
Type Migration in Ultra-Large-Scale Codebases
Ameya Ketkar∗, Ali Mesbah† ‡, Davood Mazinanian†, Danny Dig∗ and Edward Aftandilian‡

∗Oregon State University – {ketkara, digd}@oregonstate.edu
†University of British Columbia – {amesbah, dmazinanian}@ece.ubc.ca

‡Google Inc. – eaftan@google.com

Abstract—Type migration is a refactoring activity in which
an existing type is replaced with another one throughout the
source code. Manually performing type migration is tedious
as programmers need to find all instances of the type to be
migrated, along with its dependencies that propagate over as-
signment operations, method hierarchies, and subtypes. Existing
automated approaches for type migration are not adequate for
ultra-large-codebases – they perform an intensive whole-program
analysis that does not scale. If we could represent the type
structure of the program as graphs, then we could employ a
MAPREDUCE parallel and distributed process that scales to
hundreds of millions of LOC. We implemented this approach
as an IDE-independent tool called T2R, which integrates with
most build systems. We evaluated T2R’s accuracy, usefulness and
scalability on seven open source projects and one proprietary
codebase of 300M LOC. T2R generated 130 type migration
patches, of which the original developers accepted 98%.

Index Terms—Refactoring; Type Migration; MapReduce.

I. INTRODUCTION

As programs evolve, an existing type T may need to be
replaced by another type R, because T has been deprecated,
or R is more efficient. For example, a programmer might need
to replace usages of HashMap with ArrayMap to improve
runtime performance [1]. Such a refactoring activity for going
from T to R is known as type migration. Type migration
modifies the declared types of variables or methods in a
program and propagates the necessary changes throughout the
program, preserving the type correctness.

Manually performing type migration can be quite tedious.
First, programmers have to find all the instances of the type
to be migrated. Second, they need to find all the dependencies
in the source code. This is further complicated by type
propagation over assignment operations, parameters of the
methods, overridden methods, and class hierarchies. Third,
they need to make sure that every callsite has a counterpart in
the new type. Finally, they must perform the transformation.
These tasks can easily overwhelm developers. For example,
when CORENLP developers replaced generic with specialized
Java 8’s Functional Interfaces, the type migration involved 34
files containing 75 declarations, 74 allocation sites, 35 call
sites, 3 subclasses and 39 lambda expressions. With the size
of the projects the complexity of type migration also increases.

Type migration is a foundational step in class/library migra-
tion [2], fixing API-breaking changes in clients (e.g., updating
a method’s signature [3]), or correcting inefficient uses of an
API [4]. These refactorings are generally hard to automate [5].
Existing automated approaches for type migration fall short

when dealing with ultra-large codebases. Modern IDEs pro-
vide little support for type migration, often leaving out crucial
analysis required for safe type migration, such as the map-
pings between the new and old types’ methods. Moreover,
state-of-the-art type migration techniques [6]–[13] require in-
depth whole program analysis. For example, researchers have
proposed techniques for class library migration—a frequently-
applied type migration—using type constraints analysis [7]–
[9], [14]. However, type constraints analysis is resource in-
tensive [7] and not scalable to ultra-large-scale codebases,
since it has to extract constraints for all program types.
While this was a great breakthrough for the program analysis
community in the previous decade, it is less suitable for today’s
codebases, e.g., for large open source projects of hundreds
of thousands LOC which we used in our formative study,
or Google’s codebase of 300M LOC. Another limitation of
the current techniques is their extensive dependence on IDEs.
These approaches perform resource-intensive whole-program
analysis locally, inside of the IDE, and are unable to take
advantage of the modern workflow of continuous integration
on dedicated servers, thus hindering developers’ productivity.

In this paper, we propose a scalable and IDE-independent
technique for type migration that integrates with most build
systems (e.g., ANT, MAVEN, GRADLE), and scales to ultra-
large Java codebases. Our technique is composed of three con-
secutive steps, each amenable to MAPREDUCE [15] parallel
processing. To reduce the analysis space, in the first step,
our approach passes over the entire codebase in search of
language constructs (e.g., method signatures, method calls,
variables) that match the to-be-migrated types. We then se-
rialize each matched language construct to the filesystem.
In the second step, we construct a graph, representing the
language constructs collected in the first phase as nodes and
the relationships between them (e.g., a method declaration
and its invocations) as edges. Using a set of migration-
specific constraints, we analyze the graph to yield a list of
refactorable candidates. Finally, in the third step, our technique
passes again over the codebase in search of matches with the
refactorable candidates, and applies the corresponding textual
transformations in-place.

We implemented this approach in a tool called T2R
(T→ R). Our approach is generalizable to any type migration.
However, to help the reader understand the complexities
of type migration, in this paper we use T2R to specialize
the usage of Functional Interfaces across Java codebases,
e.g., replacing Function<Integer, Integer> with

1

import java.util.function.Function;
interface LinearSearcher {
 double minimize(Function<Double, Double> f);
}

class GoldenSectionLineSearcher implements LinearSearcher {
 @Override double minimize(Function<Double, Double> f) {
 double val = getValue();
 return f.apply(val);
 }
}

class SVMLightFactory {
 LinearSearcher minimizer = new GoldenSectionLineSearcher()
 public double heldOutC() {
 Function<Double, Double> sq = x -> x*x;
 return minimizer.minimize(sq);
 }
}

1
2
3
4

5
6
7
8
9
10

11
12
13
14
15
16
17

(a) Before Type Migration

import java.util.function.DoubleUnaryOperator;
interface LinearSearcher {
 double minimize(DoubleUnaryOperator f);
}

class GoldenSectionLineSearcher implements LinearSearcher {
 @Override double minimize(DoubleUnaryOperator f) {
 double val = getValue();
 return f.applyAsDouble(val);
 }
}

class SVMLightFactory {
 LinearSearcher minimizer = new GoldenSectionLineSearcher();
 public double heldOutC() {
 DoubleUnaryOperator sq = x -> x*x;
 return minimizer.minimize(sq);
 }
}

1
2
3
4

5
6
7
8
9
10

11
12
13
14
15
16
17

(b) After Type Migration

Figure 1: Motivating Example

IntUnaryOperator, or BiFunction<U,V,Boolean>
with BiPredicate<U,V>. We were inspired by our previous
work [4] where we studied 100,000 lambda expressions used
in open source Java projects, and observed that 20% of the
generic Functional Interfaces could be replaced with their
specialized alternatives. Using generic Functional Interfaces
causes Autoboxing and Unboxing between primitive and
object types (e.g., int and Integer), which severely
degrades performance [16]. Specializing Functional Interfaces
effectively avoids the imposed overhead.

To evaluate our approach, we run T2R on Google’s code-
base with 300M lines of Java code. We also run T2R on seven
performance-critical open-source projects. They are the best-
in-class in domains such as databases, code quality analysis,
and NLP, and are highly-optimized, totaling 2.6M LOC. T2R
generated 130 patches in total, of which 126 compile and
pass tests successfully. The original developers accepted 98%
(114/126) of these patches.

This paper makes the following contributions:
• A framework for type migration in ultra-large codebases,

which employs a three-step process to collect, analyze,
and transform types. Each step is amenable to MAPRE-
DUCE processing, thus making the approach scalable.

