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Abstract

This paper gives an overview of the Schema-Guided Dia-
logue State Tracking task of the 8th Dialogue System Tech-
nology Challenge. The goal of this task is to develop dia-
logue state tracking models suitable for large-scale virtual as-
sistants, with a focus on data-efficient joint modeling across
domains and zero-shot generalization to new APIs. This task
provided a new dataset consisting of over 16000 dialogues in
the training set spanning 16 domains to highlight these chal-
lenges, and a baseline model capable of zero-shot generaliza-
tion to new APIs. Twenty-five teams participated, developing
a range of neural network models, exceeding the performance
of the baseline model by a very high margin. The submissions
incorporated a variety of pre-trained encoders and data aug-
mentation techniques. This paper describes the task defini-
tion, dataset and evaluation methodology. We also summarize
the approach and results of the submitted systems to highlight
the overall trends in the state-of-the-art.

1 Introduction
Virtual assistants help users accomplish tasks including but
not limited to finding flights, booking restaurants, by pro-
viding a natural language interface to services and APIs on
the web. Large-scale assistants like Google Assistant, Ama-
zon Alexa, Apple Siri, Microsoft Cortana etc. need to sup-
port a large and constantly increasing number of services,
over a wide variety of domains. Consequently, recent work
has focused on scalable dialogue systems that can handle
tasks across multiple application domains. Data-driven deep
learning based approaches for multi-domain modeling have
shown promise, both for end-to-end and modular systems in-
volving dialogue state tracking and policy learning. This line
of work has been facilitated by the release of multi-domain
dialogue corpora such as MultiWOZ (Budzianowski et al.
2018), Taskmaster-1 (Byrne et al. 2019), M2M (Shah et al.
2018) and FRAMES (El Asri et al. 2017).

However, building large-scale assistants, as opposed to
dialogue systems managing a few APIs, poses a new set
of challenges. Apart from the handling a very large vari-
ety of domains, such systems need to support heterogeneous
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services or APIs with possibly overlapping functionality. It
should also offer an efficient way of supporting new APIs or
services, while requiring little or no additional training data.
Furthermore, to reduce maintenance workload and accom-
modate future growth, such assistants need to be robust to
changes in the API’s interface or addition of new slot val-
ues. Such changes shouldn’t require collection of additional
training data or retraining the model.

The Schema-Guided Dialogue State Tracking task at the
Eighth Dialogue System Technology Challenge explores
the aforementioned challenges in context of dialogue state
tracking. In a task-oriented dialogue, the dialogue state is a
summary of the entire conversation till the current turn. The
dialogue state is used to invoke APIs with appropriate pa-
rameters as specified by the user over the dialogue history.
It is also used by the assistant to generate the next actions to
continue the dialogue. DST, therefore, is a core component
of virtual assistants.

In this task, participants are required to develop innovative
approaches to multi-domain dialogue state tracking, with a
focus on data-efficient joint modeling across APIs and zero-
shot generalization to new APIs. The task is based on the
Schema-Guided Dialogue (SGD) dataset1, which, to the best
of our knowledge, is the largest publicly available corpus
of annotated task-oriented dialogues. With over 16000 dia-
logues in the training set spanning 26 APIs over 16 domains,
it exceeds the existing dialogue corpora in scale. SGD is the
first dataset to allow multiple APIs with overlapping func-
tionality within each domain. To adequately test generaliza-
tion in zero-shot settings, the evaluation sets contain unseen
services and domains. The dataset is designed to serve as an
effective testbed for intent prediction, slot filling, state track-
ing and language generation, among other tasks in large-
scale virtual assistants.

2 Related Work
Dialogue systems have constituted an active area of research
for the past few decades. The advent of commercial personal
assistants has provided further impetus to dialogue systems

1Available at github.com/google-research-datasets/dstc8-
schema-guided-dialogue



research. As virtual assistants incorporate diverse domains,
zero-shot modeling (Bapna et al. 2017; Xia et al. 2018;
Shah et al. 2019), domain adaptation and transfer learning
techniques (Yang, Salakhutdinov, and Cohen 2017; Rastogi,
Hakkani-Tür, and Heck 2017; Zhu and Yu 2018) have been
explored to support new domains in a data efficient manner.

