibit Undefined Behavior.

This principle can be difficult or impossible to adhere to in
certain situations, like when a program in a safe language (Rust
or Go) calls into unsafe C++ code. The unsafe library might
be wrapped in a “reasonably safe” abstraction, but there is no
practical way to demonstrate that the implementation is truly
safe and does not have a memory safety bug.

Expert review of unsafe code

Reasoning about unsafe code is difficult and can be error-prone,
especially for non-experts:

• Reasoning about whether a module containing unsafe con-
structs in fact exposes a safe abstraction requires domain
expertise.

– For example, in the web security domain, deciding
if an unchecked conversion into the SafeHtml vocab-
ulary type is safe requires a detailed understanding
of the HTML spec, and applicable data escaping and
sanitization rules.

– Deciding whether Rust code with unsafe is sound
requires a deep understanding of unsafe Rust seman-
tics and the boundaries of Undefined Behavior (an
area of active research).

• In our experience, developers focused on solving a prob-
lem at hand frequently do not seem to appreciate the im-
portance of safely encapsulating unsafe code, and do not
attempt to devise a safe abstraction. Expert review is
needed to steer those developers towards safe encapsula-
tion, and to help design an appropriate safe abstraction.

In the web security domain, we found it necessary to man-
date expert review of unsafe constructs in many cases, like
for new uses of Unchecked Conversions . Without mandatory
review we observed a large number of unnecessary/unsound
uses of unsafe constructs, which diluted our ability to reason
about safety at scale. Mandatory review requirements need to
carefully consider the impact on developers and the bandwidth
of the review team, and are likely only appropriate if they are
sufficiently rare .

Whole-Program Safety and Compositional
Reasoning
Ultimately, our goal is to ensure an adequate safety posture for
an entire binary.

Binaries typically include a large number of direct and tran-
sitive library dependencies. These are typically maintained by
many different teams within Google, or even externally in the
case of third party code. Yet, a memory safety bug in any of the
dependencies can potentially result in a security vulnerability
of the dependent binary.

A safe language, combined with a development discipline to
ensure that unsafe code is encapsulated in sound, safe abstrac-
tions, can enable us to scalably reason about the safety of large
programs:

• Components written solely in the language’s safe subset
are by construction sound and free of safety violations.

• Components that do contain unsafe constructs expose safe
abstractions to the rest of the program. For these com-
ponents, expert review provides solid assurance of their
soundness, and that they will not cause safety violations
when combined with arbitrary other components.

When all transitive dependencies fall into one of these two
categories, we have solid assurance that the entire program is
free of safety violations. Importantly, we do not need to reason
about how each component interacts with every other compo-
nent in the program; rather we can arrive at this conclusion
solely based on reasoning about each component in isolation.

To maintain and ensure assertions about whole program
safety over time, especially for security-critical binaries, we
need mechanisms to ensure constraints on the “soundness level”
of all transitive dependencies of a binary (i.e., whether they
consist of safe code only or have been expert reviewed for
soundness).

In practice, some transitive dependencies will have a lower
level of assurance for their soundness. For example, a third-
party OSS dependency might use unsafe constructs, but is not
structured to expose cleanly-delineated safe abstractions that
are effectively reviewable for soundness. Or, a dependency

Secure by Design:
Google’s Perspective on Memory Safety

7

https://github.com/google/safe-html-types/blob/main/doc/safehtml-unchecked.md#use-unchecked-conversions-only-within-inherently-safe-apis
https://github.com/google/safe-html-types/blob/main/doc/safehtml-unchecked.md
https://github.com/google/safe-html-types/blob/main/doc/safehtml-unchecked.md
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#soundness-of-code--of-a-library
https://github.com/rust-lang/unsafe-code-guidelines
https://github.com/google/safe-html-types/blob/main/doc/controlling_API_use.md
https://github.com/google/safe-html-types/blob/main/doc/controlling_API_use.md
https://google.github.io/building-secure-and-reliable-systems/raw/ch12.html#lessons_for_evaluating_and_building_fra:~:text=You%20can%20accommodate,that%20use%20case
https://google.github.io/building-secure-and-reliable-systems/raw/ch12.html#:~:text=Only%20a%20small%20fraction%20of%20our%20queries%20use%20the%20unchecked%20APIs.%20The%20burden%20of%20reviewing%20new%20uses%20of%20SQL%20queries%20that%20are%20not%20inherently%20safe%20and%20other%20restricted%20API%20patterns%20is%20handled%20by%20one%20(rotating)%20engineer%20on%20a%20part%2Dtime%20basis%2C%20for%20hundreds%20to%20thousands%20of%20active%20developers.

might consist of an FFI wrapper into legacy code written en-
tirely in an unsafe language, making it effectively impossible
to review for soundness to a high degree of assurance.