• A graph modelling the type structure of the program,
facilitating analysis for safe type migration.

• An instantiation of the framework, T2R, which migrates
the uses of generic Java 8 Functional Interface types to
their specialized forms.

• An evaluation of the technique on seven open-source
projects and Google’s Java codebase, which shows our
refactoring is scalable, safe, and useful.

II. MOTIVATING EXAMPLE

We show the intricacies associated with type migration
through a real-world example. Figure 1 shows a simplified
view of a T2R-generated patch that we sent to the open-source
project CORENLP [17]. The original patch comprises seven
Java files, involving nine variables, three subclasses, and nine
call sites, which we do not show because of space constraints.

Function<X,Y> is a generic Functional Interface intro-
duced in Java 8, which accepts a value of type X and returns
a value of type Y. Suppose that the developer considers
migrating the type Function<Double, Double> (source)
to its specialized counterpart, DoubleUnaryOperator (tar-
get) from java.util.function. Essentially, these two
are semantically identical. The difference is that the single
abstract method apply() declared in Function<Double,
Double> accepts and returns values of the boxed Double
type, while DoubleUnaryOperator deals directly with
primitive doubles. Unboxing is the automatic conversion by
the Java compiler between the object wrapper classes and
their corresponding primitive types (e.g., Double to double).
Consequently, using DoubleUnaryOperator improves per-
formance as it avoids unnecessary unboxing operations. A
recent study [4] shows that developers often use the more
expensive generic Functional Interfaces instead of the special-
ized alternatives. This is perhaps due to the fact that there
are 35 specialized functional interfaces available in Java and
developers are not fully aware of their existence.

Going back to the example of Figure 1a, the
interface LinearSearcher (line 2) declares the method
minimize() with a parameter of type Function<Double,
Double>. The class GoldenSectionLineSearcher
implements LinearSearcher (line 5), and thus its
minimize() method (line 6). The class SVMLightFactory
(line 11) invokes minimize() on an instance of
GoldenSectionLineSearcher (line 15).

Assume a developer starts refactoring the code by
changing the parameter Function<Double,Double> f
of LinearSearcher.minimize() (line 3) to the tar-
get type, DoubleUnaryOperator, as shown in Fig-
ure 1b. To make the code compile, the developer has
to propagate this change to all the types which imple-
ment LinearSearcher, e.g., the type of parameter f
in GoldenLineSectionSearcher.minimize() (line 6).
The developer then has to migrate the type of the arguments
of minimize() at all the callsites across the codebase.

Note that minimize() is invoked in SVMLightFactory

2

(line 15) but also at other locations in the code (not shown in
Figure 1). To migrate the invocation in SVMLightFactory,
the developer must change the type of sq (line 14). In Java,
a Functional Interface can be instantiated using a lambda
expression, which is an anonymous function that can be
created and used without belonging to any class. The initializer
of sq is a lambda expression, in which its parameter of type
Double is used for a multiplication. The developer would
also need to check for potential uses of the methods invoked
on the parameter within the lambda expressions body, if there
existed any (e.g., x -> x.doubleValue()).

Figure 1b illustrates the migrated code. Note that, to apply
this refactoring manually, the developer would need to perform
an in-depth analysis on the entire source code to find all the
callsites, and perform several nontrivial and time-consuming
tasks, including: 1) checking the places wherein object ref-
erences appear (the original patch in Figure 1 contains
nine variables and their respective callsites and assignments),
2) checking the inheritance hierarchy in the migrated types
(in the original patch, two methods are hierarchically related),
3) checking the subtyping relations (the original patch contains
three subclasses of Function<Double,Double>), 4) com-
puting the transitive closure of the change and ensuring it does
not reach into external libraries (those cannot be changed),
and 5) verifying that the code does not invoke methods from
type T that are absent in R (e.g., Function.andThen() has
no corresponding method in DoubleFunction). Part of the
required steps for a safe type migration might be facilitated
using the navigational support of the IDE (e.g., finding usages
of variables or subclasses), or by relying on the compile errors
raised after each modification, but this technique does not
scale as previously discussed. Next, we discuss our proposed
approach to scalable type migration in large codebases.

III. APPROACH

Type migration impacts variable types and method signa-
tures. Reasoning about how to propagate type changes safely
across the whole codebase requires a whole-program type-
dependency analysis. However, this is challenging to make
scalable. One solution is to make the analysis distributed; but
existing type migration techniques cannot adapt to distributed
processing frameworks as they access single source code files
one at a time in an arbitrary order, during which no global
state is maintained. To overcome this, we designed a three-
step algorithm (Figure 2) that takes as input the source code
and the TRANSFORMATION SPECIFICATIONS between types
T and R. The TRANSFORMATION SPECIFICATIONS define the
source and target types (T→ R) and their corresponding equiv-
alent methods (Function<Double,Double>.apply()→
DoubleUnaryOperator.applyAsDouble()).

The three phases include (i) collecting relevant type and syn-
tactic information from each compilation unit, (ii) analyzing
the collected information and merging it across compilation
units to get a whole program view, and (iii) transforming the
code. Dividing the type migration technique into three separate
phases enables scalability in large codebases where the entire

TRLCs

TFG1

TFGk

Merge &
Analyze

Induce
Subgraphs

Construct
Refactorables

Refactorables

Check
Preconditions

Type
Relevant?

TRLC1

TRLCm

LC1

LC2

LCn

{}{}{}

{}{}{}

{}{}{}

Yes

1

3

2

Apply
Refactorings

Reduce

Refactorable
Exists?

Yes

{}{} {}{} {} {}{} {} {}{} {} {}

Source Code
Map

Identify TRLCs

Reduce

Construct
Graphs

Figure 2: Approach Overview

code spans hundreds of millions of LOC. Each of the steps
becomes amenable to distributed execution internally through,
for example, MAPREDUCE [15]. The output of each step is
fed as input to the next step.

At a high level, first the collection phase identifies all the
type-related source code constructs by traversing over each
compilation unit in a distributed manner and stores them in a
language construct representation. Second, the analysis phase
transforms the language constructs into graphs and merges
them to identify sites where the type migration propagates
across the whole codebase. Third, the refactoring phase
applies the code changes by passing over the entire codebase
in a distributed fashion.

In the following subsections, we describe the three phases.

A. Collecting Type-Relevant Language Constructs

We reduce the problem of analyzing all the types
in the entire codebase to the search for language con-
structs that match with the migration source type T (e.g.,
java.util.function.Function for the example in Fig-
ure 1). This reduction allows us to scale to large codebases.

As shown in Figure 2, the input to the first phase is the
source code and the type T to be migrated. The goal of
this phase is to extract only relevant information from the
source code that is necessary for the type migration analysis
at hand. The output of this step is a collection of Type-Relevant
Language Constructs (TRLCs).

Definition 1 (Language Construct): A Language Construct
(LC) is a syntactic part of the program formed by one or
more lexical tokens in accordance to the rules defined by the
programming language.
Examples of language constructs in Java include method
declarations, method invocations, or variables. Table I presents
the language constructs our work targets.

