é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Practical Design Considerations for
Wide Locally Recoverable Codes (LRCs)

Saurabh Kadekodi, Shashwat Silas, David Clausen, and
Arif Merchant, Google

https://www.usenix.org/conference/fast23/presentation/kadekodi

This paper is included in the Proceedings of the
21st USENIX Conference on File and
Storage Technologies.

February 21-23, 2023 « Santa Clara, CA, USA
978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on
File and Storage Technologies

is sponsored by

F NetApp-

https://www.usenix.org/conference/fast23/presentation/kadekodi

Practical Design Considerations for Wide Locally Recoverable Codes (LRCs)

Saurabh Kadekodi*, Shashwat Silas*, David Clausen, Arif Merchant
Google

Abstract

Most of the data in large-scale storage clusters is erasure
coded. At exascale, optimizing erasure codes for low storage
overhead, efficient reconstruction, and easy deployment is of
critical importance. Locally recoverable codes (LRCs) have
deservedly gained central importance in this field, because
they can balance many of these requirements. In our work
we study wide LRCs; LRCs with large number of blocks per
stripe and low storage overhead. These codes are a natural
next step for practitioners to unlock higher storage savings,
but they come with their own challenges. Of particular inter-
est is their reliability, since wider stripes are prone to more
simultaneous failures.

We conduct a practically-minded analysis of several pop-
ular and novel LRCs. We find that wide LRC reliability is a
subtle phenomenon that is sensitive to several design choices,
some of which are overlooked by theoreticians, and others
by practitioners. Based on these insights, we construct novel
LRCs called Uniform Cauchy LRCs, which show excellent
performance in simulations, and a 33% improvement in re-
liability on unavailability events observed by a wide LRC
deployed in a Google storage cluster. We also show that these
codes are easy to deploy in a manner that improves their
robustness to common maintenance events. Along the way,
we also give a remarkably simple and novel construction of
distance optimal LRCs (other constructions are also known),
which may be of interest to theory-minded readers.

1 Introduction

Large-scale storage clusters currently house exabytes of data,
the bulk of which is encoded with erasure codes. With storage
devices (hard-disk drives, or just disks) routinely becoming
unavailable (due to maintenance or even failures), using era-
sure coding of some variety is essential to provide acceptable
data durability. But this durability comes with the additional
storage overhead incurred by erasure codes. At a time when
data corpus size is growing exponentially [9, 43], reducing
this storage overhead is essential. One way to accomplish this
is to utilize wider stripes for encoding i.e. codes that have a
higher ratio of data blocks to coded/redundancy blocks. Such
codes are sometimes called ‘wide codes’ since they require
the overall width of the stripe to be larger (width is also re-
ferred to as blocklength in the coding theory literature). To
unlock large storage savings without compromising reliability,

“Equal contribution

=
~
w

B Deployed LRC at Google
Il Uniform Cauchy LRC

iy
w
o

ey
N
w

=
o
o

~
w

w
o

N
w

Number of unavailable stripes

0
(a) 7 failures

(b) 8 failures

(c) 9 failures

Figure 1: We captured a sample of 278 unavailable stripes captured
from four Google storage clusters, along with information about the
exact block failures in each sample. The deployed code had total
width n ~ 50, and always succeeded in recovering data when there
were < 6 failures. We then test these failure scenarios with the Uni-
form Cauchy LRC of the same width and overhead. The deployed
code could not recover any of the 278 stripes before restoration,
whereas Uniform Cauchy LRC simulation was successful in recov-
ering 92 stripes prior to restoration; a success ratio of 33%.

codes of larger widths like 20 [3] have been deployed, and in
this work we present some data from a Google storage cluster
using an erasure code of width ~ 80 blocks. The drawback of
most wide codes with low overhead is that they may require
a large amount of IO to reconstruct any unavailable or lost
data. This is why wide codes are usually designed as locally
recoverable codes (LRCs) (Definition 5.3), which help miti-
gate this reconstruction cost in most cases. Wide LRCs can
be utilized to balance the challenging storage needs of today
(low storage overhead, competitive reliability, competitive av-
erage reconstruction cost), but unique challenges arise when
designing wide LRCs for deployment in storage clusters.

LRCs are optimized to shine in the case when there
is a single erasure in a stripe, but much effort has gone
into designing LRCs with various other desirable proper-
ties [17,26,27,33,47]. One obvious direction that has received
much attention is to design distance-optimal LRCs [33,49] —
that is, LRCs with the best possible distance, given their width,
dimension, and locality. A code with distance d guarantees
recovery from any pattern of up to d — 1 failures. Indeed, max-
imizing distance is especially important for wide codes, since
they are more likely (simply due to their width) to encounter
a larger number of failures simultaneously, as we show using
data from Google storage clusters in Figure 2. But we find
that even if we use distance-optimal LRCs, storage clusters
using wide codes encounter a meaningful number of events
where the number of failures is larger than the distance of the

USENIX Association

21st USENIX Conference on File and Storage Technologies 1

distance-optimal LRC (see data from a Google storage cluster
in Figure 1). So it becomes important to study LRCs that can
successfully reconstruct even a significant fraction of erasure
patterns beyond the optimal distance. The theory community
has been tackling this problem by studying maximally recov-
erable locally recoverable codes (MR-LRCs), which take the
erasure correction capability of an LRC to the information
theoretic limit implied by its design parameters [16, 18,20].
However, to the best of our knowledge, current constructions
of MR-LRC:s do not yield codes fitting the limitations of cur-
rent hardware. For example, wide MR-LRCs with storage
overhead <20% require orders of magnitude larger field sizes
than the computationally efficient field sizes of up to Fose,
which is explained in detail in Section 4.

Optimizing LRC reliability in practical parameter settings
is a valuable and open problem, and we tackle aspects of it in
this work. We highlight some of our main contributions.

Practical measurement of reliability. We study wide
LRCs with a distinctively practical lens. One of our contribu-
tions is the curation of a set of robust and practical measures
of LRC reliability. These include performance against random
erasures, comparing the reliability of explicit LRC generator
matrices (see Definition 5.1) against the information theoretic
limit provided by MR-LRCs, and calculating mean time to
data loss (MTTDL) using observed reliability metrics. As
mentioned earlier, going wide creates new reliability chal-
lenges for LRCs, and these tools provide a clearer and more
realistic set of tests to tackle the new challenges. Using these
tools, we meaningfully compare popular deployed LRCs and
showcase novel highly performant LRCs.

New distance-optimal LRC constructions. In Section 6,
we provide a novel construction of distance-optimal LRCs
(Definition 5.4), which we call Optimal Cauchy LRCs. This
continues a long line of work [47, 49] for constructing
distance-optimal LRCs, and while our construction is not the
most general, it is remarkably simple and yields many codes
(even wide LRCs) in practically useful parameter settings.

Insights into reliable wide LRC design. Our practical
measures of reliability provide several insights. While it is
true that higher distance gives guarantees about fixing up to a
certain number of erasures, it is not enough by itself to guar-
antee strong empirical results. The first improvement that can
be made in this direction is to find codes that are approxi-
mately MR-LRCs (since it is not yet possible to construct true
MR-LRCs in our parameter regimes). Here we show good
news: the coefficients used in our simple constructions get
us over 99% of the reliability possible with MR-LRCs. But
we find that just being (close to) maximally recoverable is
not the end of the journey for reliability. Indeed, two codes
that have the same width and same storage overhead, and are
both MR-LRC:s (true or approximate) can have significantly
different resilience to random patterns of erasures. This is
because erasure recovery is affected by how failures are dis-
tributed across the local repair groups (see Definition 5.5) of

the LRC, so it is not enough to just optimize the coefficients
of an LRC, but also the size of its local repair groups. To the
best of our knowledge, this fact has not been considered in the
literature, even though our experiments show that it can have
a significant impact on reliability. In general, codes whose
local groups are evenly sized have better performance (see
discussion in Section 8). This has the additional perk of also
lowering the degraded mode read cost and the reconstruction
cost of the code.

Novel LRCs that excel in practice. Using some of these
insights, we modify our construction of distance-optimal
codes to create Uniform Cauchy LRCs. We find that these
codes truly shine in most practically relevant reliability (and
performance!) measures. Figure | shows data unavailability
events from a deployed wide LRC of width ~ 50 blocks along
with their erasure patterns captured from four large storage
clusters at Google with a total disk population of over 1.7 mil-
lion disks, over a period of one year. For the same code width
and storage overhead, our Uniform Cauchy LRC simulation
recovered more than 33% of these stripes without the need
for restoration. Indeed, further experiments confirm this ob-
servation by showing that Uniform Cauchy LRCs outperform
many popular (and deployed) LRCs across our metrics. A
comprehensive experimental evaluation of LRCs is provided
in Section 8, along with the main observations.

Maintenance-robust deployment of wide LRCs. In Sec-
tion 9 we highlight the importance of maintenance-robust
deployment of wide LRCs. Even though a code may have
many desirable properties, its exact layout in a cluster affects
its robustness to common maintenance events such as kernel
upgrades. It is desirable to construct codes that are easier
to deploy in a maintenance-robust manner (not all codes are
equal here), and we show that the design of Uniform Cauchy
LRC:s is ideal in this regard.