Security-critical binaries may want to express constraints
such as “all transitive dependencies are either free of unsafe con-
structs or are expert-reviewed for soundness, with the following
specific exceptions”, where exceptions might be subject to ad-
ditional scrutiny (e.g. extensive fuzz coverage). This allows the
owners of a critical binary to maintain a well-understood and
acceptable level of residual unsafety risk.

Memory Safety Guarantees and Trade-
offs
Applying Safe Coding principles to memory safety of a pro-
gramming language and its surrounding ecosystem (libraries,
program analysis tooling) involves tradeoffs, primarily between
costs incurred at development time (e.g., cognitive load placed
on developers) and at deployment and run time.

This section provides an overview of possible approaches to
sub-classes of memory safety, and their associated tradeoffs.

Spatial Safety
Spatial safety is relatively straightforward to incorporate into a
language and library ecosystem. The compiler and container
types such as strings and vectors need to ensure that all accesses
are checked to be in-bounds. Checks can be elided if proven
to be unnecessary based on static analysis or type invariants.
Typically, this means that type implementations need metadata
(size/length) to check against.

Approaches include:

• Bounds checks incorporated into APIs (e.g.
std::vector::operator[] with safety assertions).

• Compiler-inserted bounds checks, potentially aided by
annotations .

• Hardware-support such as bounds-checked CHERI capa-
bilities.

Safe languages such as Rust, Go, Java, etc, and their standard
libraries, impose bounds checks for all indexed access. They
are only elided if they can be proven redundant.

It seems plausible, but has not been demonstrated for large-
scale codebases like Google’s monorepo or Linux kernel, that
an unsafe language such as C or C++ can be subsetted to achieve
spatial safety.

Bounds checks incur a small, but unavoidable run-time over-
head. It is up to the developer to structure code such that bounds
checks can be elided where they would otherwise accumulate
to a significant overhead.

Type and Initialization Safety

Making a language type and initialization safe may include:

• Disallowing type-unsafe code constructs such as (un-
tagged) unions and reinterpret_cast.

• Compiler instrumentation that initializes values on stack
(unless the compiler can prove that the value will not be
read before a later explicit write).

• Container type implementations that ensure that (accessi-
ble) elements are initialized.9

In statically-typed languages, type safety can be primarily
ensured at compile time, without runtime overhead. However,
there is some potential for runtime overhead in certain scenarios,
for example:

• Unions must include a discriminator at runtime, and be
represented as a type-safe higher-level construct (e.g. sum
types). In some cases, the resulting memory overhead can
be optimized away , e.g. Option<NonZeroUsize> in
Rust.

• There may be superfluous initializations of values that are
never read, but in a way that the compiler cannot prove.
In cases where the overhead is significant (e.g. default
initialization of large vectors), it is the responsibility of
the programmer to structure code such that superfluous
initializations can be avoided, for example through use of
reserve and push or optional types.

Temporal Safety

Temporal safety is fundamentally a much harder problem than
spatial safety: For spatial safety, it is possible to relatively
cheaply instrument a program such that the safety precondi-
tion can be checked via an inexpensive runtime check (bounds
check). In common cases it is straightforward to structure code
such that bounds checks can be elided (e.g. using iterators).

In contrast, there is no straightforward way to establish the
safety precondition for temporal safety of heap-allocated ob-
jects.

Pointers and allocations they point to, which in turn can
themselves contain pointers, induce a directed (possibly cyclic)
graph. The graph induced by the sequence of allocations and
deallocations of an arbitrary program can get arbitrarily com-
plex. It is in the general case impossible to infer properties of
this graph based on static analysis of program code.

9Zeroing memory may not be sufficient because not all types may have a
valid zero value.