Definition 2 (Type-Relevant Language Construct): The
Type-Relevant Language Construct (TRLC) of a LC of type
τ captures the IDENTIFICATION of LC as well as the IDEN-
TIFICATION of all type-dependent expressions of LC.

3

Definition 3 (IDENTIFICATION): The IDENTIFI-
CATION of a language construct LC is a 4-tuple
(name, kind, type, owner), where:

• name is the name of the AST node corresponding to
LC. For example, for the method declaration foo(),
name is “foo”. For anonymous constructs (e.g., lambda
expressions, anonymous classes), the name is NULL,

• kind is the kind of the AST node of LC (e.g., MD for
method declarations and constructors, and VAR for local
variables, fields and parameters),

• type is the explicit declared type of LC,
• owner is the IDENTIFICATION of LC’s enclosing lan-

guage construct (e.g., in Figure 2, the owner of
Function<Double,Double> f is the IDENTIFICA-
TION of minimize(), whose owner is the IDENTIFI-
CATION of GoldenSectionLineSearcher).

T2R visits the LCs of each compilation unit in the codebase
in parallel—possibly in an arbitrary order, as imposed by
the runtime distributed infrastructure. It parses the source
code into Abstract Syntax Trees (ASTs), and collects binding
information for types and symbols. To infer type and hierarchy
information, the code needs to be compiled. To compile the
code in a scalable manner, our approach focuses on the compi-
lation unit being visited, and retrieves the compilation unit and
its dependencies from the database of an indexer. We schedule
the indexer to traverse the entire codebase periodically (e.g.,
every night) in a MAPREDUCE style to populate a database
that contains all compilation units and their inputs.

For each visited LC, our approach also analyzes its type-
dependent expressions (see Table I, third column). If a type-
dependent expression is a (sub)type of T, our approach
constructs a TRLC for that LC using the available type
and syntactic information from the AST node being visited.
Each TRLC captures IDENTIFICATION objects depending on
the kind of LCs; e.g., for the variable declaration state-
ment Function<Integer,Integer> sq = x -> x*x,
the TRLC captures two IDENTIFICATIONs, namely for the
variable sq and the lambda expression x -> x*x.

Figure 3 shows a sample IDENTIFICATION constructed
for the lambda expression x -> x*x declared in
SVMLightFactory.heldOutC() (Figure 1 line 14).
Observe that the enclosing assignment expression has made
sq (i.e., the initialized variable) the owner for the lambda
expression. The owner hierarchy continues from sq to
the heldOutC() method, the SVMLightFactory class,
and eventually the package in which SVMLightFactory
is defined. This representation essentially allows uniquely
identifying all language constructs throughout the codebase
that might be affected by the type migration.

Furthermore, whenever our approach finds relevant inher-
itance hierarchy information, it constructs IDENTIFICATIONs
for super methods when the class wherein super is refer-
enced is of type (or extends) T, and also for subclasses of T.
Since our approach constructs these IDENTIFICATIONs based
on local syntactical information (i.e., another compilation
unit contains the sub/superclass’s declaration), we call them

NULL
Lambda Expression
Function<Double, Double>

Name:
Kind:
Type:

Owner:

sq
Local Variable

Name:
Kind:
Type:

Owner:
Function<Double, Double>

Method Declaration
heldOutCName:

Kind:
Type:

Owner:
():void

SVMLightFactory
Class

Name:
Kind:
Type:

Owner:
edu....SVMLightFactory

edu.stanford.corenlp.optimization
Package

Name:
Kind:
Type:

Owner: NULL
NULL

Figure 3: IDENTIFICATION for x -> x*x in
Function<Double,Double> sq = x -> x*x

inferred IDENTIFICATIONs. Our approach adds these inferred
IDENTIFICATIONs to the corresponding TRLCs as well.

Our collection step emits these TRLC instances as it passes
over the codebase in parallel, and then subsequently serializes
them to the filesystem for further processing in the next step.

B. Detecting Refactorable Language Constructs

The result of the previous phase of our approach is
a set of TRLCs, collected using local information about
their type-dependent LCs and in an arbitrary order of
the analyzed compilation units. For a safe type migra-
tion, we would need to consider the relationships among
all TRLCs collected for the entire source code. For ex-
ample, the TRLC constructed for the method declaration
GoldenSectionLineSearcher.minimize() (Figure 1a,
line 6) has information that it is dependent on the type
of its parameter Function<Double,Double> f, but does
not have the information of the arguments passed to its
invocations. To safely migrate its parameter’s type, we need
to propagate the changes to the arguments in the methods
callsites too. This normally requires using an inter-procedural
analysis, which is infeasible in ultra-large-scale codebases.

The goal of the second phase of our approach is to establish
and analyze such relationships between the LCs to achieve the
effect of an inter-procedural analysis, in order to decide which
LC should (and can) be refactored safely in the codebase. The
input to this phase is the set of collected TRLCs, as well as
the TRANSFORMATION SPECIFICATIONS. The output is a set
of refactoring instructions for modifying language constructs
of type T that can be safely migrated to the new type R.

1) Graph Analysis: The core of our analysis phase revolves
around the notion of a graph representation of the LCs, i.e., the
Type-Fact Graph (TFG). A TFG captures the type-dependency
relationship between different LCs of an entire program. TFG
is inspired by the formalization of refactorings with graph
transformations [18], and type constraints [7].

4

Table I: LCs and TRLCs

Language Constructs (LCs) Kind Label of LC Type-dependent Expressions TRLC Example
Method Declaration
Constructor MD Parameters, return statement double minimize(Function<Double,Double) f

Method Invocation
Method Reference
Class Instantiation

MI Receiver, Arguments f.apply(val), minimizer.minimize(sq)

Method Parameter
Local/Instance Variable VAR Type Declaration, Initializer double minimize(Function<Double,Double) f

Assignment ASGN LHS and RHS of an assignment sq = x -> x*x

Lambda Expression LMBD Lambda Expression x -> x*x

Explicit/Anonymous Class Declaration CLS
implements clause
Overridden Method Declaration

Definition 4 (Type-Fact Graph): A Type-Fact Graph (TFG)
is a directed, labeled graph G = (V,E), where:

• V is the set of nodes in TFG; each node represents an
IDENTIFICATION.

• E ⊆ V ×L×V is a set of directed edges in TFG, where
L is a finite set of edge labels. The edges correspond to
the semantic relationships between two nodes in TFG,
and the labels determine the type of the relationship.

Our approach establishes a directed, labeled edge between
two TFG nodes v1 and v2 when there is a type relationship
between the two source code elements that v1 and v2 represent.
These relationships are similar to type constraints [9]. The
edge label l ∈ L denotes the type of the relationship. For
example, there is a type relationship between a method dec-
laration in an interface and its overriding method declaration
in an implementing class, because changing the overridden
method’s signature should be propagated to the overriding
methods. In this example, we establish a directed edge from
the TFG node that corresponds to the overriding method,
which has the type label MD, to the TFG node that corresponds
to the overridden method with the same type label, and
we label the edge as AFFECTED_BY_HIERARCHY. Table II
illustrates a list of such relationships and the corresponding
edge labels.