Deep learning based approaches to DST have recently
gained popularity. Some of these approaches estimate the
dialogue state as a distribution over all possible slot-values
(Henderson, Thomson, and Young 2014; Wen et al. 2017)
or individually score all slot-value combinations (Mrkšić et
al. 2017; Zhong, Xiong, and Socher 2018). Such approaches
are, however, hard to scale to real-world virtual assistants,
where the set of possible values for certain slots may be
very large (date, time or restaurant name) and even dy-
namic (movie or event name). Other approaches utilizing
a dynamic vocabulary of slot values (Rastogi, Gupta, and
Hakkani-Tur 2018; Goel, Paul, and Hakkani-Tür 2019) still
do not allow zero-shot generalization to new services and
APIs (Wu et al. 2019), since they use schema elements i.e.
intents and slots as fixed class labels.

Although such systems are capable of parsing the dia-
logue semantics in terms of these fixed intent labels, they
lack understanding of the semantics of these labels. For in-
stance, for the user utterance “I want to buy tickets for a
movie.”, such models can predict BuyMovieTickets as the
correct intent based on patterns observed in the training data,
but don’t model either its association with the real world ac-
tion of buying movie tickets, or its similarity to the action
of buying concert or theatre tickets. Furthermore, because
of their dependence on a fixed schema, such models are not
robust to changes in the schema, and need to be retrained as
new slots or intents are added. Use of domain-specific pa-
rameters renders some approaches unsuitable for zero-shot
application.

3 Task
The primary task of this challenge is to develop multi-
domain models for DST suitable for the scale and complex-
ity of large scale virtual assistants. Supporting a wide variety
of APIs or services with possibly overlapping functionality
is an important requirement of such assistants. A common
approach to do this involves defining a large master schema
that lists all intents and slots supported by the assistant. Each
service either adopts this master schema for the represen-
tation of the underlying data, or provides logic to translate
between its own schema and the master schema.

The first approach involving adoption of the master
schema is not ideal if a service wishes to integrate with mul-
tiple assistants, since each of the assistants could have their
own master schema. The second approach involves defini-
tion of logic for translation between master schema and the
service’s schema, which increases the maintenance work-
load. Furthermore, it is difficult to develop a master schema
catering to all possible use cases.

Additionally, while there are many similar concepts
across services that can be jointly modeled, for example, the
similarities in logic for querying or specifying the number

Figure 1: Example schema for a digital wallet service.

of movie tickets, flight tickets or concert tickets, the mas-
ter schema approach does not facilitate joint modeling of
such concepts, unless an explicit mapping between them is
manually defined. To address these limitations, we propose
a schema-guided approach, which eliminates the need for a
master schema.

3.1 Schema-Guided Approach
Under the Schema-Guided approach, each service provides
a schema listing the supported slots and intents along with
their natural language descriptions (Figure 1 shows an ex-
ample). The dialogue annotations are guided by the schema
of the underlying service or API, as shown in Figure 2. In
this example, the departure and arrival cities are captured by
analogously functioning but differently named slots in both
schemas. Furthermore, values for the number stops and di-
rect only slots highlight idiosyncrasies between services in-
terpreting the same concept.

The natural language descriptions present in the schema
are used to obtain a semantic representation of intents and
slots. The assistant employs a single unified model con-
taining no domain or service specific parameters to make
predictions conditioned on these schema elements. Using a
single model facilitates representation and transfer of com-
mon knowledge across related concepts in different services.
Since the model utilizes semantic representation of schema
elements as input, it can interface with unseen services or
APIs on which it has not been trained. It is also robust to
changes like the addition of new intents or slots to the ser-
vice. In addition, the participants are allowed to use any ex-
ternal datasets or resources to bootstrap their models.

4 Dataset
As shown in Table 1, our Schema-Guided Dialogue (SGD)
dataset exceeds other datasets in most of the metrics at scale.
The especially larger number of domains, slots, and slot



Figure 2: Dialogue state tracking labels after each user utterance in a dialogue in the context of two different flight services.
Under the schema-guided approach, the annotations are conditioned on the schema (extreme left/right) of the underlying service.

values, and the presence of multiple services per domain,
are representative of these scale-related challenges. Further-
more, our evaluation sets contain many services, and con-
sequently slots, which are not present in the training set, to
help evaluate model performance on unseen services.