Secure by Design:
Google’s Perspective on Memory Safety

8

https://libcxx.llvm.org/Hardening.html
https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety/70854
https://stackoverflow.com/questions/75061576/using-ftrivial-auto-var-init-to-guarantee-the-initialization-of-padding-bytes
https://rust-lang.github.io/unsafe-code-guidelines/layout/enums.html#discriminant-elision-on-option-like-enums

When an allocation is freed, all that is at hand is the graph
node corresponding to this allocation. There is no a-priori
efficient (constant-time) way to determine whether there is still
another inbound edge (i.e. another, still-reachable pointer into
this allocation). Deallocating an allocation to which there are
still inbound pointers implicitly invalidates those pointers (turns
them into “dangling” pointers). A future dereferencing of such
an invalid pointer would result in undefined behavior and a “use
after free” bug.

Since the graph is directed, there is also no efficient (constant-
time, or even linear in the number of in-bound pointers) way
to find all still-reachable pointers into the about-to-be-deleted
allocation. If available, this could be used to explicitly in-
validate/null those pointers, or to defer deallocation until all
inbound pointers are deleted from the graph.

Consequently, whenever a pointer is dereferenced, there is
no efficient way to determine whether this operation constitutes
undefined behavior because the pointer destination has already
been freed.

There broadly are three ways to achieve rigorous temporal
safety guarantees:

1. Ensure through compile-time checking that a pointer/ref-
erence cannot outlive the allocation it points to. For ex-
ample, Rust implements this approach through the borrow
checker and the exclusivity rule . This mode supports
temporal safety of both heap and stack objects.

2. With runtime support, ensure that allocations are only deal-
located when there are no valid pointers to it remaining.

3. With runtime support, ensure that pointers become invalid
when the allocation they point to is deallocated, and raise
a fault if such an invalid pointer is later dereferenced.

Several variations of 2 and 3 have been devised and they
incur a non-trivial amount of runtime cost. Both reference
counting and garbage collection provide the desired safety but
can be expensive. Quarantining of deallocations is a strong
mitigation, but does not fully guarantee safety and nevertheless
carries an overhead. Memory tagging relies on specialized
hardware and only provides probabilistic mitigation (unless
combined with MarkUs [3, 1]).

In all cases, for temporal safety, there is no cheap (let alone
free) lunch. Either developers structure and annotate code
such that a compile-time checker (e.g, Rust borrow checker)
can statically prove temporal safety, or we pay the runtime
overhead to achieve safety or even partially mitigate these bugs.

Unfortunately, temporal safety issues remain a large fraction
of memory safety issues, as indicated by a variety of reports:

• Chrome: 51% of high/critical memory safety vulnerabili-
ties [6]

• Android: 20% of high/critical memory safety CVEs in
2022

• Project Zero: 33% of in-the-wild memory safety ex-
ploits [11]

• Microsoft: 32% of memory safety CVEs [5]
• GWP-ASan: finds 4x more UAFs than OOBs across

multiple ecosystems [19]

Runtime Techniques and Tradeoffs

A wide range of runtime instrumentation techniques have been
explored to address temporal safety, but they all come with chal-
lenging tradeoffs. They have to take into account concurrency
when used in multi-threaded programs, and in many cases only
mitigate these bugs without providing guaranteed safety.

• Reference counting, either to provide the correct
lifetime or to detect and prevent incorrect lifetimes.
Variations of this technique include std:shared_ptr,
Rust’s Rc/Arc, automatic reference counting in
Swift or Objective-C, and Chrome’s experiment with
DanglingPointerDetector . Enforced exclusivity
may be used with reference counting to reduce its
overhead, but not eliminate it.

• Garbage-collected heaps. Enforced exclusivity may also
be combined with GC to reduce overhead.

• Quarantining of deallocations, based on reference count-
ing and allocation poisoning, as proposed by Chrome’s
BackupRefPtr , or combined with traversal and inval-
idation of pointers to quarantined deallocations, as pro-
posed by MarkUs [1]. These approaches avoid interfering
with destructor timing, but may provide only a partial mit-
igation rather than true temporal safety in some cases.
They could be seen as variations of reference counting and
garbage collection that do not interfere with destructor tim-
ing while preventing reallocation behind dangling pointers,
but trade that off by introducing poison values (and result-
ing undefined behavior) into the runtime if accessed after
being freed.