2) Constructing the Graph: In this step, we form a TFG of
all the TRLCs. This unified TFG captures all the information
needed for inferring the final refactoring sites for a safe type
migration. The key steps in this phase are depicted in Figure 2:

1) Constructing individual TFGs from TRLCs,
2) Merging individual TFGs into a unified, enriched TFG.

Constructing individual TFGs from TRLCs. First, our ap-
proach deserializes the physical representation of each TRLC
and transforms it into an individual TFG. As an example,
Figure 4 shows the TFGs constructed for two TRLCs in the
class SVMLightFactory of the motivating example.

The grey boxes depict the items that are in the graph; we
also show the owners for these TFG nodes for clarity. Also
note that there are repetitive IDENTIFICATIONs across the two
TFGs. This is due to the fact that the first phase of our
approach does not have a holistic view of the entire codebase,

heldOutC
Method Declaration

Name:
Kind:
Type:

Owner:
():void

GoldenSectionLineSearcher
Class

Name:
Kind:
Type:

Owner:
edu....GoldenSectionLineSearcher

edu.stanford.corenlp.optimization
Package

Name:
Kind:
Type:

Owner: NULL
NULL

SVMLightFactory
Class

Name:
Kind:
Type:

Owner:
edu....SVMLightFactory

edu.stanford.corenlp.optimization
Package

Name:
Kind:
Type:

Owner:NULL
NULL

sq
Local Variable

Name:
Kind:
Type:

Owner:
Function<Double,Double>

ARGUMENT_OF ARGUMENT

NULL
Lambda Expression
Function<Double,Double>

Name:
Kind:
Type:

Owner:

ASSIGNED_AS ASSIGNED_TO

sq
Local Variable

Name:
Kind:
Type:

Owner:
Function<Double,Double>

minimize
Method Invocation
(Function<Double,Double>):double

Name:
Kind:
Type:

Owner:

Type dependency

Ownership

Repetition

Identification Obj.

TFG Boundary

TFG Node

Function<Double,Double> sq = x -> x*x; minimizer.minimize(sq)

Figure 4: Individual TFGs for SVMLightFactory

and only has local information, as it visits a single compilation
unit at a time in a distributed MAPREDUCE process.

Constructing the enriched TFG. Our approach then incre-
mentally merges the individual TFGs among themselves. The
Merge & Analyze block depicted in Figure 2 takes as input
two TFGs and merges them by taking the union of their
nodes (i.e., IDENTIFICATIONs) and edges. Subsequently, our
approach performs two analysis and enrichment operations
upon this merged graph, to 1) find method declarations for
method invocations, and 2) replacing nodes associated with
inferred IDENTIFICATIONs with non-inferred ones. Figure 5
illustrates the example of applying this operation on the two
independent TFGs shown in Figure 4.

Finding declarations of method invocations. For each
node representing a method invocation, our approach
searches the entire TFG to find a node representing its
declaration. The approach adds new edges between the
two nodes. The edges between the nodes correspond-
ing to the method declaration and method invocation for
GoldenSectionLineSearcher.minimize() in Figure 5
illustrate the result of this analysis and enrichment. Observe
that the IDENTIFICATIONs of the declaration and invocation

5

Table II: TFG Edge Labels

Node type / Edge Directions Edge Label Description
MD→MD AFFECTED_BY_HIERARCHY Relation due to hierarchy
MD→VAR, VAR→MD/CLS/LMBD PARAMETER, OWNER Relation between method and its parameters
MI→VAR/MI/CLS/LMBD, VAR/MI/CLS/LMBD→MI ARGUMENT, ARGUMENT_OF Relation between method invocation and its argument
VAR→VAR/MI/CLS/LMBD, VAR/MI/CLS/LMBD→VAR ASSIGNED_AS, ASSIGNED_TO Relation owing to assignment
VAR/MI→MI, MI→VAR/MI METHOD_INVOKED, REFERENCE Relation between method invocation and its receiver
MD→VAR/MI/CLS/LMBD, VAR/MI/CLS/LMBD→MD RETURNS, RETURNED_BY Relation between method declaration and its return expression
CLS→MD OVERRIDES Relation between class and overridden method
MI→MD, MD→MI DECLARATION, INVOCATION Relation between method invocation and its declaration
VAR→CLS OF_TYPE Relation between variable when its type is subtype of the source type

GoldenSectionLineSeacher.minimize()
Method Invocation

Name:
Kind:
Type: (Function<Double,Double>):double

INVOCATIONDECLARATION

GoldenSectionLineSeacher.minimize()
MethodDeclaration

Name:
Kind:
Type: (Function<Double,Double>)double

SVMLightFactory.heldOutC.sq
Varibale Declaration

Name:
Kind:
Type: Function<Double,Double>

ARGUMENT_OFARGUMENT

OWNERPARAMETER

GoldenSectionLineSeacher.minimize.f
Variable Declaration

Name:
Kind:
Type: Function<Double,Double>

LinerarSearcher.minimize()
Method Declaration

Name:
Kind:
Type: (Function<Double,Double>)double

HIERARCHYHIERARCHY

SVMLightFactory.heldOutC.sq.LMBD
Lambda Expression

Name:
Kind:
Type: Function<Double,Double>

ASSIGNED_TOASSIGNED_AS

REFERENCEMETHOD_INVOKED

apply
Method Invocation

Name:
Kind:
Type: (Double)Double

LinerarSearcher.minimize.f
Variable Declaration

Name:
Kind:
Type: Function<Double,Double>

PARAMETEROWNER

Figure 5: Unified TFG

nodes only differ by their kind. In practice, our approach
uses this property of IDENTIFICATIONs to find declarations
corresponding to method invocations.

Replacing inferred identification nodes in the TFG
with non-inferred ones. Recall that, in the first phase, our
algorithm adds inferred IDENTIFICATIONs for LCs that are not
syntactically present in a compilation unit, but they must exist
somewhere else for the source code to be compilable. For ex-
ample, when collecting the type-relevant language constructs,
the algorithm could infer that there must be a declaration for
a specific method in a supertype, using the available semantic
information. This is because the collection phase only has
a local view of TRLCs, thus, the corresponding TFG node
for this method declaration might be missing. In the analysis
step, however, the algorithm has a holistic view of all the
TRLCs; thus, the algorithm in this step attempts to discover
these missing nodes. If the search is successful, the algorithm
replaces the inferred nodes by the identified nodes, else the
nodes remain inferred and graphs containing these nodes are
filtered out by the preconditions.

In Figure 5, observe also that the algorithm has merged
the variable declaration sq in SVMLightFactory with the
argument sq passed to the method minimize. Since our
approach preserves the edges in this operation, it has not
omitted the initializer of the variable sq.

C. Generating Refactorables

After the algorithm merges all the graphs into a single
TFG, it identifies its disconnected subgraphs. Each discon-
nected subgraph signifies a set of language constructs that
have type dependencies among themselves in the program.
Figure 5 shows one such disconnected subgraph obtained
from the motivating example (Figure 1). This graph essentially
depicts all the sites which are type dependent on the signature
of minimize() in GoldenSectionLineSearcher. T2R
first filters these TFGs through a set of preconditions; and
then reduces each filtered TFG into a set of REFACTORABLEs
which captures each node of the TFG (i.e. IDENTIFICATION)
and a corresponding REFACTORING INSTRUCTION for the
language construct it represents.

