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Proposals for experiments in quantum chemistry on quantum computers leverage the ability to target a
subset of degrees of freedom containing the essential quantum behavior, sometimes called the active space.
This approximation allows one to treat more difficult problems using fewer qubits and lower gate depths
than would otherwise be possible. However, while this approximation captures many important qualitative
features, it may leave the results wanting in terms of absolute accuracy (basis error) of the representation. In
traditional approaches, increasing this accuracy requires increasing the number of qubits and an appropriate
increase in circuit depth as well. Here we explore two techniques requiring no additional qubits or circuit
depth that are able to remove much of this approximation in favor of additional measurements. The
techniques are constructed and analyzed theoretically, and some numerical proof-of-concept calculations
are shown. As an example, we show how to achieve the accuracy of a 20-qubit representation using only
four qubits and a modest number of additional measurements for a hydrogen molecule. We close with an
outlook on the impact such techniques may have on both near-term and fault-tolerant quantum simulations.
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I. INTRODUCTION

Quantum computers promise to make a dramatic impact
on a number of fields including optimization and materials
simulation. Since the initial proposal by Feynman to
simulate quantum systems via quantum systems [1], there
has been a wealth of developments studying these appli-
cations both theoretically and experimentally. One particu-
lar application of note is the simulation of chemical and
material systems by quantum computers, as it represents a
natural application of this idea in practice. The combination
of the practical potential for quantum chemistry as well as
its low overhead have made it a target for the first near-term
quantum computers.
The progress in quantum chemistry on quantum com-

puters has been extremely rapid over the last few years.
Starting from the original proposal to use quantum phase
estimation for chemical problems [2], the precise costs of
these algorithms and methods to reduce these costs by

orders of magnitude have now been developed in detail
[3–15]. Precise gate counts are now known for hard
chemical systems in implementations on the earliest
fault-tolerant computers under a realistic model of error
correction using the surface code [16–20]. Methods based
on quantum phase estimation, however, are believed by
some to require quantum error correction, which places
their experimental implementation some time beyond the
current noisy intermediate-scale quantum (NISQ) devices.
As NISQ devices progress to a level of development

capable of doing computations a classical computer cannot,
or quantum supremacy [21], the question arises if one
can do a practical application such as chemistry on such a
near-term quantum computer. Prime candidates for this
possibility have been variational algorithms, such as the
variational quantum eigensolver (VQE) [22,23] or the
quantum approximation optimization algorithm [24].
These methods exhibit a natural adaptation to device
parameters as well as intrinsic robustness to systematic
errors that make them attractive candidates. Since their
inception, they have been extended to treat excited states
[25–27] and different problem areas [28,29] and have been
demonstrated on numerous experimental architectures
[22,26,30–33].
While hardware and theoretical developments have been

rapid, quantum resources are expected to remain costly for
some time. As a result, proposals for doing quantum
computing for chemical problems have focused on
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isolating the essential strongly correlated component of a
physical system for simulation on a quantum computer. A
simple division of the system into this select subsystem is
often called an active space within chemistry, and more
detailed treatments may incorporate it as an impurity model
as well. Despite the ability of these methods to treat
qualitative phenomena that would not otherwise be acces-
sible, this division introduces quantitative approximations
that can be unacceptable when quantitative accuracy is
demanded. Previously, when one wanted to lift this
approximation, the consequence was both an increased
number of qubits and gate complexity, ruling out compat-
ibility with a NISQ device, and unnecessary qubit overhead
in fault-tolerant applications.
Here, we discuss two methods that use no additional

qubits or gate complexity to lift the active-space approxi-
mation in a systematic way. These methods are expected to
impact both near-term applications as well as fault-tolerant
applications where the number of qubits may remain a
limitation in reaching the desired accuracy. One of these
procedures is a novel way to leverage the quantum sub-
space expansions [25], also known to mitigate errors [34]
and provide excited states in experiments [31], that relies
only on additional measurements. The other involves
orbital relaxations, a common and well-known procedure
in classical electronic structure, to remove the active-space
approximation and reduce the circuit depth for some classes
of VQE circuits. We cost out these methods, provide
theoretical justification, and show how these methods work
in practice with simple numerical simulations. A frame-
work to develop cost-effective approximations is discussed
that makes use of manipulation of marginals [35], and we
conclude with an outlook on the impact for near-term
quantum simulations.