4.1 Data Representation
The dataset consists of conversations between a virtual as-
sistant and a user. Each conversation can span multiple ser-
vices across various domains. The dialogue is represented as
a sequence of turns, each containing a user or system utter-
ance. The annotations for each turn are grouped into frames,
where each frame corresponds to a single service. The anno-
tations for user turns include the active intent, the dialogue
state and slot spans for the different slots values mentioned
in the turn. For system turns, we have the system actions rep-
resenting the semantics of the system utterance. Each system
action is represented using a dialogue act with optional pa-
rameters.

In addition to the dialogues, for each service used in the
dataset, a normalized representation of the interface exposed
is provided as the schema. The schema contains details like
the name of the service, the list of tasks supported by the
service (intents) and the attributes of the entities used by the
service (slots). The schema also contains natural language
descriptions of the service, intents and slots which can be
used for developing models which can condition their pre-
dictions on the schema.

4.2 Comparison With Other Datasets
To reflect the constraints present in real-world services and
APIs, we impose a few constraints on the data. Our dataset
does not expose the set of all possible values for certain
slots. Having such a list is impractical for slots like date or
time because they have infinitely many possible values or
for slots like movie or song names, for which new values
are periodically added. Such slots are specifically identified
as non-categorical slots. In our evaluation sets, we ensured
the presence of a significant number of values which were
not previously seen in the training set to evaluate the perfor-
mance of models on unseen values. Some slots like gender,
number of people, etc. are classified as categorical and we

provide a list of all possible values for them. However, these
values are assumed to be not consistent across services. E.g.,
different services may use (‘male’, ‘female’), (‘M’, ‘F’) or
(‘he’, ‘she’) as possible values for gender slot.

Real-world services can only be invoked with certain slot
combinations: e.g. most restaurant reservation APIs do not
let the user search for restaurants by date without specifying
a location. Although this constraint has no implications on
the dialogue state tracking task, it restricts the possible con-
versational flows. Hence, to prevent flows not supported by
actual services, we restrict services to be called with a list of
slot combinations. The different service calls supported by a
service are listed as intents with each intent specifying a list
of required slots. The intent cannot be called without provid-
ing values for these required slots. Each intent also contains
a list of optional slots with default values which can be over-
ridden by the user.

In our dataset, we also have multiple services per domain
with overlapping functionality. The intents across these ser-
vices are similar but differ in terms of intent names, intent
arguments, slot names, etc. In some cases, there is no one
to one mapping between slot names (e.g., the num stops and
direct only slots in Figure 2). With an ever increasing num-
ber of services and service providers, we believe that having
multiple similar services per domain is much closer to the
situation faced by virtual assistants than having one unique
service per domain.

4.3 Data Collection And Dataset Analysis
Our data collection setup uses a dialogue simulator to gener-
ate dialogue outlines first and then paraphrase them to obtain
natural utterances. Using a dialogue simulator offers us mul-
tiple advantages. First, it ensures the coverage of a large vari-
ety of dialogue flows by filtering out similar flows in the sim-
ulation phase, thus creating a much diverse dataset. Second,
simulated dialogues do not require manual annotation, as
opposed to a Wizard-of-Oz setup (Kelley 1984), which is a
common approach utilized in other datasets (Budzianowski
et al. 2018). It has been shown that such datasets suffer from
substantial annotation errors (Eric et al. 2019). Thirdly, us-
ing a simulator greatly simplifies the data collection task and
instructions as only paraphrasing is needed to achieve a nat-



ural dialogue. This is particularly important for creating a
large dataset spanning multiple domains.

The 20 domains present across the train, dev and test
datasets are listed in Table 2, as are the details regarding
which domains are present in each of the datasets. We create
synthetic implementations of a total of 45 services or APIs
over these domains. Our simulator framework interacts with
these services to generate dialogue outlines, which are struc-
tured representations of dialogue semantics. We then use
a crowd-sourcing procedure to paraphrase these outlines to
natural language utterances. Our novel crowd-sourcing pro-
cedure preserves all annotations obtained from the simula-
tor and does not require any extra annotations after dialogue
collection. In this section, we describe these steps briefly and
then present analyses of the collected dataset.