• Memory tagging labels pointers and allocated memory
regions with one of a small set of tags (colors). When
memory is deallocated and reallocated, it is re-colored
according to a defined strategy. This implicitly invalidates
remaining pointers which would still have the “old” color.
In practice, the set of tags/colors is small (e.g. 16 in the
case of ARM MTE [18]). Thus in most cases it provides
probabilistic mitigation rather than true safety, as there is
a non-trivial chance (e.g., 6.25%) that dangling pointers
are not marked as invalid because they were randomly
re-colored with the same color. MTE also carries signifi-
cant run-time overhead. Memory tagging also speeds up
MarkUs [1] and *Scan [3] approaches, providing strong
temporal safety.

Secure by Design:
Google’s Perspective on Memory Safety

9

https://github.com/google/crubit/blob/main/docs/lifetimes_static_analysis.md#the-exclusivity-rule
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/dangling_ptr.md
https://chromium.googlesource.com/chromium/src/+/ddc017f9569973a731a574be4199d8400616f5a5/base/memory/raw_ptr.md
https://chromium.googlesource.com/chromium/src/+/HEAD/base/memory/raw_ptr.md#Extra-pointer-rules:~:text=Don%27t%20use%20the%20pointer%20after%20it%20is%20destructed.%20Unlike%20raw%20pointers%2C%20raw_ptr%3CT%3E%20may%20be%20cleared%20upon%20destruction.%20This%20may%20happen%20e.g.%20when%20fields%20are%20ordered%20such%20that%20the%20pointer%20field%20is%20destructed%20before%20the%20class%20field%20whose%20destructor%20uses%20that%20pointer%20field%20(e.g.%20see%20Esoteric%20Issues)
https://chromium.googlesource.com/chromium/src/+/HEAD/base/memory/raw_ptr.md#Extra-pointer-rules:~:text=Don%27t%20use%20the%20pointer%20after%20it%20is%20destructed.%20Unlike%20raw%20pointers%2C%20raw_ptr%3CT%3E%20may%20be%20cleared%20upon%20destruction.%20This%20may%20happen%20e.g.%20when%20fields%20are%20ordered%20such%20that%20the%20pointer%20field%20is%20destructed%20before%20the%20class%20field%20whose%20destructor%20uses%20that%20pointer%20field%20(e.g.%20see%20Esoteric%20Issues)

Production Language Safety Overview
This section provides a brief overview of the memory safety
properties of current and near-future production languages at
Google, and some languages that might play a role in a more
distant future.

JVM languages (Java, Kotlin)

In Java and Kotlin, memory-unsafe code is clearly delineated
and confined to use of the Java Native Interface (JNI). JDK
standard libraries rely on a large number of native methods to
invoke low-level system primitives and to use native libraries
e.g. for image parsing. The latter have been affected by mem-
ory safety vulnerabilities (e.g. CESA-2006-004 , Sun Alert
1020226.1).

Java is a type-safe language. The JVM ensures spatial safety
through runtime bounds checks and temporal safety based on a
garbage-collected heap.

Java does not extend Safe Coding principles to concurrency:
a well-typed program can have data races. However the JVM
ensures that data races cannot violate memory safety. For exam-
ple a data race can result in violation of higher-level invariants
and exceptions being thrown, but cannot result in memory cor-
ruption.

Go

In Go, memory-unsafe code is clearly delineated and confined
to code using package unsafe (with the exception of memory
unsafety arising from data races, see below).

Go is a type-safe language. The Go compiler ensures that all
values are initialized by default with their type’s zero value ,
ensures spatial safety via run-time bounds checks, and tempo-
ral safety via a garbage-collected heap. Except via package
unsafe, there is no facility to unsafely create pointers.

Go does not extend Safe Coding principles to concurrency:
A well-typed Go program can have data races. Furthermore,
data races can lead to violation of memory safety invariants10.

Rust

In Rust, memory-unsafe code is clearly delineated and confined
to unsafe blocks . Rust is a type-safe language. Safe Rust
enforces that all values are initialized, and ensures spatial safety
by adding bounds checks where necessary. Dereferencing a
raw pointer is not allowed in safe Rust.

Rust is the only mature, production-ready language that pro-
vides temporal safety without run-time mechanisms such as

10https://research.swtch.com/gorace

garbage collection or universally-applied refcounting, for large
classes of code. Rust provides temporal safety through compile-
time checks on the lifetimes of variables and references.

The constraints imposed by the borrow checker preclude the
implementation of certain structures, in particular those involv-
ing cyclic reference graphs. The Rust standard library includes
APIs that allow such structures to be implemented safely, but
with runtime overhead (based on reference counting).