1) Refactoring Preconditions: In order for type migration
transformations to be type correct (i.e., the resulting code is
compilable), we define preconditions that need to be satisfied
for each TFG subgraph. These preconditions are as follows:

Precondition 1: The TRANSFORMATION SPECIFICATIONS
should include refactoring instructions for each type of
node in each individual TFG subgraph. For example, when
the method andThen() is invoked on a variable v of
type Function<Double,String>, the type of v can-
not be migrated to DoubleFunction<String>, because
DoubleFunction<String> does not have a corresponding

6

Table III: TRANSFORMATION SPECIFICATIONS from Function<Double,Double> to DoubleUnaryOperator

LC kind Predicate over LC expressions Refactoring Instruction
VAR Type Declaration = Function<Double,Double> Change Type To DoubleUnaryOperator

MD Return Type = Function<Double,Double> Change Type To DoubleUnaryOperator

CLS Type � Function<Double,Double>†

Change Type Super To DoubleUnaryOperator
Change Name OveridnMthd To applyAsDouble
Change Type OveridenMthd Param 0 To double
Change Type OveridenMthd Return To double

LMBD Type � Function<Double,Double> Change Type To DoubleUnaryOperator

MI Receiver.type � Function<Double,Double> ∧ name = "apply"
Change Name To applyAsDouble
Change Type Receiver To DoubleUnaryOperator

† A�B means A is (sub)type of B.

method for andThen() (i.e., no refactoring instruction can
exist for this migration). This precondition guarantees that all
the methods of the source type T will have a corresponding
method in R. When this precondition is violated, there will
be methods in T that are called on references to R after
refactoring, which results into compiler errors.
Precondition 2: In each individual TFG subgraph, there must
exist no node where the kind of the nodes associated IDENTI-
FICATION has remained inferred at the end of the analysis
phase. This happens, for example, to language constructs
for which the declaration is in an external library. In our
motivating example (Figure 1), if sq is passed as an argument
to a method of a third party library, we would not refactor it.
Violating this precondition essentially means changing types
in parts of the source code while not being able to change other
relevant places, e.g., an external dependency, which leads to
breaking the type correctness of the program.
Precondition 3: The type migration refactoringshould not
affect the elements declared using generic types with type
variables. This precondition can, for example, prevent incor-
rect type changes applied on generic types appearing in class
hierarchies. As an example, consider the interface I<U,V>
declaring the method void m(Function<U,V> p). A class
C1 which implements I<Integer,Integer> must declare
a method void m(Function<Integer,Integer> p).
Changing the type of the parameter p in C1.m() to
IntUnaryOperator warrants changing the type of the same
parameter in I.m(). However, there might be other classes
implementing I with different explicit type parameters (e.g.,
C2 which implements I<Boolean, Integer>); therefore,
we are not allowed to apply this change in the first place or
else it will break the type correctness of the program.
Precondition 4: (Optional) The TFG representation is flex-
ible to express additional constraints for the type migration.
For instance, a user can define a custom precondition for not
propagating changes across public methods or packages.

If any of the preconditions are not satisfied by a TFG
subgraph, that particular subgraph becomes unsuitable for
refactoring. We only migrate the elements represented by
subgraphs which satisfy all our preconditions.

2) Generating REFACTORABLEs: For the TFG subgraphs
that satisfy the preconditions, we produce a REFACTORABLE

item for each node in the filtered TFGs based on the
TRANSFORMATION SPECIFICATIONS provided by the user.
A REFACTORABLE encapsulates an IDENTIFICATION and the
corresponding REFACTORING INSTRUCTION (illustrated in
Table III) for the language construct that the IDENTIFICATION
represents. These REFACTORING INSTRUCTIONs are provided
by the user in the TRANSFORMATION SPECIFICATIONS. The
REFACTORING INSTRUCTION expresses the refactoring ac-
tion to be performed, the parameters of this action, and
the sub-constructs of the language construct on which the
action should be applied. For example, in Table III, REFAC-
TORING INSTRUCTION for CLS (i.e., an explicit/anonymous
class declaration) expresses three actions: 1) the super
type (declared using the implements/extends clause)
has to be changed from Function<Double,Double> to
DoubleUnaryOperator, 2) the name of the overridden
method apply() has to be changed to applyAsDouble, and
3) the return type and the zeroth parameter of apply() has to
be changed from Double to double. The expressiveness of
REFACTORING INSTRUCTION helps our approach to handle
various language constructs.

Our approach then serializes these refactorables to the
filesystem to use them in the final step of our migration.

D. Applying Refactorings

The final phase is responsible for applying the detected
refactorings to the source code. As illustrated in Figure 2, sim-
ilar to the collect phase, we visit AST nodes of the source code
in search of matching TRLCs in a MAPREDUCE parallel pro-
cess. We then check each TRLC against the set of refactorables
that were generated at the end of the previous phase. If we find
a match, we use the refactoring instruction of the refactorable
upon the visited language construct by performing an in-place
AST node rewriting. For example, the algorithm translates
the instruction ChangeType:DoubleUnaryOperator for
parameter f of minimize in LinearSearch, to a rewriting
action, which replaces the type of the variable declaration with
DoubleUnaryOperator. We also import the new types into
the enclosing class, if they are not already present.

IV. IMPLEMENTATION

We use JAVAC to parse the Java source code and im-
plement AST node visitors to collect and refactor language

7

constructs. For TFG representation, we use Guava Graph
library [19]. We construct object representations of TRLCs
using Protocol Buffers [20], which is an efficient language
and platform neutral mechanism for serializing structured data.
We have implemented T2R as an open-source project, which
is available [21]. We have also implemented and deployed a
separate variant of T2R at Google. For this version, we use
FlumeJava [22], Google’s MapReduce API for implementing
the collection and refactoring phases.

V. EVALUATION

To evaluate the efficacy and real-world relevance of our
approach, we address the following research questions:

RQ1 (Accuracy): How accurate are the type migrations
performed by our approach?

RQ2 (Usefulness): Do developers find our type migrations
useful in practice?

RQ3 (Scalability): How scalable is our type migration?

A. Software Corpora
We evaluate T2R using two software corpora: (1) seven

open-source projects, and (2) the proprietary codebase of
Google. Table IV presents our corpora in terms of their source
code size.

1) Open-source Corpus: We use seven open-source,
performance-critical projects which are mature and popular
(thousands of stars on GitHub) and are widely used in the
industry, and extensively use Functional Interfaces.

These projects are: CASSANDRA, PRESTO, NEO4J (best-
in class, scalable and highly-performant databases [23]–
[25]), SONARQUBE [26], CORENLP [27], JAVA-DESIGN-
PATTERNS [28], and SPEEDMENT [29]

Finding any missed opportunity to further specialize func-
tional interfaces in such projects, is an important contribution.

For this corpus, we provide T2R with TRANSFORMATION
SPECIFICATIONS to migrate seven generic Functional Inter-
faces to 35 specialized alternatives. We use this corpus to
assess the accuracy and usefulness of our approach (i.e., RQ1
and RQ2). Although we designed T2R to scale on ultra-
large codebases using MAPREDUCE on dedicated hardware,
we show that even open-source developers that use commodity
hardware (e.g., a laptop) can still use T2R effectively.