Our work shows that a myriad of design choices need to be
considered in order to optimize wide LRCs. Indeed, account-
ing for these factors can lead to more reliable deployments of
wide LRCs in practice.

2 Background

Large-scale storage clusters. Large-scale storage clus-
ters typically constitute of public cloud offerings or high-
performance computing systems. Hard-disk drives (HDDs)
make up the primary storage tier in these clusters. It is com-
mon for the disk population in a large-scale cluster to be above
100K [2,32], and some large ones are also reported to have
close to 500K disks [30,31]. Data being stored in large-scale
storage clusters is increasing at an alarming rate [7,9, 10,41].
Data redundancy using erasure coding is the reliability mech-
anism of choice for bulk of the data.

Erasure coding. Erasure coding is a more space-efficient
alternative to data replication. Usually described as an (n,k)
code, an erasure coding stripe encodes k data blocks (typi-

2 21st USENIX Conference on File and Storage Technologies

USENIX Association

cally one, or a few megabytes in size) along with n —k ‘parity’
blocks (of the same size) to form an n block stripe. The
storage overhead is calculated as 7. Maximum Distance Sep-
arable (MDS) codes (like Reed-Solomon codes) are popular
erasure codes used in practice because they provide the max-
imum erasure correction capability for any fixed value of n
and k. MDS codes have the property that up to n — k blocks
missing from a stripe can be reconstructed using any k of the
remaining blocks. As data has grown and space-efficiency
has become more critical, wider MDS codes (i.e. codes with
larger values of k) with less storage overhead have become
more popular in practice. Indeed, even (20,17) MDS codes
have been deployed and studied [3], in place of the once ubig-
uitous schemes like RAID-6 (which is a (6,4)-Reed-Solomon
code), (9, 6) [13] and (14, 10) [42]. But wider MDS codes
have their own drawbacks because they require all the data
from k blocks to reconstruct/repair even a single missing
block, leading to a high reconstruction cost. A need to use
wider encoding schemes with less overhead, combined with
the very high reconstruction cost of MDS codes has motivated
the study of Locally Recoverable Codes.

Data reconstruction process. Large-scale cluster storage
systems have a background process that monitors the redun-
dancy level of all stripes stored in the cluster. Whenever a
disk becomes unavailable (either due to server unavailabil-
ity, or disk failure), the background daemon flags the under-
redundant stripe and starts a timeout of a few tens-of-minutes.
When the timeout expires, the stripe is marked for reconstruc-
tion. Storage clusters often set a soft threshold on the band-
width used for background activity such as reconstructions
(except client-initiated degraded mode reads). In order to bal-
ance the reconstruction workload while maintaining highest
data safety standards, the reconstructions are processed via a
priority queue in which stripes that are more vulnerable are
reconstructed before less vulnerable stripes.

Locally Recoverable Codes (LRCs). LRCs [17, 27, 33,
42,47,49] (also known as Local Reconstruction Codes) are
erasure codes designed to mitigate the high reconstruction
cost of MDS codes. An (1, k,¢) LRC code divides an n block
stripe into local groups, each with at most ¢ < k blocks and
a local parity'. In addition to the local parities, the stripe
also has global parities which cover all k data blocks. One
may think of a rypical LRC in this way: the data blocks and
the global parities together form an MDS code, and the local
parities are added on top of this code, so as to mitigate the cost
of reconstruction (reduce it from k to £) in the case when there
is exactly one failure in a local group. One may note that LRCs
are not MDS codes since they cannot satisfy the Singleton
bound unless ¢ = k (see Definition 5.6). If there is more than
one failure in the same local group, the underlying MDS code
can be used to reconstruct the data. Several different LRC
constructions have been proposed over the years with different

I Theoretically each local group can have any number of parities, but in
practice the most common configuration involves 1 parity per local group.

trade-offs [27,33,47,49].

Distance of a code. Distance of a code (denoted by d) is
the minimum number of failures/erasures that may render
the stripe potentially non-recoverable (i.e. all patterns of < d
failures are always recoverable). For example, the distance of
an (n,k) MDS code would be n — k+ 1 since an MDS code
can recover from any n — k failures. In fact, for an MDS code,
any failure beyond n — k failures is strictly non-recoverable.
However, for a code with distance d which is not MDS (such
as an LRC), some patterns of > d failures could be recovered.
Maximizing this capability to recover as many erasure pat-
terns as possible beyond the distance leads us to the notion of
maximally recoverable codes.

Maximally Recoverable LRCs (MR-LRC). For any
code, simply specifying whether each entry in its genera-
tor matrix (see Definition 5.1) is zero or non-zero imposes
an information theoretic limit on which patterns of erasures
could be recoverable. The study of maximally recoverable
codes is concerned with finding coefficients for the non-zero
entries such that this limit is reached [16]. LRCs can also be
optimized in this way: once we have specified which entries
of the generator matrix are non-zero (this will fix various
code parameters like n, k, number of local parities, number of
global parities, and the size of the local groups), it is possible
to find coefficients that maximize the number of recoverable
erasure patterns (including potentially many patterns of > d
erasures). LRCs which are maximially recoverable are known
as MR-LRC:s. In terms of their reliability, MR-LRCs are the
gold standard among LRCs.

3 Motivation for studying wide LRCs

Reducing storage overhead is critical. Storage overhead
because of data redundancy is a major component of a clus-
ter’s storage cost. With 3-way replication, the overhead is 3,
which is prohibitive for large-scale clusters storing exabytes
(EBs) of data on hundreds-of-thousands of disks. Even the
popular MDS codes such as (9,6) [13] or (14, 10) [42] which
have an overhead of 1.5x and 1.4 x respectively, are consid-
ered too expensive for exascale [9, 10,29, 41]. Large-scale
storage clusters are actively adopting wide MDS codes to min-
imize the storage overhead. Backblaze reported the use of a
(20,17) MDS code [3] which has a reasonably low overhead
of 1.17x (a rate of % = 0.85, see Definition 5.1). With every
percent reduction in storage overhead resulting in savings of
millions in capital, operational and energy costs, lowering
storage overhead continues to be a lucrative problem.

Wide MDS codes are costly. Using wide MDS codes has
several challenges. The reconstruction IO cost of a wide (1, k)
MDS code scales linearly with k. For example, while a (9, 6)
MDS codes requires reading 6 data blocks for reconstruct-
ing a missing block, a wide MDS code such as (20,17) re-
quires reading 17 data blocks. Wide MDS codes also have a
higher unavailability because they have a higher probability

USENIX Association

21st USENIX Conference on File and Storage Technologies 3

10 = LRCofn~ 50
(%]
¥ “,‘ —— LRCofn 80
% 1
B 6 n | {‘
[| I [o] I 111N nm n
2 | Il | Il | NN
4 |
€ 1 T =] I n il NRLIREE
3 | \ I anra [| [nl oy |
=2 o | BUEERE M L Uil “F“‘W [e
0 M] Hﬁ‘ | [T 1 | L[l | [] Al I I EElnninls | | ‘
10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

Figure 2: A 24 hour trace with the number of stripes with at least 4 failures in two deployed LRCs captured from a single storage cluster at
Google. The wider LRC (n ~ 80) has many more stripes with at least 4 failures compared to the relatively narrower LRC (n = 50).

of having blocks stored on devices that are unreachable due
to maintenance (since no two blocks of a stripe can be on the
same disk, server, rack, etc.). Thus, not only does a wide MDS
code have a higher degraded mode read cost (Definition 5.10),
but the frequency of performing degraded-mode reads is also
higher due to higher unavailability. Due to a larger number
of disks, degraded reads and reconstructions in wide MDS
codes are also more likely to suffer from high tail latency
due to stragglers. So although wide MDS code are good for
durability and reduced storage overhead, they are not good
for reconstruction costs, availability, and degraded read per-
formance, all of which are major performance concerns in
large-scale storage clusters. Storage overhead minimization
is critical, but cannot come at the expense of aforementioned
problems. Indeed, this is the reason for the continued popu-
larity of LRCs, which mitigate this drawback.

Real-world failure patterns favor LRCs. We empirically
observe the failure patterns of stripes stored in three large-
scale storage clusters totalling over 1.5 million disks for a
period of 6 months. These clusters have multiple different era-
sure coding and replication schemes deployed simultaneously,
and have over 1.2 trillion stripes. From among the stripes that
have > 0O failures, we observe that ~ 99.2% of stripes have
just a single failure. Similar data has been observed by others
in [40], where they found that ~ 98.08% stripes had a single
failure on a Facebook warehouse cluster. A single block fail-
ure in a stripe is a scenario where LRCs shine (in contrast to
MBDS codes). However, this comes at a cost of higher storage
overhead (as we mentioned, typical LRCs are just MDS codes
with the additional overhead of local parities, and they cannot
lie on the Singleton bound).