II. BACKGROUND AND DEFINITIONS

We begin by setting up the problem, establishing
notation, and reviewing the quantum subspace expansion
method [25] as it was originally devised. The problem of
electronic structure in quantum chemistry is typically cast
as the problem of determining the electronic ground state in
the field of fixed nuclei, or the Born-Oppenheimer approxi-
mation [36]. From here, one discretizes space, where the
accuracy of this discretization determines the ultimate
accuracy one can achieve. The abstract blocks one uses
to divide space are called basis functions, and a number of
canonical choices are known such as linear combinations of
atomic orbitals and plane waves. Once the basis is chosen,
the electronic structure Hamiltonian may be written in its
canonical form as

H ¼
X

ij

hija
†
i aj þ

1

2

X

ijkl

hijkla
†
i a

†
jakal; ð1Þ

where each index corresponds to one of these basis
functions, the hij and hijkl are standard integrals over
the involved basis functions, and the ladder operators
satisfy the canonical fermionic anticommutation relations
fa†i ; ajg ¼ δij, fai; ajg ¼ fa†i ; a†jg ¼ 0. As we discuss
above, the number of basis functions used is tied to the
ultimate accuracy one can achieve for the problem; how-
ever, using too many basis functions may make the problem
impractical or be a waste of resources when more clever
treatments may be used. A method that was first widely
used in traditional quantum chemistry and that has been
widely adopted by the quantum-computing community is
the active-space approximation.
The physical intuition behind the active-space approxi-

mation is that the space may be divided into a portion which
exhibits strong correlations or entanglement, the active
space, and a portion that while important, exhibits only
low-rank contributions that are extremely well treated
perturbatively, the virtual space. This methodology has
been proven out numerous times in the classical literature
by methods such as multireference configuration interac-
tion and perturbation theory [37,38]. However, the size of
the essential quantum component or active space remains
limited on a classical computer, and to date the contribu-
tions of virtuals have remained absent on a quantum
computer. We aim to show how one can regain virtuals
on top of quantum active spaces without the need for
additional qubits or gate complexity.
As depicted in Fig. 1, in typical chemistry calculations

on quantum computers, the set of basis functions is divided

FIG. 1. Schematic virtual quantum subspace expansion to
increase accuracy without additional qubits. The method sepa-
rates the orbitals of a fermionic system into their core, active, and
virtual components. The quantum device solves the active-space
problem, and additional quantum measurements are taken within
this space. These additional measurements are combined with
classical postprocessing from data on the virtual space to correct
the solutions using no additional qubits or circuit depth. The
resulting corrected wave function(s) are stored in a mixed
quantum-classical representation that may be used to derive
any desired properties of these wave functions.
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into three sets, which we denote C, A, and V for core,
active, and virtual. The core orbitals are assumed to be
doubly occupied, and their contributions are integrated out
to an effective field felt by the active space and virtual
space. The virtual orbitals are ignored, and the problem is
solved exactly within the dressed active space, A.
Our approach utilizes some of the machinery of an

approach designed originally to provide excited states and
error mitigation within the context of VQE, which utilizes
quantum subspace expansions (QSEs) [25]. These tech-
niques are also applicable in fault-tolerant approaches and
leverage the ability to expand and manipulate representa-
tions of operators within a subspace using measurements
and classical computation without knowing the details of
the states themselves. In this framework, one assumes the
ability to prepare a wave function within the active space
that we denote as jΨrefi. We then choose a set of expansion
operators fOig which act on this reference in combination
with another operator, such as the Hamiltonian, to form a
representation of that operator in the basis given by
fOijΨrefig. As this basis may be nonorthogonal, we also
measure the overlap or metric matrix within this basis in
order to ensure the problem is well defined. The matrices
may be formed through additional measurements only and
have matrix elements given by

Hij ¼ hΨref jO†
i HOjjΨrefi; ð2Þ

Sij ¼ hΨref jO†
i OjjΨrefi: ð3Þ

With these matrices, one then uses canonical diagonaliza-
tion to remove the approximately 0 eigenvalues of S and
solve the generalized eigenvalue problem in the well-
conditioned subspace given by