All the services are implemented using a SQL engine.
Since entity attributes are often correlated, we decided not to
sample synthetic entities and instead relied on sampling enti-
ties from Freebase. The dialogue simulator interacts with the
services to generate valid dialogue outlines. The simulator
consists of two agents playing the roles of the user and the
system. Both agents interact with each other using a finite set
of actions specified through dialogue acts over a probabilis-
tic automaton designed to capture varied dialogue trajecto-
ries. At the start of the conversation, the user agent is seeded
with a scenario, which is a sequence of intents to be fulfilled.
The user agent generates dialogue acts to be output and com-
bines them with values retrieved from the service/API to cre-
ate the user actions. The system agent responds by follow-
ing a similar procedure but also ensures that the generated
flows are valid. We identified over 200 distinct scenarios for
the training set each consisting up to 5 intents from various
domains. Finally, the dialogue outlines generated are para-
phrased into a natural conversation by crowd workers. We
ensure that the annotations for the dialogue state and slots
generated by the simulator are preserved and hence need no
other annotation. We omit details for brevity: please refer to
Rastogi et al. (2019) for more details.

The entire dataset consists of over 16K dialogues span-
ning multiple domains. Overall statistics of the dataset and
comparison with other datasets can be seen in Table 1.
Figure 3a shows the details of the distribution of dialogue
lengths across single-domain and multi-domain dialogues.
The single-domain dialogues in our dataset contain an av-
erage of 15.3 turns, whereas the multi-domain ones contain
23 turns on average. Figure 3b shows the frequency of the
different dialogue acts contained in the dataset. The dataset
also contains a significant number of unseen domains/APIs
in the dev and test sets. 77% of the dialogue turns in the
test set and 45% of the turns in dev set contain at least one
service not present in the training set. This facilitates the de-
velopment of models which can generalize to new domains
with very few labelled examples.

5 Submissions
The submissions from 25 teams included a variety of
approaches and innovative solutions to specific problems
posed by this dataset. For the workshop, we received sub-
missions from 9 of these teams. In this section, we provide

(a) Histogram of lengths of training set dialogues.

(b) Distribution of dialogue acts in training set.

Figure 3: Detailed statistics of the SGD dataset.

a short summary of the approaches followed by these teams.
For effective generalization to unseen APIs, most teams used
pre-trained encoders to encode schema element descriptions.
Unless otherwise mentioned, a pre-trained BERT (Devlin et
al. 2019) encoder was used.

• Team 2 (Lo et al. 2020): This was the only paper not us-
ing a pre-trained encoder, thus providing another impor-
tant baseline. They rely on separate RNNs to encode ser-
vice, slot and intent descriptions, and a BiRNN to encode
dialogue history. Slot values are inferred using a TRADE-
like encoder-decoder setup with a 3-way slot status gate,
using the utterance encoding and schema element embed-
dings as context.

• Team 5 (Lei et al. 2020): They predict values for cat-
egorical slots using a softmax over all candidate values.
Non-categorical slot values are predicted by first predict-
ing the status of each slot and then using a BiLSTM-CRF
layer for BIO tagging (Ramshaw and Marcus 1995). They
also utilize a slot adoption tracker to predict if the values
proposed by the system are accepted by the user.

• Team 9 (Ma et al. 2020): This team submitted the win-
ning entry, beating the second-placed team by around 9%
in terms of joint goal accuracy. They use two separate
models for categorical and non-categorical slots, and treat
numerical categorical slots as non-categorical. They also
use the entire dialogue history as input. They perform
data augmentation by back translation between English
and Chinese, which seems to be one of the distinguishing
factors resulting in a much higher accuracy.

• Team 12 (Ruan et al. 2020): They use auxiliary binary
features to connect previous intent to current intent, slots
to dialogue history and source slots to target slots for



Metric ↓ Dataset→ DSTC2 WOZ2.0 FRAMES M2M MultiWOZ SGD
No. of domains 1 1 3 2 7 16
No. of dialogues 1,612 600 1,369 1,500 8,438 16,142
Total no. of turns 23,354 4,472 19,986 14,796 113,556 329,964

Avg. turns per dialogue 14.49 7.45 14.60 9.86 13.46 20.44
Avg. tokens per turn 8.54 11.24 12.60 8.24 13.13 9.75
Total unique tokens 986 2,142 12,043 1,008 23,689 30,352

No. of slots 8 4 61 13 24 214
No. of slot values 212 99 3,871 138 4,510 14,139

Table 1: Comparison of our SGD dataset to existing related datasets for task-oriented dialogue. Note that the numbers reported
are for the training portions for all datasets except FRAMES, where the numbers for the complete dataset are reported.