In addition to memory safety, Rust’s safe subset also guaran-
tees data-race safety (“Fearless Concurrency ”). Incidentally,
data-race safety allows Rust to safely avoid unnecessary over-
head when using runtime temporal safety mechanisms: Both
Rc and Arc implement reference-counted pointers. However,
Rc’s type precludes it from being shared across threads, so Rc
can safely use a cheaper, non-atomic counter.

Carbon

Carbon is an experimental successor language to C++ with
the explicit design goal to facilitate large-scale migration from
existing C++ codebases. As of 2023, details of Carbon’s safety
strategy are still in flux11. Carbon 0.2 plans to introduce a
safe subset that provides rigorous memory safety guarantees.
However, it will need to retain an effective migration strategy
for existing unsafe C++ code. Handling mixtures of unsafe and
safe Carbon code will need similar guard rails as with mixtures
of C++ and a safe language like Rust.

While we expect newly-written Carbon to be in its memory-
safe subset, Carbon that originated from a migration from ex-
isting C++ will likely rely on unsafe Carbon constructs. We
expect an automated, large-scale subsequent migration from
unsafe to safe Carbon to be difficult and often impractical. Mit-
igation of memory safety risk in the remaining unsafe code
will be based on hardening via build modes (similar to our
handling of legacy C++ code). The hardened build mode
will enable run-time mechanisms that attempt to prevent the
exploitation of memory safety bugs.

A Safer C++

Given the large volume of pre-existing C++, we recognize that a
transition to memory-safe languages might take decades, during
which we will be developing and deploying code consisting of
a mix of safe and unsafe languages. Consequently, we believe
it is necessary to improve the safety of C++ (or its successor
language if applicable).

While defining a rigorously memory safe C++ subset that
is sufficiently ergonomic and maintainable remains an open
research question, it might in principle be possible to define a

11The Safety section of the Carbon Language design doc appears under
“unfinished tales ”.

Secure by Design:
Google’s Perspective on Memory Safety

10

https://github.com/search?q=repo%3Aopenjdk%2Fjdk+%28%22public+native%22+OR+%22private+native%22+OR+%22protected+native%22%29+language%3Ajava&type=code
http://scary.beasts.org/security/CESA-2006-004.html
https://download.oracle.com/sunalerts/1020226.1.html
https://download.oracle.com/sunalerts/1020226.1.html
https://pkg.go.dev/unsafe
https://go.dev/ref/spec#The_zero_value
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://research.swtch.com/gorace
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://github.com/carbon-language/carbon-lang/#carbon-language--an-experimental-successor-to-c
https://chandlerc.blog/slides/2023-cppnow-carbon-strategy/index.html#/12
https://github.com/carbon-language/carbon-lang/blob/066b10388126fa45d55dcec5caa9bfd037563170/docs/project/principles/safety_strategy.md#using-build-modes-to-manage-safety-checks
https://github.com/carbon-language/carbon-lang/blob/066b10388126fa45d55dcec5caa9bfd037563170/docs/project/principles/safety_strategy.md#hardened
https://github.com/carbon-language/carbon-lang/blob/4daaa4866f8f12ab00e7ba053182761b1e762cfd/docs/design/README.md#safety
https://github.com/carbon-language/carbon-lang/blob/4daaa4866f8f12ab00e7ba053182761b1e762cfd/docs/design/README.md#unfinished-tales

subset of C++ that provides reasonably strong memory safety
guarantees. C++ safety efforts should take an iterative and data-
oriented approach to defining a safer C++ subset: identifying
the top security and reliability risks, and deploying guarantees
and mitigations with the highest impact and ROI.

A stepping stone for an incremental transition

A safer C++ subset would provide a stepping stone towards a
transition to memory-safe languages. For example, enforcing
definite initialization or disallowing pointer arithmetic in a C++
codebase will simplify an eventual migration to Rust or safe
Carbon. Similarly, adding lifetimes to C++ will improve inter-
operability with Rust. Consequently, in addition to targeting
top risks, C++ safety investments should prioritize the improve-
ments that will also accelerate and simplify an incremental
adoption of memory-safe languages.

In particular, safe, performant and ergonomic interoperability
is a key ingredient for an incremental transition to memory
safety. Both Android and Apple are following a transition
strategy centered around interoperability, with Rust [10, 20]
and Swift [16, 15] respectively.