HC ¼ SCE; ð4Þ

where C is the matrix of eigenvectors in the basis
fOijΨrefig, and E is the diagonal matrix of eigenvalues.
This approach can both improve the accuracy of the ground
state and provide approximations to excited states. In the
original work [25], it was suggested to use Oi approxi-
mating fermionic excitations of the form

fa†paqjp; q ∈ Ag; ð5Þ

which when considered with the Hamiltonian composed of
only up to two-particle operators, means that the matrix
elements can be evaluated as sums over subsets of the four-
electron reduced density matrix (RDM) where the sum
weights are determined by integrals in the Hamiltonian.
The four-electron density matrix in the active space is

ð4ÞDtuvw
Apqrs ¼ hΨref ja†wa†va†ua†t apaqarasjΨrefi: ð6Þ

Each of these elements can be evaluated on a quantum
computer by repeated preparation of jΨrefi and measure-
ment of the Pauli operators corresponding to the trans-
formation of this matrix element by a Jordan-Wigner or
equivalent transformation. To perform the procedure
exactly, the number of terms one must measure scales as
N8

A where NA is the number of active-space orbitals.

III. VIRTUAL QUANTUM SUBSPACE EXPANSION

The original formulation of the QSE remained in the
active space and did not include contributions from the
virtual orbitals. Here we show how simple classical post-
processing and measurements can be used to reintroduce
contributions from the virtuals in a systematic way to
approach quantitative accuracy for the chemical problem.
Consider a reference function which is constructed only

on the original active space A. We now introduce a set of
expansion operators

fa†i ap; a†μaqa†νarji ∈ A ∪ V;p; q; r ∈ A; μ; ν ∈ Vg ð7Þ

that act, in principle, on additional qubits that would define
the virtual space. However, by definition, the referencewave
function has no components in the virtual space, and hence,
the contraction over the virtual space can be done using only
efficient classical computation on the Hamiltonian in addi-
tion to the information from the active-space RDM. The only
information that is required is the integrals over the full space,
which are classical inputs to the problem, as well as the
appropriate density matrix elements.
We note that the quantum advantage over classical

multireference configuration interaction (MRCI) methods
here is that the reference wave function may contain an
exponential number of determinants, which gives classical
MRCI methods exponential scaling in the size of the active
space. In contrast, our method scales only polynomially in
the size of the active space, and if one measures the
appropriate RDM of the active space, the quantum-
computing resources required are independent of the size
of the virtual space. For both classical MRCI and the
method proposed here, the classical computation required
scales polynomially in the size of the virtual space. Thus,
our method allows for very large basis sets to be treated on
a small quantum computer.
In this set of operators, we restrict ourselves to single and

double excitations from the references within the active
space and virtuals. The single and double excitations have
empirically been shown to be the dominant contributions in
classical multireference methods. Our method is general
enough to go to higher-order approximations; however,
with each higher order of excitation, a larger reduced
density matrix must be measured. If we denote single and
doubles as excitation level 2, at excitation level k, one must
measure the (2þ k) RDM, which is expected to have a cost
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that scales as N2ð2þkÞ
A in the number of terms that must be

measured. When the excitation level k matches the number
of electrons, the method is formally exact.
To illustrate how we eliminate the virtual space, we take

the highest-order matrix element as an example. The relevant
quantity to measure for the case where both expansion
operators in Eq. (2) are double excitations is

M ¼ hΨref jaξa†saηa†ra†i a†jakala†μapa†νaqjΨrefi: ð8Þ
Using Wick’s theorem where greek indices denote virtual
orbitals, we contract the operators on the virtual space,

M ¼ Δξη;μνha†sa†ra†i a†jakalapaqi þ
X

x¼i;j

X

y¼l;k

× ð−1ÞδxjþδykðδξxΔyη;μν − δηxΔyξ;μνÞha†sa†ra†x̄aȳapaqi
þ Δξη;ijΔkl;μνha†sa†rapaqi; ð9Þ

whereΔξη;μν ¼ δξνδημ − δξμδην, x̄ (ȳ)means x (y) changing to
the other value in the sum (e.g., ī ¼ j for x), and h� � �i denotes
the expectation values with respect to the reference state
jΨrefi in the active space. The reduction in Eq. (9) shows that
the expectation valueM can be derived by knowing the four-
electron RDMof the reference state jΨrefi in the active space.
Similar but simpler results hold by replacing one or both
double-excitation operators by single-excitation operators.
Hence, the inclusion of virtual orbitals amounts to simple
classical postprocessing, and no additional qubits after the
appropriate measurements are performed.