Domain #Intents #Dialogs Domain #Intents #Dialogs
Alarm2,3 2 (1) 324 Movies1,2,3 5 (3) 2339
Banks1,2 4 (2) 1021 Music1,2,3 6 (3) 1833
Buses1,2,3 6 (3) 3135 Payment3 2 (1) 222
Calendar1 3 (1) 1602 RentalCars1,2,3 6 (3) 2510
Events1,2,3 7 (3) 4519 Restaurants1,2,3 4 (2) 3218
Flights1,2,3 10 (4) 3644 RideSharing1,2,3 2 (2) 2223
Homes1,2,3 2 (1) 1273 Services1,2,3 8 (4) 2956
Hotels1,2,3 8 (4) 4992 Train3 2 (1) 350
Media1,2,3 6 (3) 1656 Travel1,2,3 1 (1) 2808
Messaging3 1 (1) 298 Weather1,2,3 1 (1) 1783

Table 2: The total number of intents (services in parentheses)
and dialogues for each domain across train1, dev2 and test3
sets. Superscript indicates the datasets in which dialogues
from the domain are present. Multi-domain dialogues con-
tribute to counts of each domain. The domain Services in-
cludes salons, dentists, doctors, etc.

slot transfer. Non-categorical slots are modeled similar
to question answering by adding a null token and pre-
dicting spans for slot values. In-domain and cross-domain
slot transfers are modeled as separate binary decisions by
passing the slot descriptions as additional inputs.

• Team 16 (Shi, Fang, and Knight 2020): They convert
the tracking task for both categorical and non-categorical
slots into a question answering task by feeding in the
schema and the previous turns as the context. Similar to
the baseline model, prediction is performed in two stages.
The status of each slot (active/inactive/dontcare) is pre-
dicted using a classifier, following which the value is pre-
dicted as a span in the context. The same network is used
for the different prediction tasks but the leading token and
separator tokens used are different. They observe large
gains by fine-tuning the schema embeddings and increas-
ing the number of past turns fed as context.

• Team 23 (Gulyaev et al. 2020): They use a large scale
multi-task model utilizing a single pass of a BERT based
model for all tasks. Embeddings are calculated for the in-
tents and slot value by using dialogue history, service and
slot descriptions, possible values for categorical slots and
are used for the various predictions.

• Anonymous Team A (Balaraman and Magnini 2020):
We could not identify which team submitted this model.
They use multi-head attention twice to obtain domain-

conditioned and slot-conditioned representations of the
dialogue history. These representations are concatenated
to obtain the full context which is used for the various
predictions.

• Anonymous Team B (Li, Xiong, and Cao 2020): We
could not identify which team submitted this model. They
use separate NLU systems for the sub tasks of predicting
intents, requested slots, slot status, categorical and non-
categorical slot values. They use a rule-based DST system
with a few additions resulting in significant improvement.
The improvements include adding dropout to intent pre-
diction to account for train-test mismatch, using the entire
predicted slot status distribution and separate binary pre-
dictions for slot transfer.

• Anonymous Team C (Zheng, Salvi, and Chan 2020):
They use a two-stage model with a candidate tracker for
NLU and a candidate classifier to update the dialogue
state. A slot tagger identifies slot values, which are used
to update the candidate tracker. The candidate classifier
uses the utterances and slot/intent descriptions to predict
the final dialogue state. They also use an additional loss
to penalize incorrect prediction on which slots appear in
the current turn.

6 Evaluation
We consider the following metrics for automatic evaluation
of different submissions. Joint goal accuracy has been used
as the primary metric to rank the submissions.

1. Active Intent Accuracy: The fraction of user turns for
which the active intent has been correctly predicted.

2. Requested Slot F1: The macro-averaged F1 score for
requested slots over all eligible turns. Turns with no re-
quested slots in ground truth and predictions are skipped.

3. Average Goal Accuracy: For each turn, we predict a sin-
gle value for each slot present in the dialogue state. This
is the average accuracy of predicting the value of a slot
correctly.