For this, we need improved interoperability tooling, and im-
proved support of mixed-language code bases in existing build
tooling.12 In particular, the existing production-quality interop-
erability tooling for C++/Rust assumes a narrow API surface.
This has been sufficient for some ecosystems, like Android,
but other ecosystems have additional requirements . Higher
fidelity interoperability enables incremental adoption in addi-
tional ecosystems, as done for Swift already, and explored for
Rust in Crubit . For Rust, there remains open questions, like
how to guarantee that C++ code does not violate Rust code’s
exclusivity rule, which would create new forms of undefined
behaviors.

By replacing components one-by-one, security improve-
ments are delivered continuously instead of all at once at the
end of a long rewrite. Note that a full rewrite may eventually
be achieved with this incremental strategy, but without the risks
typically associated with complete rewrites of large systems.
Indeed, during that time, the system remains a single code base,
continuously tested and shippable.

MTE

Memory Tagging [18] is a CPU feature, available in ARM
v8.5a, that allows memory regions and pointers to be tagged
with one of 16 tags. When enabled, dereferencing a pointer
with a mis-matching tag raises a fault.

12Google has recently announced a $1M grant to support interop improve-
ments.

Multiple security features can be built on top of MTE, for
instance:

• Use-after-free and out-of-bounds detection. When
memory is deallocated (or reallocated), it is randomly
re-tagged. This implicitly invalidates remaining pointers,
which would still have the “old” tag. In practice, the set
of tags is small (16). Thus it provides probabilistic mitiga-
tion rather than true safety, as there is a non-trivial chance
(6.25%) that dangling pointers are not marked as invalid
(because they were randomly re-tagged with the same tag).

– Similarly, this can also detect out-of-bounds bugs
probabilistically.

– This can deterministically detect inter-allocation lin-
ear overflows, assuming the allocator ensures that
consecutive allocations never share the same tag.

– It may be possible to build a deterministic heap use-
after-free prevention on top of MTE using an addi-
tional GC-like scan like MarkUs.

• Sampled use-after-free and out-of-bounds detection.
The same as above, but only on a fraction of allocations
to reduce runtime overhead sufficiently for broad deploy-
ment.

With sampled MTE, exploits are expected to succeed after
a few attempts; attacks won’t be stopped. However, failed
attempts generate noise (i.e. MTE crashes) we can inspect.

Using those two techniques, MTE can result in:

• Bugs being found sooner in the SDLC. Unsampled MTE
should be cheap enough to deploy in presubmit and ca-
naries.

• More bugs being detected in production. Sampled MTE
permits 3 orders of magnitude higher sampling rate com-
pared to GWP-ASan at the same cost.

• Actionable crash reports. Synchronous MTE reports
where the bug happened, instead of crashing due to hard-
to-root-cause secondary effects of a bug. In addition, sam-
pled MTE can be combined with heap instrumentation to
provide bug reports with similar fidelity to GWP-ASan

• Improved reliability and security as those bugs get fixed.

• A decrease in exploits’ ROI for attackers. Attackers either
need to find additional vulnerabilities to deterministically
bypass MTE, or risk detection.

– Defender’s reaction speed will depend on their abil-
ity to distinguish exploitation attempts from other
MTE violations. Exploitation attempts may be able
to hide in the noise of MTE violations happening
organically.

Secure by Design:
Google’s Perspective on Memory Safety

11

https://github.com/google/crubit/blob/main/docs/design.md#crust-interop-requirements
https://www.swift.org/documentation/cxx-interop/
https://github.com/google/crubit/blob/main/docs/design.md#crust-interop-requirements
https://foundation.rust-lang.org/news/google-contributes-1m-to-rust-foundation-to-support-c-rust-interop-initiative/

– Even without the ability to distinguish exploitation
attempts from organic MTE violations, MTE should
reduce the exploitation window, i.e. how often and
how long an attacker can reuse a given exploit. The
faster MTE violations are fixed, the shorter the ex-
ploitation window will be, which decreases the ROI
of exploits.

– This highlights the importance of fixing MTE viola-
tions promptly to achieve MTE’s security potential.
To do so without overwhelming developers, MTE
should be combined with proactive work to reduce
the volume of bugs.

Unsampled MTE may also be deployed as an exploit mitiga-
tion, deterministically protecting against 10%-15% of memory
safety bugs (assuming no GC-like scan). However, due to non-
trivial memory and runtime overhead, we expect production
deployments to primarily be in small-footprint, but security-
critical workloads.