Wide LRC:s. In an ideal world, we would like to use wide
LRCs which have significantly lower overhead than the LRCs
showcased in [33,42] (and many other works). Wide LRCs
could reduce the overhead from the 30 — 60% range (which
is common in deployed LRCs and MDS codes) to the less
than 20% range, while still maintaining many advantages
over MDS codes. But wide LRCs create novel challenges.
For example, wider stripes are much more likely to result in
a larger percentage of stripes with more than a single failure.
This makes it critical to study robust and practical measures
of LRC reliability if we are to utilize wide codes in practice.
Further, practical issues like deployment and ease-of-use also
need to be addressed.

4 Practical challenges of wide LRCs

Many simultaneous failures are more common in wide
LRCs. While most stripes (which have failures) have single-
block failures, this does not mean that the tiny fraction of
more than one block failures can be ignored. Moving to wider
stripes increases the possibility that multiple blocks of a stripe
need to be repaired at the same time, since there is a higher
chance that devices or servers storing multiple blocks of the
same stripe may be undergoing maintenance simultaneously.
This is consistent with the observation that most data unavail-
ability events in large-scale storage clusters are as a result of
planned outages [13]. Another reason for increased number
of block failures in a wide stripe is due to prioritization of
reconstructions as explained in Section 2. Figure 2 shows the
number of stripes that have at least 4 failures throughout a
24 hour period. There are two LRCs whose stripe failures
are being compared, one with width approximately 50 blocks
and the other with width approximately 80 blocks’. Note that
this trace is collected from a single storage cluster, and so the
failures seen in this trace are in response to the same machines
failing. As is clearly visible, the wider LRC has a significantly
higher number of stripes with at least 4 failures compared to
the relatively narrower LRC.

Constructing MR-LRCs is hard. As mentioned above,
a lot of research has looked at MR-LRCs in recent years
[5,12,16,18,20]. However, even with recent advancements
such as [12, 18], to the best of our knowledge it is not possible
to construct MR-LRCs in the following regime: where the
field size (search-space for coefficients to construct the LRC)
is fixed to be 256, n is between 25-150, and the rate of the
code (see Definition 5.1) is at least 0.85 (i.e. storage overhead
is at most 1.17x and ¢ < k). This setting is particularly useful
for applications, and is the natural next phase for practical
LRCs which reduce overhead and maximize reliability.

Typically, maximally recoverable codes are easier to con-
struct when the field is large, and much research is focused
on finding explicit codes over small field sizes. In practical
settings, most computations are done over individual bytes
which restricts the field size of the LRCs we can use to 256
(the field [F5). To the best of our knowledge, the current state
of the art constructions are in [18], and they require that the

2We cannot disclose the exact configuration due to confidentiality.

4 21st USENIX Conference on File and Storage Technologies

USENIX Association

field size g be at least ~ (¢4 1)", where £+ 1 is the size of a lo-
cal repair group (Definition 5.5), and r is the number of global
parity checks. For our purposes, we can think of /+ 1 ~ 16,
and r > 3, thus g = 4096, making the required field size 16x
greater than 256.

Measurements of reliability of wide LRCs are inade-
quate. While narrow LRCs have received a lot of attention in
systems research, wide LRCs have not [25]. Existing systems
research on LRCs optimizes metrics such as distance, de-
graded read cost and reconstruction cost [6,27,33,42,47,49].
We enhance this rich literature with a larger suite of empirical
measures, which give more realistic comparisons in the practi-
cal realm, particularly in the case when there are > d erasures
in a code with distance d. Further, since explicit MR-LRCs
are not available in our parameter regimes, it leaves open the
question of evaluating whether we can construct codes which
offer us approximately the same advantages as MR-LRCs
could offer (the answer is yes!). Finally, some design choices
such as creating evenly sized local groups have not been con-
sidered in the literature at all, which we show can have a large
impact on performance against random patterns of erasures.

Deployment of wide erasure codes is non-trivial. An-
other practical hurdle that gets worse with code width is the
deployment (placement of blocks) of an erasure coded stripe.
Recall that no two blocks of an erasure coded stripe can re-
side on the same disk, rack, fault-domain, power-source, etc.
As the code width increases, it becomes progressively harder
to fulfill these placement constraints. The placement prob-
lem is further exacerbated because it is common for sets of
servers/racks (which comprise a maintenance zone) to be
down at the same time for maintenance events, potentially
causing data unavailability. For example, if too many blocks
of a stripe are in the same maintenance zone, then even a
planned maintenance event could make the stripe unavailable.
We comment on some ways that code design can make it
easier to achieve maintenance robust layouts of data.

5 Definitions

We begin by defining important terms that are going to be use-
ful when describing the wide LRC construction in Section 6.

Definition 5.1 (Linear error correcting code). A linear error-
correcting code is simply a subspace C < FZ where q is a
prime power and n > 0. It is customary to think of C as the
image of an encoding map Enc: IF’; — Iy for some k <n. This
encoding may the expressed in matrix form as,
Gx=y

where G is an n X k matrix called the generator matrix, x
is the message and y is the codeword. The fraction % is the
rate of the code, k is the dimension, and n is the blocklength.
The symbols y; € F, of a codeword y are called codeword
symbols.

Definition 5.2 (Distance of a code). The minimum distance
of a linear code (often just called the distance) is simply,
min _wr(x)
xeC\{0}
where wt(x) = Yl 1,20. An error correcting code with dis-
tance d can always correct d — 1 erasures.

Definition 5.3 ((n, k, £)-Locally recoverable code (LRC)). An
(n,k,0)-LRC is a linear error correcting code of dimension
k and blocklength n. It has the additional property that any
codeword symbol can be recovered from at most £ other code-
word symbols. The parameter ¢ is called the locality paramter
of the LRC. Note that 1 < /! < k.

Definition 5.4 (Generalized Singleton bound and distance
optimal LRCs). Any locally recoverable code must satisfy the
following bound [17],

1

where d is the distance of the code. Any LRC that meets this
bound with equality is called a distance optimal LRC. Note
that when { = k, this reduces to the well-known Singleton
boundn > k+d—1.

k
n>k+ [—‘ +d—-2

Definition 5.5 (Local repair group). Given an (n,k,¢)-LRC,
choose any codeword y. Due to the local recovery property,
any codeword symbol y; can be recovered using at most £
other codeword symbols {y,,...,yr, } where r; # i for any
J- These at most £+ 1 indices in {i,ry,...,r¢} form a local
repair group of the (n,k,¢)-LRC.

Definition 5.6 (Maximum distance separable code). Any lin-
ear error-correcting code which satisfies the Singleton bound
with equality, i.e. satisfies n = k+d — 1, is known as a Maxi-
mum Distance Separable (MDS) code.

Definition 5.7 (Cauchy matrix). Let {xi,...,x,} and
{V1,---,Ym} be two disjoint sequences of distinct elements
Sfrom Fy. The n x m matrix defined as
1

Y Xty
is a Cauchy matrix. It is well-known that every square sub-
matrix of a Cauchy matrix has non-zero determinant (and
therefore, is invertible).

Fact 5.8 (Generator matrix of an MDS code). Cauchy ma-
trices are commonly used to design generator matrices for
MDS codes. Indeed, an n X k matrix over By, whose first k
rows form I (the k X k identity matrix), and whose last n — k
form an (n—k) x k Cauchy matrix generates an MDS code of
blocklength n and dimension k (see Thm 2.2 and 5.2 in [§]).

We can visualize several of our definitions using the exam-
ple shown in Figure 3.

USENIX Association

21st USENIX Conference on File and Storage Technologies 5

1 0 0 0 d;
0 1 0 0 d>
0 0 1 0 d;
0 0 0 1 dy
c1l c12 13 Cl4 1
Ge = €21 €22 €23 C24 2
1 1 0 0 I
0 0 1 1 I
criten cipten ciztes cuten| g
l l [
1 2 43 4 €l 2

Figure 3: Example of an LRC with 4 data blocks (dy,d>,d3,da),
2 global parities (cy,¢2), and 3 local parities (I1,15,1g). This figure
shows how each row of the generator matrix correponds to a ‘block’
in the picture representation of an LRC (the reader may note that the
matrix representation is more informative as the specific choice of
coefficients can affect reliability in practice). The first 4 rows of the
matrix correspond to the data blocks which are encoded systemati-
cally; the next two rows correspond to the global parities (these two
rows form a 2 x 4 Cauchy matrix in our implementation); the last 3
rows correspond to 3 local parities, all of which contain the XOR of
the data they cover (as is evident by the coefficients of the matrix G¢).
The last local parity, [y, only covers the global parities. This design
of LRC may be familiar to some readers as an Azure-LRC+1. The
local groups of this code are (d1,da,11), (d3,d4,12), and (cy,c2,1lg)
and therefore ¢ = 2. In this code, ADRC (see Def. 5.10) = ARC| (see
Def. 5.11) =2, since each data or parity block can be reconstructed
by reading the two other blocks in its local repair group.