IV. CUMULANT AND RESTRICTED
ACTIVE-SPACE APPROXIMATIONS

One may introduce a number of approximations to make
the construction more efficient. The simplest approxima-
tion is the division of the active space into a part which is
excited into the virtuals Av and a part of the active space
which will be treated as correlated core orbitals Ac. This
partitioning reduces the scaling in the number of measure-
ments to the cost of originally estimating the energy plus
the size of the virtuals active space Av, N8

Av, which for
small sizes can dramatically reduce the cost.
The second class of approximations involves estimating

the matrix elements of the reduced density matrix via
cumulant approximations. For example, one can form a
series of approximations to the four-electron RDM using
products of lower RDMs and perturbative corrections. The
4-RDM may be expressed in terms of cumulants as may be
denoted by

ð4ÞD ¼ ð4ÞΔþ 4ð3ÞΔ ∧ ð1ÞΔ

þ 3ð2ÞΔ ∧ ð2ÞΔþ 6ð2ÞΔ ∧ ð1ÞΔ ∧ ð1ÞΔ

þ ð1ÞΔ ∧ ð1ÞΔ ∧ ð1ÞΔ ∧ ð1ÞΔ; ð10Þ
where ðlÞΔ is the l-particle cumulant expressing irreducible
l-body correlations in the density matrix, and ∧ is the

Grassmann wedge product. The simplest form of approxi-
mation is given by setting ðlÞΔ ¼ 0 for l > 2 which allows
one to express the 4-RDM with only measurements from
the original 2-RDM. This truncation greatly reduces the
number of terms to measure back to N4

A, but it introduces
some considerable approximation to the energetic values.
Much work has been done on improving these approx-
imations as well. An alternative scheme we do not exploit
here may stochastically sample the elements to measure
with hopefully increasing degrees of accuracy as time
proceeds within a calculation.

V. NUMERICAL EXPERIMENTS

In this section, we show on a prototype system the
accuracy gains one may expect from using this method on a
real system. We assess the performance of the procedure on
a simple molecule and examine the ground-state energy
as a function of the number of additional virtual orbitals
considered in the system. The first system we look at is H2

in a variety of different basis sets. These numerics are
enabled by the OpenFermion software package for doing
quantum chemistry on a quantum computer [39] in con-
junction with the Psi4 [40] open source package for
electronic structure. The orbitals are obtained from a
Hartree-Fock calculation, and the reference function jΨrefi
is the exact solution within the active space consisting of

FIG. 2. Ground-state energy as a function of the internuclear
separation for the H2 molecule at different levels of theory. The
notation ðn ¼ nqÞ after each line indicates that nq qubits are
needed for that representation. The use of the virtual quantum
subspace expansion (VQSE) technique using only four qubits
attains the same accuracy in this case as a representation using
20 qubits, with an error much smaller than chemical accuracy
(approximately 10−5Eh). The minimal basis here denotes a
STO-3G calculation and 6-31G is an intermediate level of
accuracy between the minimal basis and a double-zeta basis
cc-pVDZ (here, VDZ).
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the single occupied orbital and the lowest-energy virtual
orbital. Only single and double excitations from the active
space to the additional virtual orbitals are included in these
calculations. A correlation-consistent basis set of double-
zeta quality (cc-pVDZ) [41] is used, as well as the 6-31G
basis set [42] for reference. We compare with the exact
results with both basis sets.
The results of the numerical simulations are shown

in Fig. 2, and the energy differences with respect to
exact/cc-pVDZ are shown in Fig. 3. We see that the
addition of virtuals to an active space at a higher level
of theory quickly surpasses what is possible at a lower level
of theory, using no additional qubits. In fact, using only
four qubits, which is the same as a typical minimal basis for
H2, the VQSE procedure attains an accuracy commensurate
with the exact solution on a basis that would require
20 qubits. The curves smoothly improve as a function of
the number of virtuals included and show excellent
accuracy across the range of calculations.