4. Joint Goal Accuracy: This is the average accuracy of
predicting all slot assignments for a given service in a turn
correctly.
In order to better reflect model performance in our task’s

specific setting, we introduce changes in the definitions of
evaluation metrics from prior work. These are listed below:



Team name
All services Seen services Unseen services

Joint GA Avg GA Intent Acc Req Slot F1 Joint GA Avg GA Intent Acc Req Slot F1 Joint GA Avg GA Intent Acc Req Slot F1
Team 9* 0.8653 0.9697 0.9482 0.9847 0.9241 0.9799 0.9571 0.9936 0.8456 0.9662 0.9452 0.9817

Team 14 0.7726 0.9217 0.9674 0.9932 0.9005 0.9606 0.9578 0.9963 0.7299 0.9081 0.9706 0.9921

Team 12* 0.7375 0.9199 0.9234 0.9948 0.8795 0.9566 0.9581 0.9965 0.6901 0.9071 0.9118 0.9943
Team 8 0.7344 0.9251 N.A. 0.8713 0.9106 0.9708 N.A. 0.8475 0.6757 0.9093 N.A. 0.8793

Team 5* 0.7303 0.9249 0.9426 0.9814 0.8936 0.9662 0.9594 0.9920 0.6758 0.9105 0.9370 0.9779

Team 10 0.6946 0.9105 0.9509 0.8713 0.9203 0.9780 0.9560 0.8475 0.6193 0.8871 0.9492 0.8793

Team 13 0.6616 0.9037 0.9368 0.9854 0.8584 0.9527 0.9534 0.9960 0.5960 0.8867 0.9312 0.9819

Team 7 0.6316 0.8595 0.9231 0.9797 0.8410 0.9356 0.9449 0.9951 0.5617 0.8331 0.9158 0.9746

Team 6 0.6102 0.8430 0.9041 0.8713 0.6764 0.8397 0.9483 0.8475 0.5881 0.8442 0.8893 0.8793

Team 18 0.6099 0.9049 0.9423 0.9723 0.8223 0.9601 0.9540 0.9876 0.5390 0.8858 0.9384 0.9672

Team 21 0.5475 0.8670 0.9344 0.8713 0.7514 0.9190 0.9418 0.8475 0.4795 0.8489 0.9319 0.8793

Team 16* 0.5410 0.8027 0.9137 0.8713 0.5289 0.7515 0.9561 0.8475 0.5450 0.8205 0.8995 0.8793

Team 3 0.5035 0.7853 0.8789 0.9581 0.6172 0.8174 0.9565 0.9902 0.4656 0.7741 0.8530 0.9474

Team 25 0.4801 0.7706 0.8765 0.9862 0.5412 0.7659 0.9379 0.9960 0.4597 0.7722 0.8560 0.9829

Team 20 0.4774 0.7148 0.8400 0.9453 0.7847 0.9209 0.9416 0.9840 0.3748 0.6432 0.8061 0.9324

Team 23* 0.4647 0.7500 0.7474 0.9703 0.5275 0.7391 0.8710 0.9710 0.4438 0.7538 0.7061 0.9700

Team 11 0.4212 0.7056 0.9070 0.9663 0.6375 0.8226 0.9397 0.9964 0.3490 0.6649 0.8961 0.9563

Team 15 0.3907 0.6874 0.9379 0.9799 0.4965 0.7357 0.9516 0.9970 0.3554 0.6706 0.9333 0.9742

Team 2* 0.3647 0.7438 0.9243 0.9764 0.7363 0.9132 0.9492 0.9925 0.2406 0.6850 0.9160 0.9710

Team 22 0.3259 0.6714 0.9077 0.9525 0.6772 0.8966 0.7855 0.9504 0.2285 0.6082 0.9416 0.9530

Team 24 0.3198 0.6347 0.8764 0.9729 0.7077 0.8888 0.9413 0.9846 0.1903 0.5464 0.8548 0.9690

Team 19 0.3052 0.6302 0.9240 0.9668 0.5140 0.7476 0.9607 0.9953 0.2355 0.5894 0.9118 0.9572

Team 17 0.2525 0.5721 0.8875 0.9680 0.4179 0.6858 0.9433 0.9952 0.1973 0.5326 0.8689 0.9590

Team 1 0.2511 0.5609 0.8406 0.9648 0.4255 0.6825 0.9164 0.9949 0.1929 0.5187 0.8153 0.9547

Team 4 0.2354 0.5365 0.8841 0.9445 0.4004 0.6333 0.9228 0.9523 0.1803 0.5029 0.8712 0.9419

Baseline 0.2537 0.5605 0.9064 0.9651 0.4125 0.6778 0.9506 0.9955 0.2000 0.5192 0.8915 0.9547

Table 3: The best submission from each team, ordered by the joint goal accuracy on the test set. Teams marked with * submitted
their papers to the workshop. We could not identify the teams for three of the submitted papers.