Definition 5.9 (Maximally recoverable locally recoverable
code (MR-LRC)). An (n,k,£)-LRC is called a MR-LRC if it
can recover from any pattern of n — k erasures as long as there
is at least one erasure in each local repair group of the code.
To clarify, suppose the (n,k,{)-LRC has local repair groups
Ly,...,Lp for some p > 1 where each L; C {1,...,n}. Recall
that U;L; = {1, ...,n} and that the L; are not necessarily
disjoint. Let E = {ey,...,eu—y C {1,...,n} be any pattern
of n—k erased symbols. Then as long as L; UE # 0 for any i,
then the erasure pattern E can be recovered by the code.

Definition 5.10 (Average degraded read cost (ADRC)). The
ADRC is the average of the cost of reconstructing any of the
data blocks. We can measure cost (b;) as the number of blocks
which need to be read in order to reconstruct block i.

Z{-‘zl cost(b;)

k
Definition 5.11 (Average repair (or reconstruction) cost
(ARCQ)). The average repair cost is defined identically to

the ARDC, with the addition of the global and local parity
blocks to the computation.

ADRC =

Y cost(b;)
n

ARC| =

For MDS codes, Vb;,cost(b;) = ARC = k. For LRCs, cost(b;)
may not be the same as ARC. The above ARC is defined for
one block failing in a stripe. In our evaluation we also show
the ARC of reconstructing two failed blocks defined as

Yy jzicost(bi)
n
()
where 1 <i<n,1<j<nandiz# j, and cost(b,-J) = cost to

reconstruct blocks i and j which can result in a combination
of local and global reconstructions depending on i and j.

ARG, =

6 (n,k,r, p)-Optimal Cauchy LRCs

In this section we construct (n,k, r, p)-Optimal Cauchy LRCs
and discuss their advantages. Here, n is the blocklength of
the code, k is the dimension, r is the number of global parity
checks, and p is the number of local parity checks. We make
two design choices which are worth pointing out. First, the
p local parities in our code are uniformly distributed across
the k data, and they are all XOR-ed with the r global parity
checks (this helps with proving the distance optimality of the
code). Second, we restrict ourselves to the case where each of
the data symbols of the code is covered by exactly one local
parity. The second restriction is common in constructions pro-
posed in the literature, and indeed, important for our goal of
minimizing the storage overhead. For simplicity of exposition
we assume that p is even (we will mention how this condition
can be removed), and p|k where we denote % =t. It will be
clear that the locality parameter ¢ of the (n,k,r, p)-Optimal
Cauchy LRCs we will construct is % +r.

In Section 6.2 will show that (n,k, r, p)-Optimal Cauchy
LRCs have the best possible distance for LRCs with their
dimension and locality (under some modest restrictions). In
Appendix A.2 we show how some of these restrictions can
be relaxed. We begin with explaining the construction of
(n,k,r, p)-Optimal Cauchy LRCs.

6.1 Code construction

The generator matrix for an (n,k, r, p)-Optimal Cauchy LRC
is derived naturally from the generator matrix for an (k+r+
1,k)-MDS code which has dimension k and blocklength n =
k+r—+ 1. Specifically, we derive our code from the generator
matrix of a (k+r+ 1, k)-cauchy MDS code.

The generator matrix Gz1,1) of a (k+r+ 1,k)-Cauchy
MDS code is an k+ r+ 1 X k matrix, which simply consists
of a k x k identity matrix stacked on top of a r+ 1 x k Cauchy
matrix. The resulting matrix is well-known to generate an
MDS code with distance r+ 2 (See Thm 2.2 and 5.2 in [8]).

6 21st USENIX Conference on File and Storage Technologies

USENIX Association

| -
0
0 -
Gltriny k= |
C11 Clk
Crl Crk
LC(r+1)1 Clr4-1)kd

When we do not need to refer to r and k are specifically, we
refer to G(iyr11) 4 as G, and the ith row of G, 1) as &i.

To create the generator matrix for an (n,k,r, p)-optimal
cauchy LRC, we first partition this last row of G, g+ into
D TOWS 1, ...,1, as follows,

ry = (C(r+l)l 7C(r+l)27 cee 7C(r+l)ta07 cee 50)

r = (07 7Oac<r+1)(t+1)7' . 7C(r+1)2t707 s 70)

Tp = (0,..,0,C(41)(p(—1))s -+ C(rt 1)pr)
It is clear that | + 72 + -+ +7p = gr4r41. We the compute
the rows 7; as follows,

Fi =Ti+8kr1 + 82+ + 8ktr

Note that 7; are simply r; with the addition of the first r
‘cauchy rows’ of G. Since p is even (and the underlying field
has characteristic 2) we have,

A+t 47y =p(8kr1 +8kv2+ -+ 8kr) + 8htrsi

= 8k+r+1
Finally, the generator matrix Oy, ¢ ., for the (n, k, r, p)-Optimal
Cauchy LRC is given by,

| -
0
0
1
On,k,r.p = C11 e Clk
Crl Crk
1
L p J

This matrix is simply the k + r rows of Gy,11 x stacked on
top of the 71,73, ...,7, vectors. We remark that n =k +r+ p,
and that O, .., generates an LRC with locality parameter
¢ =k 4y This is clear since each row among 7,7, .. ST
provides a local parity check on exactly ¢ other rows.

6.2 Distance

We note that the distance of an (n,k, r, p)-Optimal Cauchy
LRC is exactly 7+ 2. As long as k,r, p > 0, p|k, rp® > k+rp,
and p is even, it is a distance optimal LRC (Definition 5.4).

Theorem 6.1. Forr >0, Oy, generates an error correct-
ing code with distance exactly r 4 2. Proof details are in
Appendix A.]

Lemma 6.2. Given k,r,p >0, rp> > k+rp, and p even, the
locally recoverable code formed by O, i ., is distance optimal.
Proof details are in Appendix A.]

We show how some of the conditions in Lemma 6.2 can be
relaxed in Appendix A.2.

Remark 6.3. Constructing distance optimal LRCs is a well-
studied problem. At first, only constructions whose alphabet
size was exponential in the blocklength were known [45,49].
These do not yield codes which may be used in practical
settings where the alphabet size q is fixed at 256. The most
well-known construction of distance optimal LRCs may be
Sfound in [33,47]. To get truly optimal codes the codes of [47]
require that {4 1|n, and none of the codes we use in our ex-
periments meet this restriction. Distance optimal LRCs with
very general parameters were finally shown in [33]. In our
experimental analysis in the later sections, we use Optimal
Cauchy LRCs (rather than other known constructions such
as [33]) as examples of codes which lie on the generalized
Singleton bound (essentially, distance optimal LRCs. See Def-
inition 5.4). This is because Optimal Cauchy LRCs are easier
to construct in our parameter regime.

7 (n,k,r,p)-Uniform Cauchy LRCs

In the previous section we give a very simple construction of
distance optimal LRCs which we will use in our experimental
analysis as examples of distance optimal codes. In this section,
we provide a simple heuristic modification of these codes
which has several practical advantages (though they are not
shown to be optimal with regards to distance).

The later experimental analysis of these codes highlights
the point that distance optimal (i.e. on the generalized Single-
ton bound) does not mean most-durable or most cost-efficient
from a practical perspective. For example, a code that has the
same locality and distance can have different durability (as
measured by mean-time-to-data-loss) and robustness against
random patterns of erasures. Distance-optimality simply indi-
cates the best distance for fixed values of n,k and /.

These codes are constructed in much the same way as opti-
mal cauchy LRCs, except that each local parity check covers
% of the data blocks and global parity blocks. Following the
same notation as the previous section, the generator matrix
for a uniform cauchy code has the form (assuming p|k + r for
simplicity),

USENIX Association

21st USENIX Conference on File and Storage Technologies 7

Cq

C] Cc) C3
;}K}KF s R

(a) 48-0f-55 Azure-LRC

(c) 48-0f-55 Optimal Cauchy LRC

Cl 2 c3 Crs

(b) 48-0f-55 Azure-LRC + 1

1 c 3 cs4
{]}2 Hﬁs H{Es 39 48 1 3

(d) 48-0f-55 Uniform Cauchy LRC

Figure 4: Different LRC constructions used in our evaluation.

1 -
0
0
1
U’hka"J’: C11 Clk
Crl Crk
r
L p _

Where (if we denote % =1),

r = (C(r+1)17c(r+1)27 cee 7C(r+1)ta0a (X aO)

rn = (07"'aoac(rJrl)(tJrl)?'"7C(r+l)2t705"'70)

'p = (0, cee a07c(r+1)(p(t—1))a ce ,Ck)
Finally, we modify the last row by adding the exclusive-or
of the global parity checks.
Fp=Tp+8ks1+ -+ &kir
One may note that the locality parameter for this code

(= %, which is lower than that for optimal cauchy LRCs.

In the event that p { (k+ r), we may simply divide the k+ r
data and global parities as evenly as possible amongst the p
local checks.