VI. FULL-SPACE ORBITAL RELAXATION

A common classical electronic structure method to
improve active-space calculations is to allow for orbitals
to relax in the presence of the newly optimized active-space
wave function. Variants of this idea fall into the family of
methods known as the multiconfigurational self-consistent-
field (MCSCF) method. These algorithms work by iter-
atively solving the active-space Schrödinger equation and
then finding a single-particle rotation on the full space that

minimizes the energy. Integrating a quantum resource as an
active-space solver in the MCSCF framework has been
previously suggested for use with the phase estimation
approach to quantum simulation [16] and also motivated
other embedding methods in the quantum-computing con-
text [43]. Here we demonstrate how a single step of a
MCSCF orbital relaxation can be used to further improve
energies with a procedure that is compatible with the
limitations of NISQ simulations and also readily applied
to fault-tolerant implementations where qubit limitations
are a concern. This technique requires measuring only the
two-electron reduced density matrix with no additional
quantum resources.
Given a 2-RDM from the ground state of the dressed

active-space Hamiltonian, we seek to minimize the energy
of the full-space Hamiltonian Eq. (1) through one-body
rotations U on the full space. Because of Thouless’s
theorem, the one-body rotations can be efficiently imple-
mented as a rotation of the underlying basis [44]. This can
be formulated as the following nonlinear optimization
problem:

min
U

E ¼
X

ij

ui;i0u�j;j0hijha†i ajiA

þ
X

ijkl

ui;i0uj;j0u�k;k0u
�
l;l0hijklha†i a†jakaliA

subject to

Ua†jU
† ¼

X

j0
uj;j0a

†
j0 ; U ¼ eX;

X ¼
X

p;q

tp;qa
†
paq; tp;q ¼ −t�q;p;

U†U ¼ I; ð11Þ

where ha†i a†jakaliA and ha†i ajiA are the 2- and 1-RDM of
the ground-state active-space wave function.
In the classical literature, it is common to use the second-

order approximation of u,

u ¼ et ≈ I þ tþ 1

2
t2 ð12Þ

to minimize energy in Newton-Raphson style [45–48].
Awell-known alternative to parametrizing the unitary as

an exponentiated anti-Hermitian matrix is the use of Givens
rotations [49,50]. This parametrization uses a set of angles
fθg associated with the set of nonredundant orbital rotation
generators. For 2-RDMs obtained from an exact diagonal-
ization of the active-space Hamiltonian, the only non-
redundant parameters are one-body generators associated
with pairs of orbitals involving rotations from the active
space to the virtual space and active space to the core space.
Therefore, the unitary in Eq. (11) can be expressed as a
product of Givens matrices

FIG. 3. Ground-state energy error with respect to the exact
solution in a cc-pVDZ (abbreviated here as VDZ) as a function of
internuclear separation for the H2 molecule for different levels of
theory. The notation ðn ¼ nqÞ after each line indicates that nq
qubits are needed for that representation. We see that the VQSE
technique using only four qubits attains the same accuracy as an
exact solution in a 20-qubit basis, up to an error of 10−5Eh which
is far below chemical accuracy.
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U ¼
Y

i∈active

Y

b∈core;virtual
Gi;bðθi;bÞ: ð13Þ

The optimal rotation of a single angle with respect to
the input 2-RDM, one-, and two-electron integrals has been
derived [50] along with a sweep procedure to find an
energy minimizing U. This algorithm was used for devel-
oping 2-RDM MCSCF methods [51] and the first orbital-
optimized coupled-cluster doubles methods [52].
One consideration in configuration-interaction-type

approaches is the lack of a property known as size
extensivity, which is related to the proper scaling of energy
as a function of system size [36]. While coupled-cluster
approaches are designed to avoid this flaw, their extra
complexity is often cumbersome in multireference
schemes, and for modest system sizes, the effects may
not be observable. Indeed, many modern approaches used
in traditional computation, such as density matrix renorm-
alization group, tensor network methods, or select con-
figuration interaction approaches are not strictly size
extensive, but so long as the accuracy attained is sufficient,
this is not a concern. We note that for our orbital-relaxation
technique, if the active-space solution is exact, size exten-
sivity is satisfied exactly due to the exponential form of the
ansatz correction. A related consideration worthy of further
investigation is that of the size consistency of the methods
used [36] when applied on quantum devices; however, we
do not consider this in more detail here. While the
configuration interaction form of VQSE is not strictly size
extensive, for the types of systems likely to be investigated
on quantum computers, this is not expected to be a concern.
One can iterate between solving the active-space