Despite its limitations, we believe MTE is a promising path
to decrease the volume of temporal safety bugs in large existing
C++ code bases. There are currently no alternatives for C++
temporal safety that can be realistically deployed at scale.

CHERI

CHERI [21] is an intriguing research project that has the poten-
tial to provide rigorous memory safety guarantees for legacy
C++ code (and perhaps Carbon in hardened mode), with mini-
mal porting effort. CHERI temporal safety guarantees rely on
quarantining of deallocated memory [9], and sweeping revo-
cation, and it remains an open question whether the runtime
overhead will be acceptable for production workloads.

Beyond memory safety, CHERI capabilities also enable ad-
ditional interesting security mitigations, such as fine-grained
sandboxing.

Conclusion
After 50 years, memory safety bugs remain some of the most
stubborn and most dangerous software weaknesses. As one
of the leading causes of vulnerabilities, they continue to result
in significant security risk . It has become increasingly clear
that memory safety is a necessary property of safe software.
Consequently, we expect the industry to accelerate the ongoing
shift towards memory safety in the coming decade. We are
encouraged by the progress already made at Google, and at
other large software manufacturers.

We believe that a Secure-by-Design approach is required for
high assurance memory safety, which requires adoption of lan-
guages with rigorous memory safety guarantees. Given the long

timeline involved in a transition to memory-safety languages, it
is also necessary to improve the safety of existing C and C++
code bases to the extent possible, through the elimination of
vulnerability classes.

Acknowledgments
We would like to thank our colleagues Chandler Carruth,
Kostya Serebryany, Kinuko Yasuda, Jon McCune, Manuel
Klimek and Mark Brand for their helpful comments and contri-
butions to this paper.

References
[1] S. Ainsworth and T. M. Jones. MarkUs: Drop-in use-after-free prevention

for low-level languages. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 578–591. IEEE, 2020.

[2] J. P. Anderson. Computer Security Technology Planning Study. Technical
Report ESD-TR-73-51, U.S. Air Force Electronic Systems Division, 10
1972. URL https://seclab.cs.ucdavis.edu/projects/histo
ry/papers/ande72.pdf.

[3] M. L. Anton Bikineev and H. Payer. Retrofitting Temporal Memory
Safety on C++. https://security.googleblog.com/2022/0
5/retrofitting-temporal-memory-safety-on-c.html, 2022.
Accessed: 2023-12-06.

[4] Apple. Towards the next generation of XNU memory safety: kalloc_type.
https://security.apple.com/blog/towards-the-next-gen
eration-of-xnu-memory-safety/, 2022. Accessed: 2023-12-06.

[5] J. Bialek, K. Johnson, M. Miller, and T. Chen. Security analysis of
memory tagging. https://raw.githubusercontent.com/micros
oft/MSRC-Security-Research/master/papers/2020/Securit
y%20analysis%20of%20memory%20tagging.pdf, 2020. Accessed:
2023-12-06.

[6] Chromium Security. Memory safety. https://www.chromium.org
/home/chromium-security/memory-safety/. Accessed: 2023-12-
06.

[7] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56:74–80, 2013. URL http://cacm.acm.org/magazines/2
013/2/160173-the-tail-at-scale/fulltext.

[8] K. Deus, J. Galenson, B. Lau, I. Lozano, and A. S. . P. Team. Data driven
security hardening in Android. https://security.googleblog.co
m/2021/01/data-driven-security-hardening-in.html, 2021.
Accessed: 2023-12-06.

[9] N. Filardo, B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-Trifu,
B. Davis, H. Xia, E. T. Napierala, A. Richardson, J. Baldwin, D. Chisnall,
J. Clarke, K. Gudka, A. Joannou, A. Theodore Markettos, A. Mazzinghi,
R. Norton, M. Roe, P. Sewell, S. Son, T. M. Jones, S. Moore, P. G.
Neumann, and R. N. M. Watson. Cornucopia: Temporal safety for
CHERI heaps. In IEEE Symposium on Security and Privacy. IEEE, May
2020.

[10] J. Galenson, M. Maurer, and A. Team. Rust/C++ interop in the Android
platform. https://security.googleblog.com/2021/06/rust
c-interop-in-android-platform.html, 2021. Accessed: 2023-
12-06.