8 Experiments and analysis

We now use the following suite of practical measures of LRC
quality to compare various codes:

1. Average degraded read cost (Definition 5.10).

2. Average repair costs (Definitions 5.11).

3. Reliability against random erasure patterns.

4. Comparison of reliability against the information theoretic
limit (i.e. against MR-LRCs).

5. A practical computation of mean-time-to-data-loss
(MTTDL).

We compare well-known LRC constructions including dis-
tance optimal LRCs (our own Optimal Cauchy LRCs) and
novel codes like our Uniform Cauchy LRCs. We compare
these codes for the following parameter settings, all of which
have < 20% storage overhead.

LRCs used in experiments. The most popular deployed
LRCs we came across are the Xorbas-LRC [42], Azure-
LRC [27] and Azure-LRC+1 [33] constructions. Xorbas-LRC
has the advantage of being distance optimal, but it is only
shown to be so in very specific parameter settings, so we
instead use Optimal Cauchy LRCs as examples of distance
optimal codes in our evaluation. The Azure-LRC was one of
the first LRCs proposed, and is reportedly used at Microsoft
Azure [27]. We illustrate these codes for the 48-of-55 param-
eter setting in Figure 4.

Azure-LRC divides the data blocks into equally spaced lo-
cal groups, with each local group having a local parity. Each
local parity can be the XOR of the data blocks in that lo-
cal group. The global parities are not protected by any local
parities. Figure 4a gives a representation of the Azure-LRC
construction. Note that Azure-LRC is not a true LRC since
the global parities are not locally recoverable (i.e. £ = k). In
early works, locality for global parities was not considered a
requirement for LRCs, but most recent works enforce it. How-

Scheme n k r p Rate
24-0f28 28 24 2 2 %‘ =0.857
48-0f-55 55 48 3 4 5= 0.872
72-0f-80 80 72 4 4 5=09
96-0f-105 105 96 5 4 %=0914

Table 1: Wide LRC schemes used to compare different LRC con-
structions. Each scheme is chosen such that rate >= 0.85.

8 21st USENIX Conference on File and Storage Technologies

USENIX Association

Locality Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC
n=28,k=24,r=2,p=2 (=24 (=24 (=1242=14 (=13
n=>55k=48,r=3,p=4 (=48 (=16 {=1243=15 (=13
n=80,k=72,r=4,p=4 (=72 (=24 (=1844=22 (=19
n=105k=96,r=5,p=4 (=96 (=32 {=24+4+5=29 (=26
Avg. degraded read cost (ADRC) Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC
ewiemoeapes o ion EEew EmEen ot
n=105k=96,r=5p=4 o =24 e =32 e =29 %:25.18
Avg. repair cost 1 failure (ARC) Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC
_ _ _ _ 26x1242x24 _ 25x2443x2 _ 28x13 28x13 _
n=28k=24,r=2,p=2 m—IZ.SS IXTZE—ZLM 52X85 13 3;82 ZZ133
n=o0,k=a8,r =3 p=a 76:854&72 =135 jsi;is; =150 85)5};2 =D ;()39;5 - o126
n=80 k=72 =4 p=4 100x§z?+5x96: 207 99><%821+6><5 -2 10%0><29: > 818>925+§41><926
n=105k=96,r=5p=4 TRy =2742 FEEEE2 =3045 o5 =29 SRS =25.22
Avg. repair cost 2 failures (ARC;) Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC
n=28,k=24,r=2,p=2 30.66 43.46 32.12 27.92
n=>55k=48,r=3,p=4 35.49 39.22 36.93 33.85
n=80,k=72,r=4,p=4 52.80 59.38 54.82 49.22
n=105k=96,r=5,p=4 70.68 79.73 74.50 67.69
Normalized MTTDL comparison Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC
n=28,k=24,r=2,p=2 0.64 x 0.14x 0.50x 1.00
n=>55k=48,r=3,p=4 0.99x 0.97x 1.01x 1.00
n=280,k=72,r=4,p=4 0.99x 0.97x 0.49x 1.00
n=105k=96,r=5p=4 0.99x 0.96x 0.96x 1.00

Table 2: This table captures all the analytical metrics used to compare the different LRC constructions across the different wide LRC parameters
described in Table 1. Details of this comparison are described in Section 8. The takeaways are that for all metrics except average degraded mode
read cost (in which it is < 9% worse than the best LRC), Uniform Cauchy LRCs outperform other LRCs (including the Optimal Cauchy LRC).
Another surprising result was that Azure-LRC outperforms Azure-LRC+1 despite its global parities having no local parities protecting them.

ever, we include this code in our analysis due to its popularity
and because it is actually used in practice (and our analysis
shows that it gives great performance!).

Azure-LRC+1 is an optimization to the Azure-LRC pro-
posed in [33]. Azure-LRC suffers from an expensive MDS-
level reconstruction on the failure of any of the global parities.
In order to prevent this, Azure-LRC+1 forms a local group of
the global parities and protects them using a local parity. Fig-
ure 4b captures the Azure-LRC+1 construction. Note that the
Azure-LRC+1 construction in [33] introduces an additional
local parity to protect the global parities without removing
any of the existing parity blocks. This construction changes
the storage overhead of Azure-LRC+1 in comparison to other
constructions. We deliberately choose to keep the numbers
k-of-n the same across all schemes, otherwise we are compar-
ing codes with different redundancy, which in our view is not
a fair comparison. Thus, in our construction of Azure-LRC+1,
we choose to remove one local parity protecting data blocks
(as compared to removing a global parity since removing a
local parity has a less adverse effect on the reliability), and

add a local parity protecting global parity blocks.

Figure 4c and Figure 4d are representations of the Optimal
Cauchy and Uniform Cauchy constructions which have been
described comprehensively in previous sections.

Parameter regimes for comparison. We select four dif-
ferent widths representing wide LRCs, details of which are in
Table 1. For an apples-to-apples comparison, we freeze the
size of the data, k, the size of the code n, the number of global
parities r, and the number of local parities, p. Since a (20, 17)
MBDS code is reportedly in use [3], we explore schemes where
24 < n < 105 (deliberately starting from n close to 20, and
codes with rate strictly higher than 0.85). The entire set of
results are presented in Table 2, but we highlight the main
points below.

Uniform Cauchy LRC has the smallest locality. We first
compare the locality of the different LRC constructions. Re-
call (Definition 5.3) that locality refers to the maximum
number of blocks to be read for reconstruction of a single
block. Since Azure-LRC requires reading all data blocks to
reconstruct any failed global parity, its locality is the high-

USENIX Association

21st USENIX Conference on File and Storage Technologies 9

220 Azure-LRC [Azure-LRC+1 EEH Optimal Cauchy LRC Il Uniform Cauchy LRC

Recovery ratio
o o

o
o
o

(a)4 failures

24-0f-28 code 48-0f-55 code

failures

72-0f-80 code 96-0f-105 code

Figure 5: This plot compares the durability of the different LRC constructions (Azure-LRC, Azure-LRC+1, Optimal Cauchy and Uniform
Cauchy) by measuring their ability to recover from random failures (only values where some recovery ratios were less than one are shown). We
evaluate all wide LRCs discussed in evaluation ranging from 24-of-28 to 96-of-105. Except in 48-0f-55, we see that Uniform Cauchy has the
best durability. Optimal Cauchy has the best durability in 48-o0f-55. Surprisingly, Azure-LRC has better durability compared to Azure-LRC+1
even though global parities of Azure LRCs are not covered by a local parity.

B Azure-LRC+1 [N Optimal Cauchy LRC Il Uniform Cauchy LRC

Recovery ratio

(b) 7 failures
48-0f-55

(d) 9 failures
96-0f-105

(c) 8 failures
72-0f-80

(a) 4 failures
24-0f-28

Figure 6: Comparing performance with MR-LRC. In this plot
we show the results of a Monte-Carlo experiment where p failures
were forced (one in each local group) and another n — k — p fail-
ures were distributed randomly across remaining blocks. MR-LRCs
can recover from all such failure patterns. Azure-LRC+1, Optimal
Cauchy and Uniform Cauchy are all > 99% as durable as an MR-
LRC in this scenario for our choice of coefficients. Azure-LRC is
not shown because it does not have a local group covering its global
parities, making it unsuitable for this comparison.

est. This is followed by Azure-LRC+1, whose local groups
are larger than the other constructions (since we have con-
strained p). In fact for 24-0f-28, Azure-LRC+1 has the same
locality as Azure-LRC due to having only 1 local group that
spans all data blocks. Optimal Cauchy LRC evenly divides
the data blocks, but requires each local group to contain all
the global parities (we need this to prove distance optimal-

ity as explained in Section 6.2), making its locality [ﬂ +g.
Uniform Cauchy LRC has the lowest locality [ﬂ since it
uniformly divides n blocks into p groups.

Azure-LRC has the lowest average degraded read cost
(ADRC), closely followed by Uniform Cauchy LRC. The
ADRC is calculated only for the data blocks (Definition 5.10),
and therefore is directly proportional to the size of local
groups. Therefore, since Azure-LRC has the smallest local
groups, it also has the smallest ADRC. Although, as the stripes
become wider, the difference between the local group sizes of
Azure-LRC and Uniform Cauchy LRC starts reducing. This
reflects in the reduction of the ratio of the ADRC of Uniform
Cauchy LRCs compared to Azure-LRCs. In particular, the
ADRC of Uniform Cauchy LRC is about 8% more than Azure-
LRC for 24-0f-28, but is only about 5% more for 96-of-105.