• Joint goal accuracy calculation: Traditionally, joint goal
accuracy has been defined as the accuracy of predicting
the dialogue state for all domains correctly. This is not
practical in our setup, as the large number of services
would result in near zero joint goal accuracy if the tra-
ditional definition is used. Furthermore, an incorrect di-
alogue state prediction for a service in the beginning of
a dialogue degrades the joint goal accuracy for all future
turns, even if the predictions for all other services are cor-
rect. Hence, joint goal accuracy calculated this way may
not provide as much insight into the performance on dif-
ferent services. To address these concerns, only the ser-
vices which are active or pertinent in a turn are included
in the dialogue state. Thus, a service ceases to be a part of
the dialogue state once its intent has been fulfilled.

• Fuzzy matching for non-categorical slot values: The
presence of non-categorical slots is another distinguishing
feature of our dataset. These slots don’t have a predefined
vocabulary, and their values are predicted as a substring
or span of the past user or system utterances. Drawing in-
spiration from the metrics used for slot tagging in spoken
language understanding, we use a fuzzy matching score
for non-categorical slots to reward partial matches with

the ground truth.
• Average goal accuracy: To calculate average goal accu-

racy, we do not take into account instances when both
the ground truth and the predicted values for a slot are
empty. Since for a given slot, a large number of utter-
ances have an empty assignment, models can achieve a
relatively high average goal accuracy just by predicting
an empty assignment for each slot unless specifically ex-
cluded as in our evaluation.

7 Results
The test set contains a total of 21 services, among which 6
services are also present in the training set (seen services),
whereas the remaining 15 are not present in the training set
(unseen services). Table 3 shows the evaluation metrics for
the different submissions obtained on the test set. It also lists
the performance of different submissions on seen and unseen
services, helping evaluate the effectiveness in zero-shot set-
tings. Team 9 achieved a very high joint goal accuracy of
86.53%, around 9% higher than the second-placed team. We
observed the following trends across submissions:

• For unseen services, performance on categorical slots is
comparable to that on non-categorical slots. On the other



hand, for seen services, the performance on categorical
slots is better. This could be because there is less signal
to differentiate between the different possible values for a
categorical slot when they have not been observed in the
training set.

• The winning team’s performance on seen services is sim-
ilar to that of the other top teams. However, the winning
team has a considerable edge on unseen services, outper-
forming the second team by around 12% in terms of joint
goal accuracy. This margin was observed across both cat-
egorical and non-categorical slots.

• Among unseen services, when looking at services belong-
ing to unseen domains, the winning team was ahead of the
other teams by at least 15%. The performance on categor-
ical slots for unseen domains was about the same as that
for seen services and domains. For other teams, there was
at least a 20% drop in accuracy of categorical slots in un-
seen domains vs seen domains and services.

• The joint goal accuracy of most of the models was worse
by 15 percentage points on an average on the test set as
compared to the dev set. This could be because the test set
contains a much higher proportion of turns with at least
one unseen services as compared to the dev set (77% and
45% respectively).

8 Summary

In this paper, we summarized the Schema-Guided Dia-
logue State Tracking task conducted at the Eighth Dia-
logue System Technology Challenge. This task challenged
participants to develop dialogue state tracking models for
large scale virtual assistants, with particular emphasis on
joint modeling across different domains and APIs for data-
efficiency and zero-shot generalization to new/unseen APIs.
In order to encourage the development of such models, we
constructed a new dataset spanning 16 domains (and 4 new
domains in dev and test sets), defining multiple APIs with
overlapping functionality for each of these domains. We
advocated the use of schema-guided approach to building
large-scale assistants, facilitating data-efficient joint model-
ing across domains while reducing maintenance workload.

The Schema-Guided Dialogue dataset released as part of
this task is the first to highlight many of the aforementioned
challenges. As a result, this task led to the development of
several models utilizing the schema-guided approach for di-
alogue state tracking. The models extensively utilized pre-
trained encoders like BERT (Devlin et al. 2019), XLNet
(Yang et al. 2019) etc. and employed data augmentation
techniques to achieve effective zero-shot generalization to
new APIs. The proposed schema-guided approach is fairly
general and can be used to develop other dialogue system
components such as language understanding, policy and re-
sponse generation. We plan to explore them in future works.
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