Schrödinger equation and full-space one-body rotations,
similar to a general MCSCF routine, or perform a single-
orbital-relaxation procedure as postprocessing. Because of
the variational principle, relaxing the orbitals in a single
step as postprocessing is guaranteed to reduced the energy.
Furthermore, if the ground state of the active space is not
achieved due to an approximate wave-function ansatz,
additional one-body orbital rotations between orbital pairs
inside the active space can be included in the relaxation.
Including these rotations would correspond to an additional
linear depth circuit that would have been executed perfectly
on the quantum computer [53]. Any circuit that contains
one-body rotations at the end can be made shorter with
classical postprocessing by instead rotating the operator to
be measured.
To demonstrate the utility of the orbital-relaxation step,

we examine the energy improvement upon orbital relax-
ation for molecular hydrogen computed in the 6-31G basis
set. We select the lowest-energy Hartree-Fock orbitals as
the active space and perform orbital optimization with the
SciPy COBYLA optimizer. Though this is not guaranteed to
find the lowest-energy orbital rotations, it is sufficient for
validating the performance one can achieve through orbital

relaxation as postprocessing. In Fig. 4, we plot the energy
of molecular hydrogen and observe a significant recovery
of energy when performing a four-qubit active-space
calculation with orbital relaxation on the full eight-qubit
space. The six-qubit active-space calculation is included to
demonstrate a smooth interpolation of this method to exact
diagonalization in the full eight-qubit space. Figure 5
shows the energy difference relative to an eight-qubit exact
diagonalization, revealing we reach within 5 × 10−5 Eh of
the exact solution with half the number of qubits.
As an additional demonstration of our technique, we

consider the removal of a hydrogen atom from a water
molecule in a cc-pVTZ basis in Fig. 6. This molecule has
been considered in the context of quantum computation
before but only in minimal basis sets. We begin with same
the number of qubits as the minimal basis (n ¼ 14) as an
active space and attain a solution that is improved beyond
the minimal basis set by over a hartree, which is several
orders of magnitude larger than chemical accuracy. Using
the original basis set without this methodology requires a
staggering 72 qubits, which is a demonstration of why
the active-space method is so important. Using the OO
approach, we go beyond the minimal basis accuracy
without requiring additional quantum resources and match
the accuracy of a solution with six additional qubits in the
active space in the bonding region. Moreover, the inclusion
of orbital relaxation improves the description of the process
considerably in the dissociation region, which has a critical
influence on the estimate of the dissociation energy. Hence,
our method improves the accuracy while still requiring

FIG. 4. Ground-state energy as a function of internuclear
separation for the H2 molecule at different levels of theory.
The notation ðn ¼ nqÞ after each line indicates that nq qubits are
needed for that representation. The orbital optimization post-
processing is labeled by “OO.” We compare active-space calcu-
lations on the full space with the 6-31G basis set (requiring eight
qubits) to active-space calculations on the same model involving
only four and six qubits.
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fewer qubits. We note that this curve is not yet fully
converged with respect to the basis set limit, but our
technique can be applied at larger sizes as well.

VII. DISCUSSION

As devices progress, there will continue to be a push to
demonstrate their power for interesting chemical problems.
As the number of qubits and coherence time are likely to
remain limited, one expects that approaches such as active-
space divisions of the orbitals will continue to play a
dominant role. While powerful, these techniques introduce
a level of approximation that may prevent us from reaching
the desired accuracy for problems of interest without
additional qubits or gate depth.
Here we introduce a method for going beyond the active-

space approximation with no additional qubits or gate
complexity. We show how this method may be constructed
and demonstrate its power for simple test systems. While
the number of measurements is increased, there are a
number of promising approximation schemes that may
allow one to avoid this additional overhead in an intelligent
way. Moreover, these methods maintain an exponential
advantage over their classical counterparts in the treatment
of the active space and active-space reference. We believe
methods such as these will be crucial for obtaining accurate
solutions on both NISQ and fault-tolerant devices.
Additionally, in the long term, these techniques should
be useful for the competitiveness of fault-tolerant
approaches to simulating quantum chemistry. Studies
such as Refs. [16,18] have focused on performing

error-corrected quantum computations of chemistry within
an active space, and the methods that we develop here
should help significantly to capture dynamic correlation in
those simulations; in fact, a MCSCF procedure was even
suggested in Ref. [16]. However, more research would be
needed to make such schemes optimal within error cor-
rection. This is because both schemes that we present here
require a large (although polynomial scaling) number of
measurements, and error-corrected logical gates are many
orders of magnitude slower than the physical gates used in
NISQ devices.
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