Azure-LRC+1 has the highest ADRC followed by Optimal
Cauchy LRC, both owing to their larger local repair groups.

Average repair cost (ARC) is lowest for Uniform
Cauchy LRC. Very similar to the ADRC, the ARC| and ARC,
(Definition 5.11) are the degraded read cost for all n blocks
of a stripe for 1 block failure and 2 block failures respec-
tively. We choose to showcase both ARC; and ARC, because
the wider the LRC, the higher the likelihood that more than
one failure can occur in a stripe as explained in Section 3.
Here, the disadvantage of Azure-LRC turns into the advan-
tage for Uniform Cauchy LRC. Specifically, the degraded read
cost for the global parities involves reading all data blocks
in the case of Azure-LRC. For Uniform Cauchy LRC, the
degraded read cost of global parities is the same as a data
block, both of which are only slightly higher than the data
block reconstruction cost of an Azure-LRC. The exception is
24-0f-28 where Azure-LRC has a slightly lower ARC than
Uniform Cauchy LRC, owing to these specific parameters,
but this too becomes favorable for Uniform Cauchy LRCs
in the case of ARC,>. Across the schemes, as the number of
data blocks increase, the ARC of Azure-LRC reduces, but at
the same time, any additional global parity increases the ARC
significantly. The difference between the Azure-LRC+1 and
Optimal Cauchy LRC is lower than their difference in ADRC.
This is due to Azure-LRC+1 having a very low-cost global
parity reconstruction. Nevertheless, the Azure-LRC+1 and
Optimal Cauchy LRCs have the highest, and second highest
ARCs among the four constructions.

Uniform Cauchy LRCs have the best random failure
tolerance. We compare the LRC constructions empirically
by evaluating their durability against random failures (includ-
ing when the number of failures are > d when d is the distance
of the code). For each code, we choose various values of i
and conduct a Monte-Carlo experiment in which 7 blocks are
removed uniformly at random (without replacement) from the
n blocks of stripe. Then data recovery is attempted. The more
times recovery can succeed, the more durable the code. For
each random failures experiment at least 1 million recover-

3We refrain from detailing the calculation of ARC, because it significantly
more complex than ARC].

10 21st USENIX Conference on File and Storage Technologies

USENIX Association

ies from unique block failure combinations were attempted.
The exception was 4 random failures for 24-0f-28, where all
combinations (20475) were exhaustively checked.

Figure 5 shows the results of the various failure scenarios
on each of the four schemes across all four LRCs. Uniform
Cauchy LRC outperforms all other LRC constructions in
each scenario, for each scheme, except 48-of-55. In 48-of-
55, the Optimal Cauchy LRC has the highest recoverability
ratio. The intuition behind Uniform Cauchy LRC’s superior
performance is that when a high number of failures happen
uniformly at random, it’s more likely that at least one failure
occurs in each local repair group. This results in all local
parities contributing to the reconstruction process, leading to
a higher success rate.

Simple choices of coefficients give almost MR-LRCs in
our parameter regime. We construct all our generator ma-
trices using Cauchy matrices. We then conduct an experiment
to compare our codes to a hypothetical MR-LRC of the exact
same design. We say ‘hypothetical’ because although there
is proof that such an MR-LRC can exist [18,22], currently
there does not exist a deterministic way to construct such a
code. Nevertheless, we can precisely characterize the erasure
patterns that can be recovered by such MR-LRCs. Simply put,
an MR-LRC with p local parities and r global parities can
recover any pattern of r + p failures, as long as there is at
least one failure in each local repair group (so that each local
parity may contribute towards the reconstruction). An LRC
which has this property is an MR-LRC.

We conduct an experiment in which we plant one failure
in each local group (i.e. p total planted failures), and then add
another r failures at random. Then we attempt recovery. We
find that at least with coefficients we chose (all derived from
Cauchy matrices), all the codes we tested were very close to
being MR-LRCs. So even if it is hard to construct MR-LRCs,
in practical parameter settings, it is not hard to realize many
of their benefits using common code constructions.

We do point out that even though all code constructions
were close to being MR-LRCs, this does not mean that they
were all equally durable against random erasures. This is
because the shape of the code affects the probability that »+ p
random failures will spread out so that each local repair group
gets at least one failure. Indeed, this provides some intuition
as to why Uniform Cauchy LRCs perform the best against
random erasures. It is because the evenly sized local repair
groups maximize the probability that each local repair group
will see at least one failure (recall MR-LRC Definiton 5.9).

Mean-time-to-data-loss (MTTDL). MTTDL (for a
stripe) has been a canonical metric for reliability in the cod-
ing community [14]. It is modeled using a continuous time
Markov chain in which each state represents the number of
erasures in a stripe. There is a final absorbing state, denoted
fail, which represents a data loss/unavailability event. The
MTTDL for a coding scheme is simply the mean time until a
Markov chain starting at state zero reaches the absorbing state

Pfail

Prepair

S5 S6 $7

Figure 7: MTTDL Markov Chain for a 48-of-55 code. The proba-
bilities ps_, fairs P6— fail> and p7- rq1 are added from Fig. 5 (b, ¢, d)
where they are determined empirically. The probabilities p;_, s4;; for
i < 5 are not pictured because they are zero.

i.e. the expected time until a healthy stripe experiences a data
unavailability event. Each state representing e failures, de-
noted s, may transition to the states s,_1, S.+1 or fail. These
transition probabilities are usually modelled using exponen-
tial distributions representing repair time (which captures the
transition from s, to s._1), failure probability (which captures
the transition from s, to s, 1) and complete failure probability
(which captures the transition from s, to fail). These theoret-
ical models are ubiquitous in modeling stripe reliability for
MDS codes, but they have also been used to study the relia-
bility of LRCs [27,42,44]. In our work, replace the modelled
transition probabilities with observed ones, in order to get a
better estimate of the MTTDL of our codes.

We accomplish this by supplementing our theoretical model
with empirical data in the following way: for each state s,
we add a transition to the irrecoverable data loss state with
probability pe_. rqi1, where p._, r4; is probability that a stripe
with e randomly distributed failures cannot recover the data,
as shown in Figure 7. To be clear, in order to model MTTDL
this way, we need the explicit generator matrix of our code,
and then to conduct the random failures experiment to gen-
erate data. While no model is perfect, we believe that this
is a more realistic evaluation of MTTDL of an LRC, since
we meaningfully account for the observed durability of the
explicit code (i.e. accounting for coefficients).

Table 2 shows the MTTDL comparisons for different LRC
constructions. Since we are interested in the relative compari-
son of MTTDLs, we show the ratio of each LRC construction
with the Uniform Cauchy LRC MTTDL (where MTTDL is
calculated as a function of p ¢, and pj.pair whose values can
differ significantly based on specific cluster size, architecture,
disk makes/models, etc.). Although py.pair can differ based
on the architecture of the code, those differences are negli-
gible in comparison to the wait-time for the detection of the
missing blocks in a stripe as explained in Section 2. We find
that Uniform Cauchy LRC achieves the highest MTTDL (up
to a factor of 100x in our evaluation), while Azure-LRC+1
has the lowest MTTDL values. This is in line with our ob-
servations that Uniform Cauchy LRCs and Azure-LRC+1
have respectively the highest and lowest performance in re-
constructing random erasures, and also the lowest and highest
average locality. This is unsurprising since MTTDL of an
LRC is inversely proportional to its average locality [44].

USENIX Association

21st USENIX Conference on File and Storage Technologies 11

9 Maintenance-robust deployment

When deploying an erasure code in a large-scale storage clus-
ter, there are several placement constraints that need to be
met in order to ensure adequate data reliability. For example,
usually no two blocks of the same stripe are put on the same
disk, server, rack or at times even racks powered by the same
power source to improve data reliability. Placement restric-
tions have been studied recently in [30], and in this work we
comment that placement constraints can be considered during
code design as well.

In a storage cluster, the smallest unit in which maintenance
such as kernel/firmware/hardware upgrades can be performed
is known as a maintenance zone. The design of maintenance
zones affects reliability because all servers/devices in a single
maintenance zone can be turned off simultaneously during
a maintenance event. So we would like to have each stripe
intersect a maintenance zone as little as possible, making it
robust to the maintenance events in a real storage cluster. In
an ideal world, we could make maintenance zones as small as
possible (e.g. a single rack) to limit the impact of maintenance
events on reliability. But this is not practically feasible, as it
would increase the operational toil of maintenance tasks. One
reason for this is: after every maintenance task (belonging to
a single maintenance zone) cluster-wide (and therefore time-
consuming and expensive) data reachability and reliability
tests are usually conducted to ensure that the maintenance
activity was completed without unforeseen events. If mainte-
nance zones are too small (say an individual server), then a
large-scale cluster of tens-of-thousands of servers would be
in perennial testing activity. This severely limits the number
of maintenance zones, and in practice, storage administrators
have informed us that the total number of maintenance zones
in a single cluster are typically restricted to below 20. This
means that a maintenance event can affect a large number of
stripes, and hence it is important to deploy stripes in a manner
that is robust to maintenance events.