[11] B. Hawkes and P. Zero. 0day "in the wild". https://googleprojec
tzero.blogspot.com/p/0day.html, 2019. Accessed: 2023-12-06.

[12] W. S. Humphrey. Managing Technical People: Innovation, Teamwork,
and the Software Process. 1997. ISBN 9788177582710.

[13] C. Kern. Developer ecosystems for software safety. ACM Queue, 22(1),
Feb 2024. doi: 10.1145/3648601. URL https://research.google/
pubs/pub53103/.

Secure by Design:
Google’s Perspective on Memory Safety

12

https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/index.html
https://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
https://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://raw.githubusercontent. com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://raw.githubusercontent. com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://raw.githubusercontent. com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://www.chromium.org/home/chromium-security/memory-safety/
https://www.chromium.org/home/chromium-security/memory-safety/
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://security.googleblog.com/2021/01/data-driven-security-hardening-in.html
https://security.googleblog.com/2021/01/data-driven-security-hardening-in.html
https://security.googleblog.com/2021/06/rustc-interop-in-android-platform.html
https://security.googleblog.com/2021/06/rustc-interop-in-android-platform.html
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.blogspot.com/p/0day.html
https://research.google/pubs/pub53103/
https://research.google/pubs/pub53103/

[14] R. Levien. The Soundness Pledge. https://raphlinus.github.i
o/rust/2020/01/18/soundness-pledge.html, 2020. Accessed:
2023-12-06.

[15] K. Malawski. Swift as C++ successor in FoundationDB. Strange Loop,
2023. Accessed: 2023-12-06.

[16] J. McCall. Introducing a memory-safe successor language in large C++
code bases. CppNow, 2023. Accessed: 2023-12-06.

[17] MSRC. A proactive approach to more secure code. https://msrc.m
icrosoft.com/blog/2019/07/a-proactive-approach-to-mor
e-secure-code/, 2019. Accessed: 2023-12-06.

[18] K. Serebryany. ARM memory tagging extension and how it improves
C/C++ memory safety. Login USENIX Mag, 44(5), 2019.

[19] K. Serebryany, C. Kennelly, M. Phillips, M. Denton, M. Elver,
A. Potapenko, M. Morehouse, V. Tsyrklevich, C. Holler, J. Lettner,
D. Kilzer, and L. Brandt. GWP-ASan: Sampling-based detection of
memory-safety bugs in production, 2023.

[20] J. V. Stoep. Memory safe languages in Android 13. https://securi
ty.googleblog.com/2022/12/memory-safe-languages-in-a
ndroid-13.html, 2022. Accessed: 2023-12-06.

[21] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. The CHERI
capability model: Revisiting RISC in an age of risk. ACM SIGARCH
Computer Architecture News, 42(3):457–468, 2014.

Alex Rebert is a Senior Staff Software Engineer in Google’s Security Foun-
dation Team. His primary focus is on reducing memory safety risks.

Christoph Kern is a Principal Software Engineer in Google’s Security Foun-
dation Team. His primary focus is on developing scalable, principled ap-
proaches to software security.

Secure by Design:
Google’s Perspective on Memory Safety

13

https://raphlinus.github.io/rust/2020/01/18/soundness-pledge.html
https://raphlinus.github.io/rust/2020/01/18/soundness-pledge.html
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

	Executive Summary
	Defining Memory Safety Bugs
	Defining Rigorous Memory Safety
	Impact of Memory Safety Vulnerabilities
	Understanding Memory Safety Bugs
	Classes of Memory Safety Bugs
	Why are Memory Safety Bugs so Intractable?

	Tackling Memory Safety Bugs
	Preventing Memory Safety Bugs through Safe Coding
	Exploit Mitigations
	Finding Memory Safety Bugs

	Deep Dive: Safe Coding Applied to Memory Safety
	Safe abstractions
	Safe-by-default, unsafe-by-exception
	Soundness: Safely-encapsulated unsafe code
	Expert review of unsafe code
	Whole-Program Safety and Compositional Reasoning

	Memory Safety Guarantees and Tradeoffs
	Spatial Safety
	Type and Initialization Safety
	Temporal Safety
	Runtime Techniques and Tradeoffs

	Production Language Safety Overview
	JVM languages (Java, Kotlin)
	Go
	Rust
	Carbon
	A Safer C++
	A stepping stone for an incremental transition
	MTE
	CHERI

	Conclusion
	Acknowledgments