2) Proprietary Corpus: Our proprietary corpus contains
over 300M lines of Java code at Google. For this corpus, we
provide T2R with TRANSFORMATION SPECIFICATIONS for
migrating the type java.util.function.Function to 13
specializations. These were requested by Google as a proof of
concept for implementing an ultra-large scale type migration.
In addition to the first two research questions, we use this
corpus to assess the scalability of our approach (i.e., RQ3);
thus, our evaluation employs MAPREDUCE parallel computing
in the first and third steps of the migration process.

B. Methodology
Since T2R operates as a greedy algorithm to migrate as

many usages of type T to R in the codebase, we compute accu-
racy (RQ1) using standard metrics from information retrieval.

To measure the accuracy, we apply the patches generated by
T2R to all the open-source projects in the corpora.

We compute precision as the fraction of generated patches
that passed successfully (no compilation or test failures), and
thus were correct refactorings. To compute recall, we first need
to determine the maximal set of refactorings in the corpus, and
then compute how many of these T2R found. From the initial
candidates, i.e., all the programming constructs that are defined
of type T, we manually computed how many candidates are
suitable for refactoring (i.e., they pass preconditions). We then
report how many of these T2R found, and the reason why it
rejected the remaining candidates.

To evaluate the usefulness of the type migrations in practice
(i.e., RQ2), we submit the patches produced by T2R to the
original developers and report the number of accepted patches.
We also measure and report the size of the submitted patches.

To evaluate the scalability of T2R (i.e., RQ3), we measure
the number of lines of code T2R can handle.

VI. RESULTS

Table IV summarizes the results we obtained by running
T2R over the open-source and proprietary corpora.

A. Accuracy
Table IV reports the number of initial TRLC candidates for

the refactoring (which the developer would need to investigate
and possibly modify for a safe type migration), how many
subgraphs satisfy all the preconditions and T2R generated
patches for, and how many of the applied patches preserve
the syntax and semantics of the program.

T2R generated 130 patches, out of which 126 compiled and
passed the tests successfully with an overall precision of 97%.

For the open-source corpus, T2R generated 71 patches, out
of which one introduced a compilation error and one failed a
single test case from the thousands of tests available for each
project. The compilation error occurred in CASSANDRA due
to T2R’s implementation limitation in handling static method
calls as method references. Also, a test case in the integration
test suite of NEO4J failed since the applied changes affected
a public Java method called by Scala.

For the proprietary corpus, T2R generated 59 patches, out
of which two introduced integration test case failures, due to
the usage of Java reflection and dependency injection in the
code, which T2R does not handle currently. This is a well-
known limitation [30] of all practical refactoring tools.

The recall rate of T2R is 100% for the open-source projects.
Considering the size of the codebases used in our evaluation,
the number of the generated patches might seem small. Note
that we are using mature projects where performance is at the
forefront. For example, CASSANDRA is a highly-optimized
database used predominantly in industry, and its developers
had already manually refactored code to use specialized Func-
tional Interfaces. Nevertheless, T2R was still able to find 15
patches that affected its core modules.

A lead developer of CASSANDRA mentioned that one of
these patches in particular “was deep inside the database and
actually is very important for performance”.

8

Table IV: Results

Accuracy Usefulness Scalability

Candidate Patches Patches Patches Files Lines Lines SLOCCorpus TRLCs Generated Passed Accepted Changed Added Removed

Proprietary Google 161,255 59 57 56 70 289 265 300M

OSS

NEO4J 609 17 16 16 46 243 214 787K
CORENLP 412 18 18 18 34 157 144 576K
SONARQUBE 82 2 2 2 6 12 11 551K
PRESTO 564 11 11 0 (10)† 36 91 87 543K
CASSANDRA 478 16 15 15 23 82 71 355K
SPEEDMENT 251 5 5 5 14 89 84 127K
JAVA-DESIGN-PATTERNS 14 2 2 2 2 8 4 27K

Total 163,665 130 126 114 231 973 880 302.6M
† The value shown in parentheses is the number of patches which are currently under review by the developers.

Moreover, not all candidate TFG subgraphs result in appli-
cable patches. In our OSS corpus, 70% of these subgraphs
do not pass precondition #2: we cannot proliferate changes
to external libraries. Particularly, Functional Interfaces are
usually used with Java’s Stream or Optional APIs and the
refactoring would need to change these APIs. Similarly, we
noticed that custom Functional Interfaces provided by external
libraries (e.g., GUAVA Collections) are extensively used in the
proprietary corpus. The open-source experiments also reveal
that 28% of TFG candidate subgraphs do not pass precondition
#3, and 2% of patches failed preconditions #1 and #4.

B. Usefulness

We sent the 126 passing patches to the original developers
as pull requests. At the time of writing this paper, 10 patches
for the OSS corpus are still under review. Of the remaining
patches, 114 were accepted, with an acceptance rate of 98%.

Table IV shows the number of patches accepted by the
developers as well as details about the impact of the changes,
i.e., the number of Java files affected and lines added/deleted.

In total, we sent 69 patches affecting 161 files to the
developers of the open-source corpus, out of which 58 were
accepted, and 10 are currently under review. One patch was
rejected since it affected method signatures of the project’s
public APIs, which the developers did not want to change. We
could define a precondition to prevent T2R from touching pub-
lic APIs, if we had known this constraint a priori. On average,
T2R produced patches affecting 2.03 files, adding 9.17 lines
and deleting 8.12 lines per patch. Our companion website [31]
contains these patches and the developers’ responses.

For the proprietary corpus, we sent 57 patches affect-
ing 70 files to the Google developers, out of which 56
were accepted. One patch was rejected since the devel-
oper found Predicate<String> to be less readable than
Function<String, Boolean> in a test case. On average,
T2R produced patches affecting 1.19 files per patch, adding
4.88 lines and deleting 4.64 lines per patch.

C. Scalability

We focus on the proprietary corpus for evaluating the
scalability due to its sheer size. In the first phase, T2R ran

over 300M lines of Java code and collected 161,255 type-
relevant language constructs (TRLCs) in around 15 minutes.
T2R then analyzed the collected TRLCs in the second phase
to detect 292 refactorables in around three minutes. Finally,
T2R ran again over the entire codebase to find matches with
the refactorables and generate patches, in around 15 minutes.

T2R executed these three phases on Google’s cloud infras-
tructure. The first and third phases used MAPREDUCE parallel
processing. In total, the whole type migration process took 33
minutes for 300M LOC, highlighting the scalability of T2R.

VII. DISCUSSION

A. Threats to Validity

External Validity. Do our results generalize? We chose a
diverse set of software corpora, including multiple highly-
rated open-source systems used by other researchers [4], in
addition to an ultra-large-scale Google codebase consisting of
300M lines of code in total. The corpora covers a wide range
of software domains, sizes, and development practices.

Does T2R generalize to other type migrations? In this paper
we illustrated T2R’s features by using a complex refactoring,
Specializing Functional Interfaces (see Section II). Since T2R
handles a large variety of constructs, we believe T2R can be
extended to other type migrations.