One desirable property of a code deployment might be that
no maintenance event that affects a single zone should render
any stripe unrecoverable. We name this maintenance-robust
deployment. Since maintenance events are foreseeable, and
usually performed one zone at a time, a maintenance-robust
deployment would ensure high availability.

In the context of LRCs, we can further optimize deploy-
ment strategies to increase the likelihood of cost-efficient local
repairs. For example, if we guarantee that every maintenance
zone has at most one block from each local group, all de-
graded reads during a maintenance event would only require
local repairs. We term such a deployment maintenance-robust-
efficient deployment. 1deally we want all LRC deployments
to be maintenance-robust-efficient deployments.

Consider the (9,4,2)—LRC from Figure 3. If the number
of maintenance zones, say z is 3. We can assign each block of
data from every local repair group to a different maintenance

zone (i.e. a maintenance-robust-efficient deployment). Here,
during any maintenance event, the degraded read cost for the
data blocks stored in that maintenance zone is still £ =2. How-
ever, if z =2, we cannot guarantee local repairs in all cases.
As a best case, we could have z; = dy,d3,c1,l, and put the
rest of the data in z5. Suppose z; undergoes maintenance, the
data can be repaired by first repairing ¢; using cy, ,, and sub-
sequently performing a global repair using di, d3, ¢1 and ¢ to
reconstruct d, and d4. Suppose z; undergoes maintenance, d;
can be repaired using d», 1, and d3 can be repaired using d,
lp. Thus, with z =2, a (9,4,2)—LRC can only be deployed
in a maintenance-robust manner, where global repairs are re-
quired for reconstructing data. In general, when z >= £+ 1
for an LRC, it can guarantee maintenance-robust-efficient
deployment. The parameter £+ 1 in Table 2 shows that mini-
mum number of maintenance zones required for maintenance-
robust-efficient deployment to be possible for the schemes we
have evaluated in this work. Thus, with z ~20, all schemes
except 96-of-105 can be deployed in a maintenance-robust-
efficient manner for Uniform Cauchy LRCs.

10 Related Work

LRCs have widely studied and deployed in the last decade
due to their practical improvements over MDS codes. While
Microsoft Azure and Facebook first published the commercial
use of LRCs [27,42], much academic research has also been
conducted to find LRC constructions with desirable proper-
ties [1,6,11,17,39,39,44,46,48]. One area of research has
been explicit constructions of distance optimal codes (Defini-
tion 5.4) [6,24,28,35,37,38,47,49,51]. Tamo and Barg [47]
were among the first to provide a general construction of
distance-optimal LRCs (with small field sizes), but with some
constraints on the allowable parameters. This construction
was further generalized by Kolosov et al. [33] for a wide range
of parameters. Recent years have seen a surge in research on
MR-LRCs [4,5,12, 15, 16, 18-22, 36]. Recently, Gopi et
al. [18] provided an explicit construction of MR-LRCs which
is broad, but does not cover our parameter regime.

Wide codes are known to be deployed in two commercial
settings, VAST [50] and Backblaze [3], and recent works
have studied wide codes in academia. Haddock et al. analyze
wide codes’ performance using GPUs [23]. Li et al. show
local erasures codes in the context of hard-disk drives [34].
More recently, Hu et al. [25] study the performance issues in
repair, encoding, and update performance of wide codes. Our
practically inspired work adds to this literature by studying
the trade-offs of wide LRCs from construction to deployment.

11 Conclusion

In this work we show that many subtle factors can affect LRC
reliability in real world scenarios: coefficients in the generator

12 21st USENIX Conference on File and Storage Technologies

USENIX Association

matrix, design of local repair groups, and maintenance-robust-
deployment. We show the value of an experiment-driven un-
derstanding of reliability as it provides us novel insights into
design choices which have a meaningful impact on reliabil-
ity. Indeed, this culminates in our construction of Uniform
Cauchy LRCs which outperform popular (and provably dis-
tance optimal) codes in practice.

12 Acknowledgements

We thank our shepherd Patrick P. C. Lee and the anonymous
reviewers for their valuable feedback and suggestions. We
extend special thanks to Larry Greenfield and numerous other
researchers and engineers at Google.

A Optimal Cauchy LRCs

A.1 Distance optimality of Optimal Cauchy
LRCs

Theorem A.1. Forr >0, O, ., generates an error correct-
ing code with distance exactly r + 2.

Proof. We will simply show that the distance of the code gen-
erated by Oy, « ., is equal to the distance of the code generated
by Gyri1)- Recall that Gy, 1) generates a code with
distance exactly r+ 2, which is equivalent to saying that this
code can correct any pattern of r+ 1 erasures, i.e. G(x 1,4 1)x
has row rank at least & if any r 4 1 rows are deleted.

We will show that Oy, x ., has row rank at least kK whenever
any r+ 1 rows are deleted. Note that whenever some r + 1
rows are deleted from Oy . ,, they may or may not contain
any rows among the 7,...,7,.

First we consider the case when at least one of 7,...,7,
are deleted. In this case, we may consider all of them lost,
and note that we have exactly the same rows remaining as
if gr4k+1, and at most r other rows were lost in Ggq 1) k-

Since, G iy r41)x generates an MDS code with distance r +2,
it is clear that the remainder of the rows will have rank k.

Now consider the case when the r+ 1 deleted rows do not
contain any of the rows 7{,7,...,7,. In this case, we can
compute gy, = 1 + 72+ -+ Fp, which reduces to the
case when r+ 1 rows are deleted from G, 1) x- O
Lemma A.2. Givenk,r,p >0, rp*> > k+rp, and p even, the
LRC formed by O, ., is distance optimal.

Proof. Recall that for a LRC to be distance optimal we must
have,

n:k+m+d—z (1)

where £ is the locality parameter and d is the distance. We
know that £ = % +randn=k+r+ p foran (n,k,r, p)-optimal

cauchy code. Substituting ¢ and d = r + 2 (from Theorem
A.1), equation | becomes,

k k
n=k+ |+ +r:k+{p -‘—&-r
il k+ pr

So an (n,k, r, p)-optimal cauchy code will be distance op-
p

. k . k .
timal whenever Epr | = P16 p— 1< ﬁpr < p. Both in-

equalities hold as long as r, p,k > 0 and rp? < k+ rp. O

A.2 Relaxing constraints

We have shown how to construct distance optimal LRCs with
blocklength n = k + r + p, where k is the dimension of the
code, r is the number of global parity checks, and p is the
number of local parity checks as long as p is even, r, p,k > 0
and rp* < k+ rp. We will briefly discuss some extensions of
these parameter regimes in this section.

Claim A.3. We may modify our construction of distance op-
timal codes to work with p odd.

If p = 1, we may modify the construction so that r| =7, =
Fp = 8k+r+1,and 80 G(xy 4 1) k = On k. p- This just reduces to
the code defined by Gy 1) k-

If p > 3, we may modify the construction so that 7; = r;
for 1 Slgp—z, Fp—l :rp—1+gk+1 +"'+gk+r, and fp =
Yp + 8k+1+ -+ gi+r- In this case,

f1+772+"'+7p :z(ngrl +gk+2+"'+gk+r)+gk+r+l

= 8k+r+1
From here, the same reasoning as the previous sections im-
plies that these codes are distance optimal. Notice that when
p > 3, these modifications do not change ¢ because 7, is a
local parity check on % + r data blocks.

2
Claim A4. If % < k+rp < rp?, our construction gives
codes whose blocklength is at most one greater than a dis-
tance optimal code.

This is easily observed by following the proof of Lemma
6.2 and considering the cases where p —2 < kf;r <p-—1
Previous works have also found such ‘off by one’ LRCs in
broader parameter regimes than truly optimal LRCs [47]. This
allows us more freedom to explicitly construct almost distance

optimal and wide LRCs.

Claim A.5. We may construct codes with alphabet size g >
k+r+1

Note that we can construct our LRCs starting from the
generator matrix of any MDS code in place of Gy,114. In
particular, taking Gy,+1 « to be the generator matrix of any
Reed-Solomon code, we only need g > k+r+1 (since Reed-
Solomon codes need g > n). For our settings ¢ is fixed to be
256, so we have the flexibility to construct many wide explicit
codes.

USENIX Association

21st USENIX Conference on File and Storage Technologies 13

References

[1] Abhishek Agarwal, Alexander Barg, Sihuang Hu, Arya
Mazumdar, and Itzhak Tamo. Combinatorial alphabet-
dependent bounds for locally recoverable codes. IEEE
Transactions on Information Theory, 2018.

[2] Backblaze. Disk Reliability Dataset. https://www.
backblaze.com/b2/hard-drive-test-data.html,
2013-2018.

[3] Backblaze. Erasure coding used by Backblaze. https:
//www.backblaze.com/blog/reed-solomon/,2013-
2018.

[4] SB Balaji and P Vijay Kumar. On partial maximally-
recoverable and maximally-recoverable codes. In /EEE
International Symposium on Information Theory (ISIT),
2015.

[5] Alexander Barg, Zitan Chen, and Itzhak Tamo. A con-
struction of maximally recoverable codes. Designs,
Codes and Cryptography, 2022.

[6] Alexander Barg, Itzhak Tamo, and Serge V1ddut. Locally
recoverable codes on algebraic curves. IEEE Transac-
tions on Information Theory, 2017.

[7] Shimrit Ben-Yair. Updating Google Photos’ storage
policy to build for the future. https://blog.google/
products/photos/storage-changes/, 2020.

[8] Johannes Bloemer, Malik Kalfane, Richard Karp, Marek
Karpinski, Michael Luby, and David Zuckerman. An
xor-based erasure-resilient coding scheme. 1995.

[9] Eric Brewer. Spinning Disks and Their Cloudy Future.
https://www.usenix.org/node/194391, 2018.

[10] Eric Brewer, Lawrence Ying, Lawrence Greenfield,
Robert Cypher, and Theodore T’so. Disks for data cen-
ters. Technical report, Google, 2016.

[11] Viveck Cadambe and Arya Mazumdar. An upper bound
on the size of locally recoverable codes. In 2013 In-
ternational Symposium on Network Coding (NetCod).
IEEE, 2013.

[12] Han Cai, Ying Miao, Moshe Schwartz, and Xiaohu Tang.
A construction of maximally recoverable codes with
order-optimal field size. IEEE Transactions on Informa-
tion Theory, 2021.

[13] Daniel Ford, Francois Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

Garth Alan Gibson. Redundant disk arrays: Reliable,
parallel secondary storage. PhD thesis, University of
California, Berkeley, 1991.

Parikshit Gopalan, Guangda Hu, Swastik Kopparty,
Shubhangi Saraf, Carol Wang, and Sergey Yekhanin.
Maximally recoverable codes for grid-like topologies.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2017.

Parikshit Gopalan, Cheng Huang, Bob Jenkins, and
Sergey Yekhanin. Explicit maximally recoverable codes
with locality. IEEE Transactions on Information Theory,
2014.

Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and
Sergey Yekhanin. On the locality of codeword symbols.
IEEE Transactions on Information Theory, 2012.

Sivakanth Gopi and Venkatesan Guruswami. Improved
maximally recoverable lrcs using skew polynomials.
IEEE Transactions on Information Theory, 2022.

Sivakanth Gopi, Venkatesan Guruswami, and Sergey
Yekhanin. On maximally recoverable local reconstruc-
tion codes. In Electron. Colloguium Comput. Complex.,
2017.

Sivakanth Gopi, Venkatesan Guruswami, and Sergey
Yekhanin. Maximally recoverable Ircs: A field size
lower bound and constructions for few heavy parities.
IEEE Transactions on Information Theory, 2020.

Matthias Grezet, Thomas Westerbick, Ragnar Freij-
Hollanti, and Camilla Hollanti. Uniform minors in maxi-
mally recoverable codes. IEEE Communications Letters,
2019.

Venkatesan Guruswami, Satyanarayana V Lokam, and
Sai Vikneshwar Mani Jayaraman. -msr codes: Contact-
ing fewer code blocks for exact repair. IEEE Transac-
tions on Information Theory, 2020.

Walker Haddock, Purushotham V Bangalore, Matthew L
Curry, and Anthony Skjellum. High performance era-
sure coding for very large stripe sizes. In 2019 Spring
Simulation Conference (SpringSim).

Kathryn Haymaker, Beth Malmskog, and Gretchen
Matthews. Locally recoverable codes with availabil-

ity t <= 2 from fiber products of curves. arXiv preprint
arXiv:1612.03841, 2016.

Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick PC
Lee, Weichun Wang, and Wei Chen. Exploiting com-
bined locality for {Wide-Stripe} erasure coding in dis-
tributed storage. In USENIX File and Storage Technolo-
gies (FAST), 2021.

14 21st USENIX Conference on File and Storage Technologies

USENIX Association

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://blog.google/products/photos/storage-changes/
https://blog.google/products/photos/storage-changes/
https://www.usenix.org/node/194391

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Cheng Huang, Minghua Chen, and Jin Li. Pyramid
codes: Flexible schemes to trade space for access effi-
ciency in reliable data storage systems. ACM Transac-
tions on Storage (TOS), 2013.

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,
Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,
et al. Erasure Coding in Windows Azure Storage. In
USENIX Annual Technical Conference (ATC), 2012.

Lingfei Jin. Explicit construction of optimal locally
recoverable codes of distance 5 and 6 via binary con-
stant weight codes. IEEE Transactions on Information
Theory, 2019.

Saurabh Kadekodi. DISK-ADAPTIVE REDUNDANCY:
tailoring data redundancy to disk-reliability heterogene-
ity in cluster storage systems. PhD thesis, Carnegie
Mellon University, 2020.

Saurabh Kadekodi, Francisco Maturana, Sanjith Ath-
lur, Arif Merchant, KV Rashmi, and Gregory R Ganger.
Tiger:{Disk-Adaptive} redundancy without placement
restrictions. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2022.

Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram
Subramanya, Juncheng Yang, KV Rashmi, and Gre-
gory R Ganger. PACEMAKER: Avoiding heart attacks
in storage clusters with disk-adaptive redundancy. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.
Cluster storage systems gotta have HeART: improving
storage efficiency by exploiting disk-reliability hetero-
geneity. In USENIX File and Storage Technologies
(FAST), 2019.

Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo,
and Alexander Barg. On fault tolerance, locality, and op-
timality in locally repairable codes. ACM Transactions
on Storage (TOS), 2020.

Yin Li, Hao Wang, Xuebin Zhang, Ning Zheng, Shafa
Dahandeh, and Tong Zhang. Facilitating magnetic
recording technology scaling for data center hard disk
drives through {Filesystem-Level} transparent local era-
sure coding. In USENIX File and Storage Technologies
(FAST).

Jian Liu, Sihem Mesnager, and Lusheng Chen. New
constructions of optimal locally recoverable codes via
good polynomials. IEEE Transactions on Information
Theory, 2017.

Shu Liu and Chaoping Xing. Maximally recoverable
local reconstruction codes from subspace direct sum
systems. arXiv preprint arXiv:2111.03244, 2021.

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

Gaojun Luo and Xiwang Cao. Constructions of optimal
binary locally recoverable codes via a general construc-
tion of linear codes. IEEE Transactions on Communica-
tions, 2021.

Giacomo Micheli. Constructions of locally recoverable
codes which are optimal. IEEE Transactions on Infor-
mation Theory, 2019.

D.S. Papailiopoulos and A.G. Dimakis. Locally re-
pairable codes. In IEEE International Symposium on
Information Theory (ISIT), 2012.

KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A So-
lution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster. In USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage),
2013.

David Reinsel-John Gantz-John Rydning, J Reinsel, and
J Gantz. The digitization of the world from edge to
core. Framingham: International Data Corporation, 16,
2018.

Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-
phants: Novel erasure codes for big data. In Interna-
tional Conference on Very Large Data Bases (VLDB),
2013.

Seagate. The Digitization of the World From
Edge to Core. https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf, 2018.

Mostafa Shahabinejad. Locally repairable linear block
codes for distributed storage systems. 2018.

Natalia Silberstein, Ankit Singh Rawat, O Ozan Koylu-
oglu, and Sriram Vishwanath. Optimal locally repairable
codes via rank-metric codes. In IEEE International Sym-
posium on Information Theory (ISIT), 2013.

Itzhak Tamo and Alexander Barg. Bounds on locally
recoverable codes with multiple recovering sets. In
IEEE Transactions on Information Theory, 2014.

Itzhak Tamo and Alexander Barg. A family of opti-
mal locally recoverable codes. IEEE Transactions on
Information Theory, 2014.

Itzhak Tamo, Alexander Barg, and Alexey Frolov.
Bounds on the parameters of locally recoverable codes.
IEEE Transactions on Information Theory, 2016.

USENIX Association

21st USENIX Conference on File and Storage Technologies 15

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[49] Itzhak Tamo, Dimitris S Papailiopoulos, and Alexan-
dros G Dimakis. Optimal locally repairable codes and
connections to matroid theory. IEEE Transactions on
Information Theory, 2016.

[50] VAST. Providing Resilience, Efficiently. https://www.
usenix.org/node/194391, 2019.

[51] Guanghui Zhang. A new construction of optimal (r,
d) locally recoverable codes. IEEE Communications
Letters, 2020.

16 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.usenix.org/node/194391
https://www.usenix.org/node/194391

	Introduction
	Background
	Motivation for studying wide LRCs
	Practical challenges of wide LRCs
	Definitions
	(n, k, r, p)-Optimal Cauchy LRCs
	Code construction
	Distance

	(n, k, r, p)-Uniform Cauchy LRCs
	Experiments and analysis
	Maintenance-robust deployment
	Related Work
	Conclusion
	Acknowledgements
	Optimal Cauchy LRCs
	Distance optimality of Optimal Cauchy LRCs
	Relaxing constraints