Internal Validity. Does T2R produce valid results? Our
evaluation shows that T2R can handle real-world migration
of Functional Interfaces safely. We also wrote extensive test
suites to ensure covering a wide range of language constructs.

Reliability. Can others replicate our results? We have made
the open-source version of T2R and the results available [31].

B. Limitations of our Implementation

Exception handling. T2R currently does not handle type
migrations in which source and target types methods throw
different exception types. Such cases require complex changes
to be propagated to the throws clauses, throw statements,
and try-catch blocks.

Distributed graph analysis. While the collection and refac-
toring phases have been implemented with MAPREDUCE

9

processing, the analysis phase uses parallelism features of the
Java Stream API. However, it could also be implemented in
a MAPREDUCE style using distributed graph libraries, e.g.,
PREGEL [32] or APACHE GIRAPH [33].

Java Reflection and Dependency Injection. Our current
implementation does not handle reflection or dependency
injection. A workaround would be to collect associated an-
notations such as @inject, @provide, or @autowire, and
introduce a precondition for checking these annotations.

Declaring Transformation Specifications. Our experiments
revealed that the REFACTORING INSTRUCTIONs (as shown in
Table III) are expressive enough for a wide range of refactor-
ings. However, one needs to manually verify the completeness
and correctness of the mappings.

VIII. RELATED WORK

We group the related work into two categories: (i) type-level
refactorings, and (ii) large-scale refactorings.

Type-level refactorings. Previous work has proposed ap-
proaches for type-level refactorings, e.g., for facilitating class
library migration by adaptors [34] or intermediate compati-
bility layers [35], generating new libraries for a constrained
environment and migrating to them [36], migration based
on manually-defined annotations [37] or capture-and-replay
of changes [38], suggesting types in the migrated library
based on existing examples and applying them [39], changing
references and method invocations after library migration
using an Eclipse plugin [40], and applying type changes by
adopting a DSL for defining mappings [13].

Among others, a more promising approach for type mi-
gration is based on type constraints [7]–[9], [11], which
determine the sites to be updated when replacing types, in
order to preserve the type correctness of the program. Simi-
larly, Khatchadourian [10] proposed a type checking technique
to migrate legacy Java codebases to use enumerated types,
designed to effectively handle primitive types.

Despite the abundance, previous techniques have not been
designed to scale to ultra-large-scale codebases. They usually
depend on IDEs, which limits their applicability: the size
and complexity of ultra-large-scale codebases do not allow
applying sophisticated whole-program analysis required for
type migration in any IDE running on machines with limited
resources.

In contrast, we have proposed a graph representation of
type dependencies between LCs, essentially capturing type
constraints similar to the ones proposed by Tip et al. [7],
yet making the analysis highly-scalable through a distributed
MAPREDUCE approach. We showed that our IDE-independent
approach can analyze a 300M LOC code base for type migra-
tion in 33 minutes, while existing approaches were evaluated
on much smaller codebases, e.g., 272K LOC for a recent type-
checking approach [10].

Previous studies [2], [5], [41] have shown that library
migration (wherein type migration is the fundamental refac-
toring) is a frequent activity. Existing work [42]–[46] has

proposed automated techniques to identify mappings between
the migrated classes (e.g., method mappings) from the source
code history. These approaches can relieve the user from
manually defining the type migration mappings. We are going
to extend T2R to incorporate such techniques in the future.
Large-scale refactorings.

ClangMR [47] is a related MapReduce-based system for
implementing and executing refactorings in large-scale code-
bases. ClangMR is limited to a single-step analysis of one
compilation unit (e.g., a single source file) and is not able to
propagate analysis results and code changes across multiple
files. In contrast, our approach supports multi-step refactorings
that require analyzing and propagating changes across the
whole program; this is a primary contribution of this work.
We have built the Google-variant of T2R on top of the Java
equivalent of ClangMR at Google.

IX. CONCLUSIONS AND FUTURE WORK

Type migration is crucial to ensure a codebase evolves and
does not incur technical debt. As the size of a codebase
increases, both the need for and the complexity of such
migrations increase. In this paper, we present an automated
technique for scalable type migration in large codebases. We
implemented the approach in a framework called T2R, and we
use it to specialize Functional Interfaces in Java. Our results
show that the type migrations performed by T2R on seven
open-source and Google’s codebases is scalable, safe, and
useful. Even in highly optimized projects, T2R found 114
opportunities for improving performance.

Our work shows that by using a graph modelling the
type dependencies in the source code, we can mimic an
inter-procedural program analysis, which is amenable to the
MAPREDUCE parallel and distributed computing, and there-
fore, is scalable to ultra-large-scale code bases.

In the future, we aim to make T2R more applicable to more
instances of type migration by developing a DSL which can
express mappings between T and R. We also plan to implement
the graph analysis phase of T2R as MAPREDUCE to further
enhance its scalability.

ACKNOWLEDGMENTS

We thank Nikolaos Tsantalis, Raffi Khatchadourian, Titus
Winters and other anonymous reviewers for their insightful
feedback. This research was partially supported through NSF
CCF-1553741 grant and a Google Faculty Research Award.

REFERENCES

[1] R. Saborido, R. Morales, F. Khomh, Y.-G. Guéhéneuc, and
G. Antoniol, “Getting the most from map data structures in
android,” Empirical Software Engineering, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9607-8

[2] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A
study of library migrations in Java,” J. Softw. Evol. Process,
vol. 26, no. 11, pp. 1030–1052, Nov. 2014. [Online]. Available:
http://dx.doi.org/10.1002/smr.1660

[3] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical
study into evolution problems in java programs caused by library
upgrades,” in 2014 Software Evolution Week - IEEE Conference on Soft-
ware Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), Feb 2014, pp. 64–73.

10

[4] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding
the use of lambda expressions in Java,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, pp. 85:1–85:31, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133909

[5] B. Cossette and R. J. Walker, “Seeking the ground truth: a
retroactive study on the evolution and migration of software
libraries,” in 20th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA -
November 11 - 16, 2012, 2012, pp. 55:1–55:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393661

[6] “Type migration refactoring,” https://www.jetbrains.com/help/idea/migrate
.html, accessed: 2018-06-06.

[7] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and
B. De Sutter, “Refactoring using type constraints,” ACM Trans.
Program. Lang. Syst., vol. 33, no. 3, pp. 9:1–9:47, May 2011. [Online].
Available: http://doi.acm.org/10.1145/1961204.1961205

[8] F. Tip, A. Kiezun, and D. Bäumer, “Refactoring for generalization using
type constraints,” ACM SIGPLAN Notices, vol. 38, no. 11, pp. 13–26,
2003. [Online]. Available: https://doi.org/10.1145/949343.949308

[9] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for
class library migration,” in Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05. New
York, NY, USA: ACM, 2005, pp. 265–279. [Online]. Available:
http://doi.acm.org/10.1145/1094811.1094832

[10] R. Khatchadourian, “Automated refactoring of legacy Java software to
enumerated types,” Automated Software Engineering, vol. 24, no. 4, pp.
757–787, Dec. 2017.

[11] F. Tip and P. F. Sweeney, “Class hierarchy specialization,” ACM
SIGPLAN Notices, vol. 32, no. 10, pp. 271–285, 1997. [Online].
Available: https://doi.org/10.1145/263700.263748

[12] J. Li, C. Wang, Y. Xiong, and Z. Hu, “SWIN: Towards Type-Safe
Java Program Adaptation Between APIs,” in Proceedings of the 2015
Workshop on Partial Evaluation and Program Manipulation, ser.
PEPM ’15. New York, NY, USA: ACM, 2015, pp. 91–102. [Online].
Available: http://doi.acm.org/10.1145/2678015.2682534

[13] M. Nita and D. Notkin, “Using twinning to adapt programs to
alternative apis,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, 2010, pp. 205–214. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806832

[14] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller, “Efficiently
refactoring Java applications to use generic libraries,” in ECOOP 2005
- Object-Oriented Programming, 19th European Conference, Glasgow,
UK, July 25-29, 2005, Proceedings, 2005, pp. 71–96. [Online].
Available: https://doi.org/10.1007/11531142 4

[15] J. Dean and S. Ghemawat, “Mapreduce,” Communications of
the ACM, vol. 51, pp. 107–113, 2008. [Online]. Available:
https://doi.org/10.1145/1327452.1327492

[16] Oracle, “Autoboxing,” https://docs.oracle.com/javase/8/docs/technotes/
guides/language/autoboxing.html, accessed: 2018-06-24.

[17] (2018) Corenlp. Accessed: 19 July 2018. [Online]. Available:
https://github.com/stanfordnlp/CoreNLP

[18] T. Mens, S. Demeyer, and D. Janssens, “Formalising behaviour
preserving program transformations,” in Graph Transformation, First
International Conference, ICGT 2002, Barcelona, Spain, October
7-12, 2002, Proceedings, 2002, pp. 286–301. [Online]. Available:
https://doi.org/10.1007/3-540-45832-8 22

[19] Google. (2010) Guava: Google core libraries for java. Accessed: 17
July 2018. [Online]. Available: https://github.com/google/guava

[20] ——. (2011) Protocol buffers. Accessed: 26 March 2018. [Online].
Available: https://developers.google.com/protocol-buffers/

[21] A. Authors. (2018) The open source implementation for T2R.
Accessed: 18 July 2018. [Online]. Available: hidden

[22] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum, “Flumejava: Easy, efficient
data-parallel pipelines,” in Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’10. ACM, 2010, pp. 363–375. [Online]. Available:
http://doi.acm.org/10.1145/1806596.1806638

[23] (2018) Cassandra. Accessed: 23 August 2018. [Online]. Available:
http://cassandra.apache.org/

[24] (2018) Prestodb. Accessed: 23 August 2018. [Online]. Available:
https://prestodb.io/

[25] (2018) Neo4j. Accessed: 23 August 2018. [Online]. Available:
https://neo4j.com/

[26] (2018) Sonarqube. Accessed: 23 August 2018. [Online]. Available:
https://www.sonarqube.org/

[27] (2018) Stanford-corenlp. Accessed: 23 August 2018. [Online]. Available:
https://stanfordnlp.github.io/CoreNLP/

[28] (2018) Java-design-patterns. Accessed: 23 August 2018. [Online].
Available: http://java-design-patterns.com/

[29] (2018) Speedment. Accessed: 23 August 2018. [Online]. Available:
https://www.speedment.com/

[30] A. Thies and E. Bodden, “Refaflex: Safer refactorings for reflective
Java programs,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336754

[31] (2019) Companion website. Accessed: 14 February 2019. [Online].
Available: https://ameyaketkar.github.io/T2RResults.html

[32] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-scale
Graph Processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’10.
New York, NY, USA: ACM, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[33] “Apache giraph,” http://giraph.apache.org/, accessed: 2018-06-07.
[34] T. T. Bartolomei, K. Czarnecki, and R. Lämmel, “Swing to SWT

and back: Patterns for API migration by wrapping,” in 26th IEEE
International Conference on Software Maintenance (ICSM 2010),
September 12-18, 2010, Timisoara, Romania, 2010, pp. 1–10. [Online].
Available: https://doi.org/10.1109/ICSM.2010.5610429

[35] D. Dig, S. Negara, V. Mohindra, and R. E. Johnson, “ReBA:
refactoring-aware binary adaptation of evolving libraries,” in 30th
International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, 2008, pp. 441–450. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368148

[36] V. L. Winter and A. Mametjanov, “Generative programming techniques
for Java library migration,” in Generative Programming and Component
Engineering, 6th International Conference, GPCE 2007, Salzburg,
Austria, October 1-3, 2007, Proceedings, 2007, pp. 185–196. [Online].
Available: http://doi.acm.org/10.1145/1289971.1290001

[37] K. Chow and D. Notkin, “Semi-automatic update of applications in
response to library changes,” in 1996 International Conference on
Software Maintenance (ICSM ’96), 4-8 November 1996, Monterey,
CA, USA, Proceedings, 1996, pp. 359–368. [Online]. Available:
https://doi.org/10.1109/ICSM.1996.565039

[38] J. Henkel and A. Diwan, “Catchup!: capturing and replaying
refactorings to support API evolution,” in 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St.
Louis, Missouri, USA, 2005, pp. 274–283. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062512

[39] Z. Xing and E. Stroulia, “API-evolution support with diff-catchup,”
IEEE Transactions on Software Engineering, vol. 33, no. 12, pp. 818–
836, 2007. [Online]. Available: https://doi.org/10.1109/tse.2007.70747

[40] P. Kapur, B. Cossette, and R. J. Walker, “Refactoring references for
library migration,” ACM SIGPLAN Notices, vol. 45, no. 10, pp. 726–738,
2010. [Online]. Available: https://doi.org/10.1145/1932682.1869518

[41] C. Teyton, J. Falleri, and X. Blanc, “Mining library migration graphs,”
in 19th Working Conference on Reverse Engineering, WCRE 2012,
Kingston, ON, Canada, October 15-18, 2012, 2012, pp. 289–298.
[Online]. Available: https://doi.org/10.1109/WCRE.2012.38

[42] ——, “Automatic discovery of function mappings between similar
libraries,” in 20th Working Conference on Reverse Engineering, WCRE
2013, Koblenz, Germany, October 14-17, 2013, 2013, pp. 192–201.
[Online]. Available: https://doi.org/10.1109/WCRE.2013.6671294

[43] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
API mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 195–
204. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806831

[44] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” vol. 20, no. 4, 2011, pp. 19:1–19:35. [Online].
Available: http://doi.acm.org/10.1145/2000799.2000805

[45] W. Wu, Y. Guéhéneuc, G. Antoniol, and M. Kim, “AURA: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume

11

1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 325–
334. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806848

[46] H. A. Nguyen, T. T. Nguyen, G. W. Jr., A. T. Nguyen,
M. Kim, and T. N. Nguyen, “A graph-based approach to API
usage adaptation,” in Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010,

Reno/Tahoe, Nevada, USA, 2010, pp. 302–321. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869486

[47] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan,
“Large-scale automated refactoring using clangmr,” in 2013 IEEE
International Conference on Software Maintenance (ICSM), 2013, pp.
548–551. [Online]. Available: https://doi.org/10.1109/icsm.2013.93

12

